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The stationary fluid flow through a piecewise homogeneous porous medium is considered
under the assumption that Darcy’s law holds. The mathematical model of this problem is
defined as an elliptic equation for the stream function, supplemented by the second-type
boundary conditions at the water boundaries and the first-type boundary conditions at
the impervious to liquid boundaries. The problem statement also includes the conditions
of conjugation at the separation line between two soils and the unknown value of fluid
discharge, which can be established from the additional integral ratio. It is proposed
to use the structure-variational method of R-functions in order to numerically analyze
and solve the current problem. The complete solution structure for the boundary value
problem of stream function regarding the R-functions method is established, moreover,
the application of the Ritz method for approximating an unspecified structural formula
component is substantiated. Then, the approximate value of the fluid discharge and the
approximate solution of the original problem are found from the additional integral ratio.
The computational experiment was carried out with different coefficients of permeability
within the area, which has the shape of the lower half ring. It is established that as the
number of coordinate functions increases, the value of fluid discharge becomes constant,
indicating the convergence of the proposed method.

Keywords: Darcy’s law, fluid flow, porous medium, piecewise homogeneous medium,
R-function method, Ritz method.
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1. Introduction

Fluid flows through the porous media are widespread in nature [1]. Such flows are considered during
the study of irrigation or draining processes, inflow of seawater into fresh water, flows around the
hydraulic structures, etc.

The finite-difference method, majorant areas method, fictitious domain method, summative repre-
sentation method and so on are the most commonly used numerical analysis methods of flows through
the porous media [2-7|. The analyzed area may have a complex geometric shape, which leads to a pre-
cision loss in the numerical solutions of the mathematical physics problems by corresponding methods.
The structure-variational R-functions method allows taking into account the geometric and analytical
information contained in the researched problem most accurately and completely [8,9].

Previously, the R-functions method was used for the analysis of flows under the hydraulic structures
only [10-13]. The current article continues the research started in [14,15].

Therefore, the development and improvement of the existing numerical analysis methods is an
urgent scientific task. The goal of the current article is to develop and improve such kind of methods
in order to analyze the flat stationary flows through a piecewise homogeneous porous medium.
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2. Formulation of the problem

The stationary problem of the pressure fluid flow through a piecewise homogeneous porous medium
is considered [1,6,7]. The equation v = (vg,v,) describes the flow velocity vector. It is considered
that Darcy’s law is satisfied, according to which the pressure loss is proportional to the flow velocity
through the porous medium.

The analysis of two-dimensional flow is conveniently to perform using the stream function, which
defined with the following ratios:

Uy = oy Uy = _w (1)

xr xr 81} N

The porous area () is surrounded by impervious bound-
aries 0€2y and 0f23, which are known as the flow contours,
as well as two water boundaries €2y and 0€)4, which are
called the potential contours. Besides, the area 2 is filled
with two types of medium that occupy the subareas
and € (Q = Ql N Qg and int Q7 Nint Q9 = @). The 912
is the division boundary between two types of medium
(Fig.1). It is assumed that all the boundaries are piece-
wise, smooth, and can be described by elementary func-

tions.

The coefficient of permeability is a piecewise constant
function for the current mathematical problem, which is
defined as follows:

Fig. 1. The research area Q.

o K1, (ﬂj‘,y) € le
K’(x7y) B { K2, (x7y) € QZ'

Therefore, the stream function

_ wl(xvy)7 (.’lf,y) €y,
¢(x’y) B { ¢2($7y)7 (m,y) S QZ

is the solution of the boundary value problem

o ( 1 o\ o[ 1 o\ . .
5 Ganae) o Gags) =0 » o )
¢|891 = 07 2[)|8Q3 = Q) (3)
|l opl
on 00, on o0 v (4)
1 9y 1 Oy

; ()

0012

7/)1|3912 = ¢2|3912 )

K1 on 8010 N K2 on

where mn is the normal to the corresponding sections of the boundary.

The conditions (5) are the set at the division boundary between two types of medium and known as
the conjugation conditions. The variable @) is the unknown constant that specifies the fluid discharge,
and it can be found from the following ratio

/ la—wals =—-H (6)

where H' is the pressure.
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3. The application of the structure-variational R-function method for the numerical
analysis of flow through piecewise homogeneous porous medium

The presence of conjugation conditions (5) and integral condition (6) prevents the application of
classical numerical methods for solving boundary value problem (2)—(6). The structure-variational
R-function method is applied instead.

