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The plain problem of drying of a cylindrical timber beam in the average statement is
considered. The thermal diffusivity coefficients are expressed in terms of the porosity
of the timber, the density of the components of vapour, air, and timber skeleton. The
problem of mutual phase distribution during drying of timber has been solved using the
energy balance equation. The indicators of the drying process of the material depend on
the correct choice and observance of the parameters of the drying medium.
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1. Introduction

Wood has a low density and thermal conductivity and belongs to the colloidal capillary-porous mate-
rials. The drying process of most colloidal materials is long [1,2] and varies [3]. The material is heated
by convective energy transfer through the outer surfaces of the material in the presence of thermal
gradients [4]. Wood drying involves taking into account the heat and mass exchange between the wood
surface and humidified air and the internal heat and moisture exchange in the material [5–7]. For simu-
lation of mathematical models of heat and mass transfer with phase transitions, an approach by means
of methods with the phase boundary detection can be used [7]. For another approach, end-to-end
calculation methods are used, for instance, using the generalized formulation of the classical Stefan
problem [8]. To model systems characterized by “memory” effects, structural heterogeneity, spatial
non-locality, deterministic chaos, and self-organization, the non-integer integro differentiation can be
used [9, 10]. To simulate mathematical models taking into account the eridarity and self-organization
of the material, the finite-difference approximation can be used [11]. To simplify the model of heat and
mass exchange, it can be assumed that the gas phase is water vapor, which is an ideal gas [8]. The
task of choosing the optimal parameters of wood drying, at which the internal stresses in the dried
material would be minimal, is urgent [9].

In stationary modes, the relationship between temperature and humidity gradients is determined
by the formula

∂U

∂r
+

β

a
U =

δ ∂T

∂r
−

β

a
Up,

where δ is the thermogradient coefficient; β is the mass transfer coefficient; a is the thermal diffusivity
coefficient. In this dependence, the rate of moisture transfer is affected by the rate of heat transfer
and by the equilibrium moisture content Up [5]. The relationship between the distribution of moisture
content and temperature fields depends on the geometric dimensions of the timber material in length
and radius. Since the length of the beam of material is much larger than the cross-sectional size and
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the coefficient of moisture conductivity is much larger along the fibers than this coefficient across the
fibers and due to the great complexity of the structure of timber material, consider the plane average
problem of heat conduction.

When the hot air of the drying agent contacts with the moisture of the dried material, the moisture
particles disintegrate and multiply, turning into steam and rarefied moisture particles, the number of
which increases [5]. Thus there is a multiplying of particles of a two-phase zone. At the same time there
occurs a gradual deepening of the front of moisture evaporation. Heat is supplied to the evaporation
front by heat conduction from the drying agent across the dried layer of material. Excess pressure is
formed in the front zone, under the action of which the vapor is filtered to the outer surface. The total
rate of moisture removal depends on the thermal and filtration resistance. The vapor pressure and the
temperature at the front are related as parameters of saturated vapor. The slow movement of the front
into depth allows us to consider the fields of temperature and excess pressure in the dried material to
be quasi-stationary. The drying process with a variable phase transition boundary is described by the
equation [8]

∂T

∂τ
+ γ2T = a2Bα[T, r], γ2 =

γ21
Cρ

, α > 0, (1)

where

a2 =
λ

[Π(Cvρv + Caρa) + (1−Π)Csρs]

is averaged thermal diffusivity coefficient.
Solve Eq. (1) under the initial condition

T (τ, r)
∣

∣

τ=0
= g(r), r ∈ (0, R) (2)

and under the boundary conditions on r = 0 and r = R, which express heat exchange in the cylinder
and between the surface of the cylinder and the drying agent:

lim
r→0

∂

∂r
(rαT ) = 0, lim

r→R

(

α1
11

∂

∂r
+ β1

11

)

T = Ta(τ). (3)

The process of penetration of hot air, the rate of which is proportional to the concentration, leads to
the problem of phase transition if γ2 < 0 (diffusion with decay), the indices of a series

