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Based on an analysis of the influence of the roots of a characteristic polynomial on the
increment of the argument of the frequency characteristic of the system, the frequency
criterion of stability of a system with fractional-order derivatives has been suggested. The
boundaries of the zone of location of the roots of the characteristic polynomial of a stable
system have been determined in a complex plane when the index α of the basis of the
characteristic polynomial changes.

Keywords: fractional-order derivative, stability criterion, stability boundaries.

2010 MSC: 26A33, 93D05 DOI: 10.23939/mmc2020.02.389

1. Introduction

In modern approaches to the creation of models of processes and of the synthesis of control actions in
dynamic systems, there are used fractional derivatives and integrals, which describe so-called fractal
peculiarities of such processes [1,2]. In particular, the design of some electromechanical systems using
fractional-order regulators significantly advances the possibilities of optimization of such systems [3–6].
The problems of analysis and synthesis of dynamic systems which are described by equations with
derivatives of fractional orders have recently received considerable attention [7, 8]. Despite consider-
able interest [9, 10], the problem of creation of a quite simple criterion of stability, similarly to the
systems with integer derivatives, for the systems with fractional-order derivatives still remains un-
solved. Analogously to the linear invariant systems of integer order, the stability of the linear systems
of fractional order, as it is known, depends on the location of the poles of the system in a complex
plane. On this basis, for the fractional-order systems the root stability criteria have been proposed, the
most famous of which is the Matignon’s stability theorem [11] and the Routh–Hurwitz criterion [12].
However, in the general case, the analysis of the location of the poles remains a rather difficult task.
Along with this, a significant number of papers are devoted to the creation of a frequency criterion
of stability. In particular, in [13] for the fractional-order systems, it is proposed to use the Mikhailov
criterion [14] after the transition to the integer polynomial with the basis s1/α. With this, to eliminate
the problem of high degrees of polynomials, it is proposed to analyze the argument of the modified

characteristic polynomial of the system of the form
∑m

k=0
am−k ·(s1/α)k

a0·(s+λ)m/α , where λ is a natural number.

The system will be stable if the argument of the modified polynomial is equal to zero. In [7], there is
demonstrated the application of this approach to the subsystems with different bases of fractional-order
derivatives, to the positively defined systems, and to the systems with time delay. In [15], a stability

criterion is proposed for linear fractional-order systems with s
1

α , where α satisfies 1 < 1/α < 2, being
formed on the basis of the analysis of the intersection of the real and imaginary axes by the hodograph
of the system. In [16], the application of the Lyapunov method for the analysis of stability of systems
with fractional derivatives and the problems in the formation of the Lyapunov function are shown.
In [17], the possibility of using the quadratic Lyapunov function to analyze the stability of the system
is proved. The application of the apparatus of matrix inequalities for the formation of the stability
criterion of a system is shown in [18].
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Given the conducted analysis of the use by many authors of the argument of the characteristic
polynomial function to determine the domain of the roots of a stable system, it is expedient, in
our opinion, to use the frequency domain to analyze the stability of systems with fractional-order
derivatives.

2. The problem formulation

A characteristic polynomial of a closed dynamic system with integer derivatives has the form:

H(s) = a0s
n + a1s

n−1 + a2s
n−2 + . . . + an−1s + an. (1a)

In fractional-order systems, when the Riemann–Liouville or Caputo formulae are used to describe a
derivative of the fractional order, we pass to such a form of the polynomial by applying the Laplace
transform by finding the common denominator α of all terms of the fractional order:

H(d) = b0d
m + b1d

m−1 + b2d
m−2 + . . . + bm−1d + bm. (1b)

where d = s1/α. With this, the degree of the polynomial increases significantly. Thus, in this case,
when α = 16, then to obtain an analogue of an integer polynomial of the n-th order m = 16n.