The solution of the problem (2)—(6) is sought as

¢($ay) = Qu(ac,y),

where u(z,y) = { w (@, y), () €, is the solution of the boundary value problem

o~ o~

uz(x,y), (x,y) € Qo,
0 1 Ou 0 1 Ou )
55<Hﬁuy)55>_%5§<ﬂtuy)5§>__0 m @)
u’agl == 07 u’aQS == 17 (8)
Ouf o, Qv g, (9)
on 9 on o
L 0w L Ous

u1’8912 = u2‘89127

K1 On |50, kg On

012
Value @ is found from the equation (6):

, 1 0u -1

The solution structure of the boundary value problem (7)—(10) according to the R-function method
is constructed. It was proved [14]| that the boundary conditions (8), (9) are satisfied by a sheaf of
functions W34 1w

w=f— —3W2— D§2_4)f b oy_g® — _P1=8W2—d

et B 5 (S SR , 12
w1-3 +wa—4 wi-3+wayg (w1-5®) (12)

where ® = ®(x,y) is indefinite structure component, and

- W1($7y)
f(wjy) B wl(gj’y) + W3($,y)7

D(2—4)g _ Owz—4 0g  Owi—4dg
1 Oxr Ox oy 0Oy’

W2—4(x7y) - w2(x7y) /\Oc w4(x7y)7

w1—3(x7y) = W1(33,y) Na W3(33,y)-

Functions w(z,y), wi(z,y), i = 1,2,3,4, developed using the constructive R-function theory appa-
ratus 9], are defined as follows:

0
w(z,y) =0 at I€; w(x,y) >0 in Q Rl -1,
on |y

wi(z,y) =0 at  0Q; w(xz,y) >0 in QU (ON\IN;);

8(4}2'
I a0,

=1, i=1,234.
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The normalized equation of the division boundary 0€15 is defined as wis = 0. The replacement of
variables in the structure (12) [9] is done in order to satisfy the conjugation conditions (10):

2
K1 — R9 w ]w12] 80.)12
K1+ Ky w?4wly Oz’

T x4 (13)

2
K1 — Ko w?|wia]  Owio
k1 +hKe w?twd Oy

y—y+ (14)

As a result, a complete structure solution of the (7)—(10) boundary value problem, which satisfies
all the boundary conditions (8)—(10) for any choice of indefinite component @, is obtained. Thus, the
following theorem holds.

Theorem 1. The sheaf of functions (12), where the substitutions (13), (14) are made, satisfies the
boundary conditions (8), (9) and the conjugation condition (10) for any choice of the sufficiently smooth
indefinite component P.

Thus, it remains to solve the problem of choosing an indefinite component ® so as to best satisfy
the differential equation (7). In order to achieve this goal the Ritz method is used.
A variable replacement in the problem (7)—-(10) is made in form

U=+,

W1-3wW2—4
w1—3+tw2_4
arguments in ¢ function using formulas (13), (14).

Ul(‘ray)7 (‘Tay) € Qla
U2($7y)7 ($7y) € Q2

where ¢ = f — D§2_4) f, and v is a new unknown function. It’s important to replace the

Then, the function v(z,y) = { becomes the solution of the boundary value

problem

8 1 arv 8 1 81)
9 ovy _ 9 —||=F at Q 15
oz </<a(x7y) 8&:) dy <f€(9€7y) 8y> S "

ov
’U’ = O, —~ = 07 (16)
O o0 o |pa,u00,
1 0vy 1 Ovy

_ 1 vy _ 10w 17
Ul’afhz 7}2‘8912 " k1 On 801 kg On 89127 "

_ 0 (19 9 (19
where F' = o (Eax) + By (m’)y)'

Let us connect the operator A, which operates in Lo(€2) space by the rule

=3 (waw) o ) (18)

with the boundary problem (15)—(17).

It is assumed that the domain Dy of the operator A (18) consists of those functions from Lo(£2)
which belong to the set C2(Q2) N C1(Q\0Q12) and satisfy boundary and conjugation conditions (16),
(17). It is clear that D4 is linear.

The properties of the operator A are set forth in the following lemma.