T (M, t) =

∞
∑

n=1

Tn e
(γ2−a2λ)tυn(M)

obtained by expansion in terms of eigenvalues functions υn(M), are less than the indices of a series
if not to take into account changes in temperature over time without a phase transition. In the case
γ2 > 0 (penetration with multiplication), if at least one of the indices (γ2 − a2λ) > 0, then there is
an increase by the exponential law. The value γ2 is a characteristics of the material (multiplication

factor), λ significantly depends on the shape and size of the area (pores). If λ = γ2

a2
, then the area

where the phase transition occurs has critical dimensions. For a plane problem, the smallest value of λ

corresponds to the eigenfunction, which has radial symmetry and is equal to λ1 =
µ
(0)
1
R

, µ
(0)
1 = 2.4048 [5].

For the critical diameter, the formula dkp =
2µ

(0)
1 a

γ
= 4.80a

γ
is obtained [5].

When solving the problem of drying objects with a capillary-porous structure, in particular wood,
in order not to consider the porous body in all its complexity, it is described in terms of a quasi-
homogeneous medium with effective coefficients, which are chosen so that the solution of the problem
in a homogeneous medium coincides with the solution in a porous medium. The influence of the
porous structure is taken into account by introducing the effective binary interaction coefficients into
the Stefan–Maxwell equation. The problem of mutual phase distribution is solved using the principle
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of local phase equilibrium. We consider that the averaged properties of the material, namely: heat
capacity C, density ρ, and thermal conductivity coefficients λ are functions of porosity of material,
densities and heat capacities of body components.

2. Problem statement

Consider the problem of drying a wet timber beam of cylindrical cross section in a drying plant. In
solving this problem, we neglect the discrete structure of the material at the molecular level. We come
to the equation of heat conduction

∂T

∂τ
(ρ, τ) = a∆T + γ2T, , γ2 > 0.

Here, a is the thermal diffusivity coefficient, γ is a variable equivalent to the presence of sources of
diffusing substance in the pores, T is the body temperature. The higher the temperature is, the
higher the rate of drying. The temperature in the drying chamber is the temperature in the vapor-gas
mixture, which is determined by a dry bulb thermometer. The temperature determined by a wet
bulb thermometer is the temperature at the boundary of the phase transition, which moves inside the
material. The difference between the readings of dry and wet bulb thermometers is used to determine
the relative humidity. For successful air drying, a continuous flow of air throughout the beam must be
ensured. In the drying chambers, unsaturated air is used as a drying agent. Successful operation of
drying chambers is achieved by regulating the temperature and humidity at the right time [7–9].

The volume of the dried area is a function of time. In this case, the body to be dried is a cylindrical
beam, the outer surface of which F (r, τ) = 0 is described by the equation

F (r, τ) = r − 1 = 0, τ = 0. (4)

At the time moment τ = 0, the temperature T0(τ) is applied to the outer surface of the cylinder and
from this time the drying process begins, and at the interface of the phase transition the curve of
separation of dry and wet zones is the temperature Tc(τ) curve.

In the process of drying, this curve moves, forming a closed curve Fk(r, τ) = 0, which is an isotherm
T = Tc. In the zone where the drying has already taken place, the temperature is described by the
equation of heat conduction and by boundary conditions, these boundary conditions can be written
as:
on the outer contour of the cylinder Fk(r, τ) = 0

T = Tc, (5)

and the following initial conditions:

T = T0, F0 = Fk, τ = 0. (6)

Let V (Fk, F0) be the volume of the dried area at the time t per unit length of the beam in the direction
of the axis Oz. Then, over a period of time ∆t, the volume will increase by ∆V (Fk, F0), and the
amount of heat spent is

∆Q = ρkck(T − Tc)∆V (Fk, F0). (7)

Determine this amount of heat through the flow on the surface Fk(r, τ) = 0 [8]:

∆Q = −λk

∫

Fkl=0

∂T

∂n
ds∆t. (8)

Passing in Eq. (8) to the limit at ∆t → 0, given (7), we obtain

λk

∫

Fkl=0

∂T

∂n
ds = −ρkck (T − Tc)

dV (Fk, F0)

dt
, (9)
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where F0l, Fkl are contours of cross-sections of surfaces F0 = 0, Fk = 0, respectively.