According to the basic theorem of algebra, any polynomial can be written as follows:

H(s) = a0 (s− p1) (s− p2) (s− p3) . . . (s− pn) . (2a)

where p1, p2, p3, . . . , pn are polynomial roots. Accordingly, for a polynomial of fractional order, the
form of the polynomial is as follows:

H(s1/α) = b0 (d− p1) (d− p2) (d− p3) . . . (d− pm)

= b0(s
1/α − p1)(s1/α − p2)(s

1/α − p3) . . . (s
1/α − pm). (2b)

When passing to the frequency domain by substituting s → jω for an integer polynomial we obtain:

H(jω) = a0(jω)n + a1(jω)n−1 + a2(jω)n−2 + . . . + an−1(jω) + an

= a0(jω − p1)(jω − p2)(jω − p3) . . . (jω − pn). (3a)

and, accordingly, for a polynomial with fractional coefficients:

H
(

(jω)1/α
)

= b0
(

(jω)1/α
)m

+ b1
(

(jω)1/α
)m−1

+ b2
(

(jω)1/α
)m−2

+ . . . + bm−1

(

jω
)1/α

+ bm

= b0
(

(jω)1/α − p1
)(

(jω)1/α − p2
)(

(jω)1/α − p3
)

. . .
(

(jω)1/α − pm
)

= b0
(

j1/αω∗ − p1
)(

j1/αω∗ − p2
)(

j1/αω∗ − p3
)

. . .
(

j1/αω∗ − pm
)

. (3b)

where ω∗ = ω1/α = α
√
ω.

In the general case, the trigonometric form of a complex number z = a + j b is written as:

z = r (cosϕ + j sinϕ) = r ejϕ,

where r =
√
a2 + b2, and ϕ = arctan (a/b).

Thus, for an integer polynomial:

H(jω) = a0

n
∏

i=1

(

rie
j ϕi

)

= a0

n
∏

i=1

rie
j
∑n

i=1
ϕi ,

where the argument of the function H(j ω) is equal to ϕ =
∑n

i=1 ϕi, is determined as a sum of the
arguments of all multipliers.
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Let us analyze the influence of the roots on the argument of the function H(j1/αω∗) in the case of
a fractional-order system. Consider two cases: the first case, when any number α is within the range
α ∈ [1;∞] and the second one, when α ∈]0; 1[ which includes the range 1 < 1/α 6 2, which is used to
analyze fractional-order systems.

When using de Moivre’s formula for natural α:

α
√
z = α

√

|z|
(

cos
arg(z) + 2kπ

α
+ j sin

arg(z) + 2kπ

α

)

we obtain:
α
√

j =
α
√

1

(

cos
π
2 + 2kπ

α
+ j sin

π
2 + 2kπ

α

)

and for k = 0: α
√
j = cos π

2α + j sin π
2α . In the case of fractional α = λ/β for k = 0 we obtain

j1/α = j
β
λ = λ

√

jβ = cos πβ
2λ + j sin πβ

2λ
For the first case α ∈ [1;∞], let us demonstrate the influence of roots on the change of the argument

of the function H(j1/αω∗).
a) The case of the real root in the left half-plane (Fig. 1).

jωjω

j1/αω∗ − p1j1/αω∗ − p1

α = 2

j1/αω∗j1/αω∗

π/(2α)π/(2α)

α = 3/2

p1p1 OO

aa

AA

Fig. 1.

For the frequency ω∗ = 0, the vector j1/2ω∗ − p1 occupies a position −p1. In the case α = 2 with
increasing frequency ω∗ → ∞, the rotation angle of the vector j1/2ω∗ − p1 is equal to π/4 = π/(2 · 2)
counterclockwise. And in the case α = 3/2 with increasing frequency ω∗ → ∞, the rotation angle of
the vector j2/3ω∗ − p1 is equal to π/3 = π/(2 · 3/2) counterclockwise. Thus, the argument ϕ of the
function H(j1/αω∗) in the case of a real root being in the left half-plane increments by ∆ϕ = π/(2α).
If the polynomial (3b) has c real roots, the increment of the argument will be ∆ϕ = cπ/(2α).

b) The case of the real root in the right half-plane (Fig. 2).

jωjω

j1/αω∗ − p1j1/αω∗ − p1

α = 2

j1/αω∗j1/αω∗

π − π/(2α)π − π/(2α)

α = 3/2

p1p1

OO

aa

AA

Fig. 2.