Lemma 1. Operator A, which operates in Lo(Q2) space by rule (18) and is defined on the set D 4,
has properties as follows:

a) linearity;

b) symmetry;

c) it is positive;

d) it is positively defined.
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Proof. Linearity of the operator A is obvious. Let us consider the scalar product (Av, w), where
v,w € Dy. Here
(z,y) € O,

{ (z,y) € Qo,
0=

wlxyv xy)GQb
wa(z,y), (x,y) € Q.

The following equation is obtained after applying first Green’s formula [16,17]:

0 (10v 0 [(10v
(Av,w) = // [—— <Ea_x> ~ (ﬁayﬂ w dz dy
8v1 8’(01 8v1 8’(01 8’02 aZUQ 8’02 8’(02
//g " <0m e Ty 0 y>d d“//% p (%WJra_ya—y)d:”dy
/ 1 vy wldS—/ i Ovy wgds—/ l@wds,
Q12 M1 onip 010 K2 Ongy 00 Kk On

where mqo is normal to the boundary 0€12 and it is outward to €)q; mo; is normal to the boundary
0849, outward to Qa. Integral for 90 equals zero since v,w € Dy, and, therefore, w| a0,000; = 05

0 _ 10 _ 10 10
a_maﬂzuam =0, and faQ sonwds = fBQlué)Qg < omwds + famuam oW ds.
The fact that n19 = —ng; and functions v and w satisfy the conjugation condition (17), is used to
simplify the integrals by 0€212. In other words,
v ’ — ’ 1 8v1 - 1 8’02
Lo — Y2100 k1 On 21 - Ky OM 89127
| | 1 811)1 1 811)2
w = w , = .
1 8Q12 2 8Q12 Hl 877/ 8Q12 /412 877/ 8Q12
Then
1 ov 1 ov 1 ov 1 ov
/ — 1w1ds+/ — 2wgds:/ <— 1w1—— 2w2>ds:0.
001, K1 OM2 001, K2 OMay 0015 \ K1 0N Ko OMy2
Consequently,
ov dw av ow
(Av, w) dx d 19
/ / <83: 9z oy oy ) 4 (19)

and A is a symmetric operator.
The positivity of the operatorA follows from the fact that for any v € Dy

o= [ A1) + () oo

Moreover, the equality (Av,v) =0 (11) is possible if only v = 0 due to condition (11).
Positive definedness of the operatorA is proved similarly as it was done in [15]. At the same time,
the following inequality is obtained for any v € D 4:

(A0,0) > ()™ [0l 70 -

Here p = max{k1, K2}, and the constant ¢ > 0 is determined by Friedrichs’s inequality [17]:

gy < ed [ T(2) + (2) Taray+ [ uea
ulivyoy <eq [ 1\ 5 gy ) |dwdut | s,

which makes sense for functions u from the Sobolev space W3 (€2). Here Q is area with the Lipschitz
boundary 0f2, 'y is opened part of the boundary 0€ in the area € of the positive measure of Lebesgue,
¢ > 0 is constant, which depends on 2 and I'y. Lemma is proved. [
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The energy product [v,w] is introduced in D4 according to (19) for any v, w € Dy

v, ] // Ov Ow 81}810 ded
Oz Oz ay 8 v
As a result, the energy space H 4 of the operator A of form (18), replenishing D 4 by means of conver-
gence by an energy norm, is obtained,

== (2 (2) o

Then, according to the theorem about the energy functional [16], problem (15)—(17) has a unique
(generalized) solution v* in H 4 provided by F' € Ly(€2). This solution is the minimum point in H4 of
the following energy functional:

J[v]zuvui—z(m):/g E[(%): <g—z>2] —2Fv]da:dy.

The approximate solution J[v] — inf,ep, of the variational problem in the following form is found
using the Ritz method: .
Un = Z CrPk-
k=1

According to the structural formula (12), the coordinate sequence {¢y} consists of

W1-3W2—4 D(2—4)(
- ., M

Wi-3Tk),
w1-3 + wa—4

Pr = W1-3T —

where variables x and y are replaced according to formulas (13), (14). Therefore, the usage of the
R~function method gives an opportunity to construct a coordinate sequence while implementing the
Ritz method, i.e. a system of functions which accurately satisfies all the boundary conditions of the
problem. Here {7} is any complete system of functions in Ly (£2) (power or trigonometric polynomials,
splines, etc.).
Then, the following system of linear algebraic equations (Ritz system) is resolved in order to
determine constants ¢, k=1,2,...,n:
n
> lerwiler = (Fog)), i=12,....n,
k=1

where

1 [ 1[0¢k0¢;  Opk Op;
[%%]—/M [% 5 oy oy dzx dy,

(Fa(Pj):/F-tpjdxdy, k,j=1,2,...,n.
Q

The following theorem follows from the general convergence theorems of the Ritz method [16].