V (Fk, F0) =

∫∫ F0=0

Fk=0
ds. (10)

If we pass to the variables

η =
T − Tc

T0 − Tc

, β =
ρkcka

λk

, ϑ =
V

R2
, l =

s

R
, σ =

s

R2
, (11)

then dimensionless coefficients will satisfy the equation of heat conduction and the boundary condi-
tions (5), (6):
at F0 = 0

η = 1;

at Fk = 0
η = 0; (12)

η = 1, τ = 0. (13)

Consider the equation of the Stefan’s boundary change:

βη
dϑ

dτ
= −

∂T

∂n
dl, (14)

ϑ(F0, Fk) =

∫∫ F0=0

Fk=0
dσ. (15)

Note that at the beginning of the drying process

Fk(x, y, τ) = F0(x, y), ε∗(t) = 0. (16)

Over a short period of time, the contour of the boundary of the dried and wet zones will be as follows:

Fk(x, y, t)− F0(x1, y1) = ε∗(t), (17)

where ε∗(t) is the thickness of the layer of the dried area (17). From the symmetry of the problem it
follows that the contours F0, Fk are concentric circles, the equations of which in a dimensionless polar
system are

F0 = r − 1 = 0, Fk(t) = r − 1 + ε(t) = 0, ε =
ε∗

R
. (18)

With this, ε(τ) = 0 for τ = 0.
From (18) it follows that at the time of complete drying of the beam

ε∗(t) = R

and, respectively,
ε(τ) = 1.

Write the equation of heat balance for the area bounded by the contours F0, Fk(t). In integral form,
this equation can be written as

∫∫ F0=0

Fk=0

∂η

∂τ
dσ =

∫

F0l

∂η

∂n
dl −

∫

Fkl

∂η

∂n
dl. (19)

If we take into account the boundary condition (14), we obtain:

∫ F0=0

Fk=0

∂η

∂n
dσ =

∫

F0k

∂η

∂n
dl + βη

∂η

∂τ
. (20)
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Equation (20) is the main one, which takes into account the factor of the moving boundary.
Introduce the function η∗(r, τ) so that it satisfies the initial and boundary conditions (13). This

function will establish the relationship between the relative saturation and temperature in the cross
section in time.

η∗(r, τ) =
r − 1 + ε(τ)

ε(τ)
. (21)

Let us take η∗(r, τ) as an approximate solution, which at a certain value ε(τ) must satisfy Eq. (19).
There is a relationship between it and ε

∂η∗

∂τ
= (1− r)

1

ε2
dε

dt
,

∂η∗

∂n
=

∂η∗

∂r
=

1

ε
, (22)

∫

F0l

∂η∗

∂n
dl =

2π

ε
,

∫∫ F0=0

Fk=0

∂η∗

∂n
dσ =

∫ 2π

0
dϕ

∫ 1

1−ε

1− r

ε2
dε

dτ
rdr =

π

3
(3− 2η)

dε

dτ
.

From Eq. (20) we obtain

ε2 + ε
1− 2βη∗

2 (3βη∗ − 1)

dε

dτ
=

3βη∗

3βη∗ − 1
, (23)

or

dτ =
1

B

(

ε2 +Aε
)

dε, τ(0) = 0, (24)

B =
3βη∗

3βη∗ − 1
, A =

1− 2βη∗

2 (3βη∗ − 1)
. (25)

The solution of Eq. (24) is

τ =
1

B

(

ε3

3
+A

ε2

2

)

. (26)

From Eqs. (14) and (26), taking into account Eqs. (15) and (18), we obtain the equation that describes
the change in the unit of length of the volume of the dried zone over time: Vd = πR2

[

1− ε2(τ)
]

and,

thus, now we are able to calculate the relative humidity of the timber beam during drying W = V−Vd

V
.