For the frequency ω∗ = 0 the vector j1/αω∗ − p1 occupies a position p1. With increasing frequency
ω∗ → ∞, the rotation angle of the vector j1/2ω∗ − p1 is equal to 3π/4 = π − π/4 clockwise, and the
rotation angle of the vector j2/3ω∗ − p1 is equal to 2π/3 = π − π/3 clockwise. Thus, the argument
ϕ of the function H(j1/αω∗) in the case of a real root being in the right half-plane increments by
∆ϕ = −(π − π/(2α)).
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c) Consider the case of a pair of complex-conjugate roots in the left half-plane (Fig. 3) without
losing generality when α = 2.

jω

j1/αω∗ − p1

j1/αω∗ − p2

α = 2 j1/αω∗

π/(2α)

π/(2α)

p1

p2

γ

γ O

a

a

jω

j1/αω∗ − p1

j1/αω∗ − p2

α = 2

j1/αω∗π/(2α)

π/(2α)

p1

p2

γ

O

a

b

Fig. 3.

In the case of location of roots which corresponds to Fig. 3a, when changing the frequency from
ω∗ = 0 till ω∗ → ∞, the rotation angle of the vector j1/2ω∗−p1 is equal to π/4+γ counterclockwise, the
rotation angle of the vector j1/2ω∗ − p2 is equal to π/4 − γ counterclockwise too. Thus, the argument
ϕ of the function H(j1/2ω∗) changes by the value π/4 + γ + π/4 − γ = 2π/4. In the case of location
of roots which corresponds to Fig. 3b, when changing the frequency from ω∗ = 0 till ω∗ → ∞, the
rotation angle of the vector j1/2ω∗ − p1 is equal to π/4 + γ counterclockwise, and the rotation angle
of the vector j1/2ω∗ − p2 is equal to γ − π/4 clockwise. The argument ϕ of the function H(j1/2ω∗)
changes by the value π/4 + γ − (γ − π/4) = 2π/4.

In the general case, each pair of complex-conjugate roots in the left half-plane changes the argument
ϕ of the function H(j1/αω∗) by the value ∆ϕ = 2π/(2α).

d) Consider the case of a pair of complex-conjugate roots in the right half-plane (Fig. 4) without
losing generality also when α = 2.

jω

j1/αω∗ − p1

j1/αω∗ − p2

α = 2
j1/αω∗

π/2 − π/(2α)

π/(2α)
p1

p2

γ

O a

a

jω

j1/αω∗ − p1

j1/αω∗ − p2

α = 2 j1/αω∗

π/2 − π/(2α)

π/(2α)

p1

p2
γ

O a

b

Fig. 4.

In the case of location of roots which corresponds to Fig. 4a, when changing the frequency from
ω∗ = 0 till ω∗ → ∞, the rotation angle of the vector j1/2ω∗− p1 is equal to 5π/4− γ counterclockwise,
and the rotation angle of the vector j1/2ω∗ − p2 is equal to 3π/4− γ clockwise. Thus, the argument ϕ
of the function H(j1/2ω∗) changes by the value 5π/4 − γ − (3π/4 − γ) = 2π/4. In the general case,
each pair of complex-conjugate roots in the right half-plane located in accordance with Fig. 4a changes
the argument ϕ of the function H(j1/αω∗) by the value ∆ϕ = 2π/(2α).
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In the case of location of roots which corresponds to Fig. 4b, when the frequency is changing from
ω∗ = 0 till ω∗ → ∞, the rotation angle of the vector j1/2ω∗−p1 is equal to 3π/4+γ clockwise, and the
rotation angle of the vector j1/2 ·ω∗−p2 is equal to 3π/4−γ clockwise. The argument ϕ of the function
H(j1/2ω∗) changes by the value − (3π/4 + γ) − (3π/4 − γ) = −2 · 3π/4 = −2 (π − π/4). Thus, each
pair of complex-conjugate roots in the right half-plane located in accordance with Fig. 4b changes the
argument ϕ of the function H(j1/αω∗) by the value ∆ϕ = −2 (π − π/(2α)).