Theorem 2. The solutions sequence {v, } of the problem (15)—(17), approximated by Ritz, converges
to the exact (generalized) solution of this problem both in the energy and the Ly()) norms.

Then, function u* = ¢ 4 v* is considered as a generalized solution of problem (7)—(10), to which
the sequence of approximate solutions {uy,} converges in norm Ls(€2) (which is formed by u, = ¢+ v,
rule).

Therefore, the following theorem holds.

Theorem 3. Let F' € Ly(Q2). Then the sequence
U = Qnin,
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where

-1
Qn:_H/, / l%ds , un:(lp_i_vn’
693"1 877/

converges in Ly(2) to a unique generalized solution (2)—(6).

4. Results of computational experiment

Figure 2 represents the area €2, where the computational experiment performed for the problem (2)—(6).
The boundary 02 of the mentioned area consists of the external circle with R radius, internal circle
with 7 (r < R) radius, two horizontal segments of y = 0 line and the division boundary yo = —1.5,
which separates two types of medium.

The coefficients of permeability k1 and ko are S —
valid in the subareas €2; and 9, respectively. Func- Qs

tions W1($, y); OJQ(.Z', y)7 wg(Z’, y)7 w4($, y)7 w12(x7 y) -05
for the selected area are defined as follows:

oy

-1.0F

1
wi(z,y) = ﬁ(Rz — 2% —y?),  walz,y) = —y,

-15F

1
O.)g(.il',y) = _(7,2 - 1’2 - y2)7 W4($,y) =Y, 20k,
27 2

wiz(x,y) =y — yo. Fig. 2. The computational experiment area 2.

The computational experiment was carried out for the k1, ko coefficients and different number
of coordinate functions. The coordinate functions were constructed on the basis of the Legendre
polynomials that establish an orthogonal system of function in [—1,1]. The dependences of @Q,, value
on the number of coordinate functions n for combinations of coefficients of permeability x; and xo are
represented in Table 1.

It is established that as the
number of coordinate func-
tions mn increases, the value

Table 1. @, values for combinations of k1 and ko coefficients
(dependent on the number of the coordinate functions n.)

Q., becomes constant, indicat- ! 2 6 10 1> 21 28

ing the convergence of the pro- 0.391 1,591 0.249 | 0.221 | 0.219 | 0.205 | 0.194
posed method. The contour 1.593 e 0.391 0.419 | 0.442 | 0.372 | 0.379 | 0.339
lines of the pfoblem solution 1.593¢? | 0.811cosh™2y | 0.359 | 0.335 | 0.304 | 0.298 | 0.274

are represented in Figs.3a, 4a, ba, and the flow velocity vectors are shown in Figs.3b, 4b and 5b,
respectively.

0.0F

-0.5r

-2.0m

Fig. 3. The contour lines (a) and the flow velocity vectors (b) recreated by function t9g for the coefficients of
permeability k1 = 0.391, ko = 1.591.
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Fig. 4. The contour lines (a) and the flow velocity vectors (b) recreated by function t)9g using the coefficients
of permeability x; = 1.593 €2Y, ko = 0.391.

Fig. 5. The contour lines (a) and the flow velocity vectors (b) recreated by function t)9g using the coeflicients
of permeability x; = 1.593 %Y, kg = 0.811 cosh™? .

The obtained numerical results are in good agreement with the results of both physical experiments
and numerical results obtained by other authors [1,6,7].

5. Conclusions

The article represents the problem of mathematical modeling of flows through a piecewise homogeneous
porous medium, the computational experiment for the mentioned problem as well as the experiment
results. Based on the R-function method, a solution structure that satisfies all the boundary conditions
is developed. The application of the Ritz method for approximation of the indeterminate component
is substantiated as well.