Simple formulae for approximation of the experimental data allow us to calculate the total duration
of the drying process from the initial to the final moisture content of the material.

3. Numerical experiment

Based on the obtained solutions, the numerical simulation of drying of samples of timber circular
beams of pine, spruce, and birch of the same size has been carried out. The material after preliminary
natural drying had been brought to 15% humidity. The following basic parameters of the problem have
been accepted: the ambient temperature Tc = 313K; the velocity of the drying agent υ = 2m/s; the
saturated vapor density ρn = 0.013188 kg/m3 ; the air density ρa0 = 1.29 kg/m3. Physical parameters
of timber: the radius of a circular beam R = 0.07m; wood density: spruce 450 kg/m3, pine 500 kg/m3,
birch 750 kg/m3; the porosity: pine Π = 0.672, spruce Π = 0.654, birch Π = 0.591. Thermal parameters
of wood: the initial temperature T0 = 293K, the thermal conductivity coefficient at humidity of 15%
across fibers: spruce λ = 0.11W/(mK), pine λ = 0.14W/(mK), birch λ = 0.14W/(mK).

Fig. 1 shows the changes in the thickness of the layer of the dried area ε in time of drying τ .
From the graph, we can see a clear dependence of drying time on the physicochemical properties of

timber, namely: wood with higher porosity and lower density dries faster (Fig. 1, curves 1, 2) than the
denser wood with lower porosity (Fig. 1, curve 3). Note that wood species that have approximately
similar thermal conductivity index were studied.

In Fig. 2, the distributions of relative humidity of wood in time are presented.
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Fig. 1. The dependence of thickness of layer of
the dried area on time of drying (curves 1–3 cor-
respond to sort of materials: spruce, pine, birch,

respectively).

Fig. 2. Change in relative humidity of beam skele-
ton in time (curves 1–3 correspond to materials:

spruce, pine, birch, respectively).

We can observe that the samples with greater porosity and lower density lose moisture faster (Fig. 2,
curves 1, 2), the moisture from wood with less porosity is removed more slowly (Fig. 2, curve 3).

The obtained results correspond to the experimental data given in the literature.

4. Conclusions

It has been established that in the process of drying timber materials, the movable surface of the
phase transition, which separates the dried and wet zones, depends on the properties of the material
and temperature, which is a function of coordinates and time. The formulated problem of mutual
phase distribution during drying of timber has been solved taking into account given properties of
the material, namely: heat capacity, density, thermal diffusivity coefficients, which are expressed as
functions of the porosity of the material, densities, and heat capacities of the components. The
relationship is established between the drying time and the average parameters of porous cylindrical
timber, in particular the relative saturation of moisture, the thermal conductivity of timber, which
take into account the factor of movement of the mobile boundary of the dried zone.
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Побудова розв’язку лiнiйної задачi Стефана для осушення
цилiндричного бруса в квазiусередненiй постановцi

Гайвась Б. I.1, Дмитрук В. А.2,1, Семерак M. М.2, Римар Т. I.2

1Центр математичного моделювання
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2Нацiональний унiверситет “Львiвська полiтехнiка”,
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Розглянуто плоску задачу сушiння цилiндричного бруса в усередненiй постановцi.
Коефiцiєнти температуропровiдностi виражено через пористiсть матерiалу деревини,
густину компонентiв пари, повiтря та скелету. Задача про взаємний розподiл фаз
пiд час сушiння деревини розв’язується з використанням рiвняння балансу енергiї.
Вiд правильного вибору та дотримання параметрiв сушильного середовища залежать
показники процесу сушiння матерiалу.

Ключовi слова: пориста деревина, квазiгомогенне наближення, iнтегральне пере-

творення, фазовий перехiд, цилiндрична функцiя.
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