In the case α = 1, we transit to an integer system. The function H(j1/αω∗) = H(jω), the axis
j1/αω∗ coincides with the axis jω and for ω → ∞ the argument of the function ϕ =

∑n
i=1 ϕi = n·π

2
since each real root located in the left half-plane provides the increment ∆ϕ = π/(2α) = π/2, and
each pair of complex-conjugate roots, which are located in the left half-plane, changes ϕ by the value
∆ϕ = 2π/(2α) = 2π/2. As it is known, the location of the roots of an integer system in the left
half-plane automatically ensures the stability of such a system.

By analogy with an integer system, a necessary condition for the stability of a system with deriva-
tives of fractional order is to ensure the equality of the argument ϕ of the function H(j1/αω∗) to the
value mπ/(2α) (where m is the polynomial degree (3b) when ω∗ → ∞. And accordingly, a polynomial
of the form (3b) can be interpreted, by analogy with integer systems, as a characteristic polynomial of
a system with derivatives of fractional order.

The conducted analysis of the influence of the location of the roots of the polynomial (3b) in the
case α ∈ [1;∞] makes it possible to determine the boundaries of the sector of unstable operation of
the system in the right half-plane as ±π/(2α).

Let us demonstrate the influence of roots on the change of the argument of the function H(j1/αω∗)
for the case α ∈ ]0; 1[.

a) The case of the real root in the left half-plane (Fig. 5).
The resulting rotation angle of the vector j3/2ω∗ − p1 when changing the frequency from 0 to ∞ is

equal to 3π/4 counterclockwise. Therefore, the argument ϕ of the function H(j1/αω∗) in the case of a
real root being in the left half-plane also increments by ∆ϕ = π/(2α).

jω

j1/αω∗ − p1 j1/αω∗

π/(2α)

α = 2/3

p1 O

a

A jω

j1/αω∗ − p1j1/αω∗

π − π/(2α)

α = 2/3

p1O

a

A

Fig. 5. Fig. 6.

b) The case of the real root in the right half-plane (Fig. 6).
The resulting rotation angle of the vector j3/2ω∗ − p1 when changing the frequency from 0 to ∞

is equal to π/4 clockwise. Thus, the argument ϕ of the function H(j1/αω∗) in the case of a real root
being in the right half-plane increments by ∆ϕ = −(π − π/(2α).

c) Consider the case of a pair of complex-conjugate roots in the left half-plane (Figs. 7) without
losing generality when α = 2/3.

In the case shown in Fig. 7a when changing the frequency from ω∗ = 0 to ω∗ → ∞, the rotation
angle of the vector j3/2ω∗−p1 is equal to 3π/4+γ counterclockwise, and that of the vector j3/2ω∗−p2 is
equal to 3π/4−γ also counterclockwise. Thus, the total angle changes by the value 3π/4+γ+3π/4−γ =
2 · 3π/4. In the general case, each pair of complex-conjugate roots in the left half-plane, located in
accordance with Fig. 7a, changes the argument ϕ of the function H(j1/αω∗) by the value ∆ϕ = 2π/(2α).
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Fig. 7.

For the case of location of roots shown in Fig. 7b, when changing the frequency from ω∗ = 0 to
ω∗ → ∞, the rotation angle of the vector j3/2ω∗ − p1 is equal to 5π/4 − γ clockwise, and that of the
vector j3/2ω∗ − p2 is equal to 3π/4 − γ counterclockwise. Then the total angle of rotation is equal to
− (5π/4 − γ) + 3π/4 − γ = −2π/4. Thus, the argument ϕ of the function H(j1/αω∗) in the case of a
pair of complex-conjugate roots in the left half-plane, located in accordance with Fig. 7b, increments
by ∆ϕ = −2 (π − π/(2α)).

d) Consider the case of a pair of complex-conjugate roots in the right half-plane (Fig. 8) without
losing generality also when α = 2/3.
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Fig. 8.

