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Formulas are derived for the calculation of the potential of bodies, which surface is a sphere
or an ellipsoid, and the distribution function has a special form: a piecewise continuous one-
dimensional function and a three-dimensional mass distribution. For each of these cases,
formulas to calculate both external and internal potentials are derived. With their help,
further the expressions are given for calculation of the potential (gravitational) energy of
the masses of such bodies and their corresponding distributions. For spherical bodies, the
exact and approximate relations for determining the energy are provided, which makes
it possible to compare the iterative process and the possibility of its application to an
ellipsoid. The described technique has been tested by a specific numerical example.

Keywords: internal potential, gravitational energy, Cauchy formula, expansion coeffi-
cient.
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1. Introduction

Determination of the potential outside and inside an ellipsoid is an important problem for a range of
problems in applied and fundamental sciences. For example, the energy of plasma clot of ellipsoidal
form [1] is determined by the corresponding formula for the energy of the ellipsoid, which takes into
account the expression for the potential. It is important to study this issue and its further development
for astronomy, because the figure of a celestial body is interpreted as the rotation of an ideal liquid
body and is often taken as an ellipsoid of rotation [2]. A significant role is played by clarifying the
conditions under which the planet is in a state of hydrostatic equilibrium or deviations from this state,
which makes it possible to study dynamic changes within the planet [3]. It should be noted that a
number of eminent scientists were engaged in these issues, ranging from Newton [4] to modern ones, for
example, Chandrasekhar [2]. The object of study was both the figure and the inner content inside the
planet [5]. For example, it was established in [6] that the minimum of E is attained for a homogeneous
ball. Therefore, any progress in this research gives new opportunities in solving applied problems of
physics, astronomy, geophysics and geodesy [7].

2. Statement of the problem

To determine the potentials (internal and external) with an inhomogeneous mass distribution, which is
represented by the expansion in series, and using it, to calculate the gravitational energy. In this case,
the external gravitational field should correspond to the real one, which is described by expansion in
spherical functions and is given by a set of the series coefficients [8].
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3. Main results

2 2 2

Let 7: {% + Z—S + % < 1} be an ellipsoidal body with a piecewise continuous three-dimensional func-
1 2 3

tion § € L2, which can be represented as a series [1]:

[e.e]

S(w1,w2,23) = Y Dok Wonni (21, 22, 3), (1)
m+n+k=0

where {W .k}, {Wmnk} are two biorthogonal polynomial systems in an ellipsoid,

(5wmnk dr

b _ T

mnk —

/ W mnk Wmnk dr
,

are expansion coefficients in the system {W,,,x }.
To accelerate the convergence of the series (1), we represent it by the sum:

o0

(a1, w2,23) = 0%(p) + D Dk Wonnk (1, 22, 23), (2)
m~+n+k=0

assuming that the discontinuities of the function are concentrated on “concentric” ellipsoids with relative
radii pj, i.e.
( mk )

Yoaripl, 0< p<pi;

J=0

mk )
Yoaz;p, p1<p<po;
=0

mk

z Qp, 5 pj7 Prk—-1 < P < Prk-
\ j=0

In this representation, the series (2) is convergent on average [9]:

N

2
]\}1_H>100 . |:5 - 50(P) - +§+:k_0 bmnkank(xly z2, x3)] dr = 07 (4)

which guarantees uniform convergence of the following series [10]:

N
U(P) = UO(P) + Z bmnkUmnk(P)v P(l‘l,l‘g,l‘g) € R37 Q(évna C) €T, (5)
m-+n+k=0
where
0
2) U(P) = G / TféQJ)D) dro, b) Up(P) = G / T?Q(p]l) d70, <) Upni(P) = G / %dm, (6)

From Bunyakovsky—Cauchy inequality follows:

N 0 N 2
010 P) = 2imintk= bk Winnk (1, T2, 3
U(P)—Uy(P) — E brrk Ui (P)| = / (P) = 2 J;IEQO 5 ( )dTQ
m-+n+k=0 T )
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N

2 1

< —89%p) — ——drg.
< /7— |:5 0 (p) m+nz—|_:k:0 bmnkank(wl,wg,wg)} dT/r 7’2(Q, P) dTQ (7)
Since the second integral can be estimated as [ W(ﬁ@ < M [11], then (7) will take the form:

N 2
UP)=To(P) = > brnkUnink(P)
m+n+k=0
N 2
< M/ |:5 - 50(p) - Z bmnkank(xlyx2a$3)] dr — 07 (8)
T m~+n+k=0

whence the series converges uniformly. This gives the opportunity to calculate the internal potential,
and further the potential (gravitational) energy using the known expansion coefficients (1). Moreover,
each set {bynk} defines its own function, and covers the entire class of piecewise continuous functions.
Therefore, the series (1) converges on average [9]. To determine the potential, it becomes necessary
to evaluate expressions (6). The function under the integral is a generalized Legendre polynomial of
three variables and is defined as follows [1]:

1 N x2  xZ 22 N
Winnk = -9 Samomn k<_§+_§+_§_1> ' (9)
m!nlk! 2 Ox"0x30xs \ai a3 a3

Classical potential theory allows us to establish a formula for finding the potential of such a distribu-
tion [12].
2 2 2 N
The potential of the ellipsoid 7 for the function (% + % + % - ) =(-1)N(1- pz)N is defined
1 2 3
as [12]:

U_G/ (1—p2)N(_1)Nd 3‘/6(;'(_1)1\7 /oo - Z’% - JJ% - 33% N+1 du
- r(Q.P)  Tdmnlk2N(N + 1) J Fiu @ie 2w 0w

To determine the expression ¢) from the relations (6), we calculate

_ W(p) G 1 N e 2 N
DaP) =6 [ 685 dr = e [ sy aemayae (o 3 1) o

and use the property [12]:

1 N f L f
/T Q. P) 9ok T = pumomsank </ Q. P) dT) ’ (1

provided that f‘Q =0, Q is a body surface.
Taking into account (11) and (f = (1 — p?)"), the potential c) from (6) can be represented as [6]:

U V(-1 oN /°° 1_ x? B 73 B 3 N (12)
T Al k12N (N + 1) oz oxbozk Jo ad4u di+u di+u Qu)

Potential (12) can be written as

BVe(-DVNIR (=) oV /°° 2
Uik = we) du
: 2 o

dm!n! k2N +1 =D a0z Ok
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CBV(-)VNI R (—1)2! 5 (2t; — D1 (25 — DI (2t5 — DN My 40,

- N _ _
4mInl k! 2 =0 (N-l-l l) by totts= (2t1 ) (2t2 n) (2t1 k)

21— 2o — 2t3—k
I 1= T2 2mn T3 3T
X - - - )
ai a2 as

2 2
where j? = 2+ A4 L Q) = V(@ T 0@+ 0@ a).
We also have

00 du
M _ 2t1 2to 2t3 / . 13
e B X B\ R o oy e s 7T -

Calculations of values (13) using recurrences [13,14] are unstable. Therefore, we use the expansion
of the function under the integral in binomial series with further multiplication and integration of these
series. To do this, in (13) we make a change of variables:

22:a%+u, 2zdz =du, wuy=0, zg=a, u3 =00, 2z = 0.

Then

o
M. 2t1 ,2t2 213 2dz
titgts = (1 A3 7a3 ot 11 o+l ntstl |
ar 22t1(a2 —a? + 22)2T3 (a3 — a2 + 22)3 T2

also

2dz a a

2t3 R2to 1 2 2 2

B ) = —, B=—=, &=p2-1, é -1
7 </a1 z2t1+1(6% 22)t2+% (e% 22)t3 % > 7 a3 a3 1 5 = ’7

Let expand the integrands in series

1 B 1 _i )H(2tg + 21 — 1)1 2 _i by
2 to+1 fo+L 1 )N p2tet20+1 T 2y +20+1°
(el + 22) 2435 L2ty 41 (1 i ﬁ) 245 = 202ty — 1N 2212 —z 2
z
1 B 1 _i )(2t5 4 21 — 1)! €3 2l_§: ¢
t3+1 ¢ - 1 1 p2ts 20+ 2z +20+1"
(e% + z2) 3+3 L2t 41 (1 N > 2+1 P 2(2t3 — 1) 2283 =z 3
The series converge provided that aq > ag > ag, so
2 2 2 2 2 2 2
a3z —ay az —ay| 2 ag —ay ag —ay| 2
52 ) =[1-+ <1, 2 ) =[-8 <L
1 1

The expression under the integral is the product of two convergent series, whose coefficients at degrees
are determined by the scheme:

do = bocg, di = bico +boc1, d;i = chbi—z, (14)
1=0

that is, the corresponding power series is

e}

d 15
Z z2t1+2t2+2t3+21+1 . ( )
=0

Mathematical Modeling and Computing, Vol.8, No. 3, pp.359-367 (2021)



On approach to determine the internal potential and gravitational energy of ellipsoid 363

Substituting (14) in (13) and evaluating the integral, we obtained

di
M, toty = — Z (2t1 + 2t + 2t3 + 21) 220 T2+ 20512

=0 - 2 (2t1 + 2ty + 2t3 + 2)a; AT

=0

This allows us to determine the value of ¢) in (6).