The computational experiment performed for the described problem demonstrates the efficiency
and precision of the proposed modified method. The results can be extended to other models of the
fluid-flow theory as well as can be used to solve the application problems related to the calculation
and modeling of the fluid flows through porous media.

This fact proves the scientific novelty and practical relevance of the obtained results.

[1] Polubarinova-Kochina P. Ja. Teorija dvizheniya gruntovyh vod. Moskva, Nauka, (1977), (in Russian).

[2] Bomba A. Ja., Bulavackij V. M., Skopeckij V. V. Nelinijni matematichni modeli procesiv geogidrodinamiki.
Kyiv, Naukova dumka (2007), (in Ukrainian).

[3] Vabishevich P. N. Metod fiktivnyh oblastej v matematicheskoj fizike. Moskva, Izd-vo MGU (1991), (in
Russian).

[4] Vengerskij P. Pro zadachu sumisnogo ruhu poverhnevih i gruntovih potokiv na teritoriyi vodozboru. Visnik
Lviv. un-tu. Ser. prikl. matem. ta inf. Vip. 22, 41-53 (2014), (in Ukrainian).

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 499-508 (2021)



Mathematical modeling of fluid flows through the piecewise homogeneous porous medium ... 507

5]
[6]
7]
18]
19]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

Connor J. J., Brebbia C. A. Finite Element Techniques for Fluid Flow. London, Newnes-Butterworth
(1976).

Lyashko L. 1., Velikoivanenko I. M., Lavrik V. L., Misteckij G. E. Metod mazhorantnyh oblastej v teorii fil-
tracii. Kiev, Naukova dumka (1974), (in Russian).

Lyashko N. I., Velikoivanenko N. M. Chislenno-analiticheskoe reshenie kraevyh zadach teorii filtracii. Kiev,
Naukova dumka (1973), (in Russian).

Kravchenko V. F., Rvachev V. L. Algebra logiki, atomarnye funkcii i vejvlety v fizicheskih prilozheniyah.
Moskva, Fizmatlit (2006), (in Russian).

Rvachev V. L. Teorija R-funkcij i nekotorye ego prilozhenija. Kiev, Naukova dumka (1982), (in Russian).
Blishun A. P., Sidorov M. V. Metod chislennogo analiza stacionarnogo filtracionnogo techeniya pod
gidrotehnicheskim sooruzheniem v kusochno-odnorodnomu grunte. Visnik Zaporizkogo nacionalnogo uni-
versitetu. Seriya: fiziko-matematichni nauki. 2, 5-12 (2012), (in Russian).

Blishun A. P., Sidorov M. V., Jalovegal. G. Matematicheskoe modelirovanie i chislennyj analiz filtra-
cionnyh techenij pod gidrotehnicheskimi sooruzheniyami s pomoshyu. Radioelektronika i informatika.
2, 40-46 (2010), (in Russian).

Blishun A. P., Sidorov M. V., Jalovega I. G. Primenenie metoda R-funkcij k chislennomu analizu filtra-

cionnyh techenij pod gidrotehnicheskimi sooruzheniyami. Visnik Zaporizkogo nacionalnogo universitetu.
Seriya: fiziko-matematichni nauki. 1, 50-56 (2012), (in Russian).

Sidorov M. V., Storozhenko A. V. Matematicheskoe kompyuternoe modelirovanie nekotoryh filtracionnyh
techenij. Radioelektronika i informatika. 4, 58-61 (2004), (in Russian).

Podhornyi O. R. Matematichni modeli filtracijnih techij ta zastosuvannya metodu R-funkcij dlya yih chis-
elnogo analizu. Radioelektronika ta informatika. 1, 40-47 (2018), (in Ukrainian).

Podhornyi O. R. Chiselnij analiz metodom R-funkcij filtracijnih techij u neodnoridnomu grunti. Matem-
atichne ta kompyuterne modelyuvannya. Seriya: Fiziko-matematichni nauki. 18, 147-162 (2018), (in
Ukrainian).

Mihlin S. G. Variacionnye metody v matematicheskoj fizike. Moskva, Nauka (1970), (in Russian).
Rektoris K. Variacionnye metody v matematicheskoj fizike i tehnike. Moskva, Mir (1985), (in Russian).