In the case shown in Fig. 8a when changing the frequency from ω∗ = 0 to ω∗ → ∞, the rotation angle
of the vector j3/2ω∗−p1 is equal to π/4+γ clockwise, and the rotation angle of the vector j3/2ω∗−p2 is
equal to γ−π/4 counterclockwise. Thus, the total angle changes by the value − (π/4 + γ) +γ−π/4 =
−2π/4. For the case of location of roots shown in Fig. 8b, when changing the frequency from ω∗ = 0
to ω∗ → ∞, the rotation angle of the vector j3/2ω∗− p1 is equal to π/4 + γ clockwise, and the rotation
angle of the vector j3/2ω∗ − p2 is equal to π/4 − γ also clockwise. Then the total angle of rotation
equals − (π/4 + γ) − (π/4 − γ) = −2π/4. Thus, in the general case, a pair of complex-conjugate
roots in the right half-plane changes the argument ϕ of the function H(j1/αω∗) by the increment
∆ϕ = −2(π − π/(2α)).
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Thus, on the basis of the conducted analysis of the influence of the roots of the polynomial of
the form (3b) taking into account the formulated criterion regarding the value of the argument ϕ of
the function H(j1/αω∗), the zone of stable operation of the system in the left half-plane has limits
± (π − π/(2α)) for α ∈ [0.5; 1[. When α = 0.5, the zone of stable operation becomes equal to 0. Thus,
in the range 0 < α 6 0.5 the system is unstable. It should be noted that when α = 0.5 we are
dealing with an integer characteristic polynomial in which there are only even polynomial orders and,
accordingly, the necessary condition for the stability of the system, in accordance with the classical
control theory, is not fulfilled.

A polynomial of the form (3b), using de Moivre’s formula, can be changed to the form:

H(j1/αω∗) = b0

((

cos
π

2α
+ j sin

π

2α

)

ω∗ − p1

)((

cos
π

2α
+ j sin

π

2α

)

ω∗ − p2

)

×
((

cos
π

2α
+ j sin

π

2α

)

ω∗ − p3

)

. . .
((

cos
π

2α
+ j sin

π

2α

)

ω∗ − pm

)

= U(ω∗) + j V (ω∗).

Then, taking into account the above analysis of the influence of roots, the criterion of stability for
a system with fractional-order derivatives can be formulated as follows: for the stability of a system, it

is necessary that the hodograph starting at ω = 0 on the positive side of the real axis, with increasing

ω to ∞ passes successively through the mπ/(2α) sectors of a complex plane, where m is the order of

the polynomial.

When α = 1 (polynomial of integer order), the proposed criterion corresponds to the classical
Mikhailov criterion.

Consider the application of the proposed criterion on examples of systems with fractional-order
derivatives. Let the system be described by a characteristic polynomial:

H
(

j1/2ω∗) = a0
(

j1/2ω∗)3 + a1
(

j1/2ω∗)2 + a2 j
1/2ω∗ + a3.

We pass to the polynomial with integer j using the transform j1/α = cos π
2α + j sin π

2α when α = 2.

Thus, after the substitution j1/2 = cos π
4 + j sin π

4 =
√
2
2 (1 + j), the characteristic polynomial of the

system has the form:

H
(

jω∗) = a0 j

√
2

2
(1 + j)(ω∗)3 + a1 j (ω∗)2 + a2

√
2

2
(1 + j)ω∗ + a3

and respectively:

U(ω∗) = −a0

√
2

2
(ω∗)3 + a2

√
2

2
ω∗ + a3,

V (ω∗) = a0

√
2

2
(ω∗)3 + a1 (ω∗)2 + a2

√
2

2
ω∗.

Then, when ω∗ = 0: U(ω∗) = a3, V (ω∗) = 0, i.e. when a3 > 0, the hodograph starts on the positive
side of the real half-axis. For ω∗ → ∞, the resulting angle of rotation is found from the expression:

tan(ϕ) =
a0 (ω∗)3

(√
2
2 + a1

a0ω∗
+

√
2a2

2a0(ω∗)2

)

a0 (ω∗)3
(

−
√
2
2 +

√
2a2

2a0(ω∗)2
+ a3

a0(ω∗)3

)

and after the evaluation of ambiguity tan(ϕ) → −1, and hence, when a0 > 0, the angle ϕ → 3π/4.
Therefore, the stability criterion holds with respect to the resulting angle of rotation. The sequence
of passing the sectors will ensure the fulfillment of the condition ω∗

1 > ω∗
2, where ω∗

1 is the frequency
determined from the equation U(ω∗) = 0, and the frequency ω∗

2 is determined from the equation
U(ω∗) = V (ω∗).
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Fig. 9. Hodographs of the third-order system at different locations of roots in a complex plane.
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Fig. 10. Hodographs of the third-order system.

The hodographs obtained for the third-order sys-
tem (Fig. 9) identify the stable and unstable systems
for the characteristic third-order polynomial with
the basis s1/2. For the systems whose roots are lo-
cated in the zone of stability, the hodograph suc-
cessively passes through three sectors of a complex
half-plane of π/4 size.

Only the behavior of the hodograph of the sys-
tem with a pair of complex-conjugate roots in the
right half-plane (located in the zone of stable work)
and with a real root in the left half-plane requires
separate consideration. In this case, under certain
relations of the roots, the coefficient of the char-
acteristic polynomial a2 has a negative sign, and
within the frequency range ω < 1, the component
V (ω∗) < 0. The hodograph of the system has inter-

sections with the axis of real numbers (Fig. 10), which is characteristic of an unstable system. Upon
further change of ω, all conditions that define a stable system hold.
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Fig. 11. Hodographs of the third-order system for different locations of roots in a complex plane.

In the case of a characteristic polynomial:

H
(

j3/2ω∗) = a0
(

j3/2ω∗)3 + a1
(

j3/2ω∗)2 + a2 j
3/2ω∗ + a3

the components of the real and imaginary parts are determined by the expressions:

U(ω∗) = a0

√
2

2
(ω∗)3 − a2

√
2

2
ω∗ + a3,

V (ω∗) = a0

√
2

2
(ω∗)3 − a1(ω∗)2 + a2

√
2

2
ω∗.

The hodographs obtained for the third-order system (Fig. 11) identify the stable and unstable
systems for the characteristic third-order polynomial with the basis s3/2. Only the hodograph in
Fig. 11a successively passes through three sectors of a complex half-plane of 3π/4 size.
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Thus, the proposed criterion of stability provides an analysis of the stability of the systems with
fractional-order derivatives when α is changing α ∈ ]0.5;∞[.

3. Conclusions

1. In the system being described by a characteristic polynomial with a basis s1/α, when α changes
α ∈]0.5;∞[, the boundaries of the zone of stable operation in a complex plane are determined by
the angle ± (π − π/(2α)) calculated clockwise from the real half-axis in the negative half-plane.
For α 6 0.5, the system is unstable or is on the stability boundary.

2. A necessary condition for the stability of a system with fractional-order derivatives is ensuring the
equality of the argument ϕ of the function H(j1/αω∗) to the value mπ/(2α) (where m is the order
of integer polynomial with basis s1/α) when ω∗ → ∞.

3. The application of de Moivre’s formula makes it possible to transit from the polynomial H(j1/αω∗)
to the polynomial H(jω∗) and to form a criterion for the stability of a system on the basis of a
classical hodograph built in the coordinates of real U(ω∗) and imaginary V (ω∗) parts.

4. Some classical criteria of stability of systems with integer derivatives are obtained as a partial case
of the used approach to the analysis of stability of systems with fractional-order derivatives when
α = 0.5 and α = 1.
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Частотний критерiй для аналiзу стiйкостi систем з похiдними
дробового порядку

ЛозинськийО.Ю., КаленюкП. I., ЛозинськийА.О., КашаЛ.В.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

На основi аналiзу впливу коренiв характеристичного полiнома на прирiст агумента
частотної характеристики системи запропоновано частотний критерiй стiйкостi си-
стеми з похiдними дробового порядку. Визначено в комплекснiй площинi межi зони
розмiщення коренiв характеристичного полiнома стiйкої системи при змiнi показника
α основи характеристичного полiнома.

Ключовi слова: похiдна дробового порядку, критерiй стiйкостi, границi стiйкос-

тi.
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