Mathematical Modeling and Computing, Vol.8, No.3, pp.499-508 (2021)



508 Podhornyj O. R., Sidorov M. V.

MaTemaTunyHe mogentoBaHHs piNbTpauiiHNX Tedin y
KYCKOBO-0g4HOpigHOMY cepefoBulli metoaom R-doyHkuin

Moxpropuwuit O. P., Cumopors M. B.

Xapriscokutll HauioHarvHUl yrisepcumem padioesekmponiry,
npocnexm Haywku 14, 61166, Xapxis, Yxpaina

Posrnsnaerbes cramionapua diibTparliiiina Tedisa y KyCKOBO-OTHOPIAHOMY I'PYHTI ¥ TpHU-
MyIIEHH], MO0 BUKOHYEThCs 3aK0H Japci. MaTeMaTnIHOI0 MOIE/TIO TET 3a/1at1 € eTiNTHIHe
piBHSHHS 11 (DYHKIT Tedil, JOMOBHEHE KPAOBUMY yMOBAMHU JIPYTOrO POIY Ha JTISHKAX
MeKi BOIOUMM 1 KpaflOBUME YMOBAMHU IIEPIIIOTO POLY Ha JIISTHKAX MK, IO € HeTPOHUKHU-
MU i1 piguan. TakoxK 10 TOCTAHOBKY 331241 BXOAATh YMOBU CIIPSI?KEHHST Ha JIiHIT o3Ity
aBox I'pyHTIB. IIpu 1iboMy y 1ocTaHOBKY 3a/1a4i BXOIUTH HEBi/IOME 3HAYUEHHS [TOBHUX BHUT-
paT piawHH, 1189 BUSHAYEHHS SKOTO (POPMYIIOETHCS I0JATKOBE iHTerpaIbHe CIIiBBiIHOIIEH-
ad. s quceIbHOr0O aHasIi3y pO3IVISIyBaHOI KPailoBOl 3a71a9i TPOIOHYETHCSI BUKOPHUCTA-
TU CTPYKTypHO-Bapianifinuii meroy (Meron R-dyukuniit), mo 103B0auTh HaHGLIBII TIOBHO
ypaxyBaTh y 00YUC/TIOBAILHOMY AJICOPUTMI YCIO T€OMETPUIHY Ta AHAJITHIHY 1H(DOPMAITITO,
sKa BXOJUTh y MTOCTAHOBKY 3ajadi. Bif BuxigHol 3aati 3/ificHEeHO mepexia 10 KpaioBol
3aja4i 3 BimomuMu KpaitoBumu ymoBamu. Binmosigmo mo merony R-dyukiiit mis mobymo-
BAHOI CTPYKTYPU PO3B’si3KY, sika TOYHO BPAXOBYE BCi KpaitoBi yMOBM OTpMMAaHOI 3aJadi,
OOI'PYHTOBAHO BUKOPUCTAHHSI BapiamiifHoro merojia PiTma /ijisi anmpokcuMariil HeBU3HATe-
HOl KOMIIoHeHTH. [licyist boTo 3 JOAATKOBOTO IHTEIPAJIbHOTO CITiBBi THOIIIEHHST 3HAXOIUTHCS
HabIMKeHe 3HaYeHHsI HeBiIOMUX BUTPAT piannu i HaOJIMKeHn# pO3B 130K BUXITHOI 3a,1a-
qi. O6UnCTIOBAJILHII eKCIIEpUMEHT OyJI0 IIPOBEJIEHO Y 00JIACTi, sIKa Ma€ BUTJISL]] HUZKHBOT
TIOJTOBUHU KiJIbIlS /ST PI3HUX 3HAUeHDb KoedirienTa piabTpariil, SKImo KoopAuHaTHI (HyHK-
il mobymoBaHi Ha ocHOBI mostiHoMiB Jlexxanapa. OTpumMano, 1o 3i 301/IbIIIEHASM KiJTbKOCT1
KOOPAMHATHUX (DYHKITIH 3HAYEHHSI IIOBHUX BUTPAT MA€ TEHIAECHITIO J0 3013KHOCTI.

Kntouosi cnoBa: saxon Jlapci, mewii pidunu y nopucmomy cepedosuii, Kyckoso-o0Ho-
pidne cepedosuwe, memod R-dynryit, memod Pimua.
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