Expression b) in (6) is the one-dimensional distribution potential. For spherical bodies this potential
can be represented analytically by the formula (22). Even for homogeneous bodies, there are no such
simple formulas for an ellipsoid, which is explained primarily by the dependence of the potential on three
coordinates. Therefore, further we use an approximation approach, we represent the function 6°(p) as
a series in Legendre polynomials of even orders, extending the function to the interval —1 < p < 1.

Now, the representation of the potential is [15]

3(p) = conPan(p), (16)
n=0

where ( ) )
1 dv(p*-1)"
P.(p) = 17
(0) = 5o i (17)
is Legendre polynomial,
1 1
o= (40-+1) [ 80)Pan(p)dp = (0 +1) [ 5(0)Pon()dp (18)
-1 0

are expansion coefficients.
The expression of the potential presented in (6) by clause a) can be written as

Uo(P) = G/ @ dr = GZC2"/ Ponlp) dr = ZC2nU2m (19)
T n=0 T n=0

r

where

n up
Uy =G g ds,, <— - u2t> )
P t+1

t _
/p—2td SVet! 3 (=)™ v ad2ad’ M
= T Z . ti1tatss
r 4 t—1)! 11141 201 22 2t3
’ 1=0 (=10 titattat L1 122 B30 Ay " ay

and for this class of functions, convergence on average is guaranteed [14,16].
Thus, we can find the potential inside an ellipsoidal body and proceed to study the gravitational
energy, which is determined as

Jo —% / Usdr (20)

where U is a potential inside a body 7 generated by the distribution §, where 7 is the area of integration.
Substituting (1) and (5), equality (20) takes the form

N
1

m+n+k=0
+ Z Z bmlnlkl/Wm1n1k1Umnde)>- (21)

mi+ni1+k1=0 m+n+k=0
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To calculate the components of the right side (21), first, we find

1
/Wmlmkl UnnkdT = m!n! k1 2NTNimy Ing Lk L (N 4+ 1)

N+ <[ af a3 3 N 2 N
+ + -1 du —1)"dr,
/ axTerlax;‘*"l(‘)x’ngkl /0 <a% +u a% +u a% +u > (p )

SO
/Wmlnlkl Unnkdt
3V.(~)V N2V R (-pN- i / () (g2 - 1)
= 7 7 7 - T
dm!InlklmyIng k! pard (N +1—=DI(N1 — N+ 20+ 3)!! 027V 025 028" Jo a Q(u) P
3V ()N NN 12N (—1)N-t+1
 dmInlk!myng k! —~ (N+1—-0Ny — N+20+43)!
(2t; — )2t — 1)MN(2t5 — 1)NMy, 1014
<D (2t — m)(2ts — n)I(2t5 — K)1T
t1+ta+tz=l ! 2 3

m =m+my, n=n+n, K=k+k, N =N-+N.

Similarly,
N+1 1 N )
0 _ (=p¥w (-1) 9 / / 211 0
/Ta ()T = 72 Z T mamaman ) ([, ¢ d) O
NN' N+1 /
4m'n' k! 2N Z N+1 Kot
where
e 2! N Z (2t — D)1 (2ty — )1 (2t3 — 1) My, 114 N
mn ( 2l — N + 1) o ta— (2t1 — m)” (2t2 — n)” (2t3 — k)”
1
R, = /0 8°(p)p’dp.

Therefore,

/U050 )dr = Z Z T’QnT‘Qm/UQnPdeT.

n=0m=0
In addition,

/U JE /d2m (2—1)2mzn:dt (g — ugry2) dr
i 2n42m —22m(2m)! dp?m P 2 on (U2 2t+2

22m 12 %/ dp2m (0~ 1) (P°x2 = P X2e42) dp

ey x2 (243!
= 4 = 2n (2m+5)” (2m+2t+5)'|x2t+2 s
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p21+2l|
(20 4+ 1!

(2t — 1)U (265 — 1)1 (265 — 1)
Z Mt1t2t37

X2t = 11 tg) 15!

t1t+t2+t3=t

0 o0
UO:/T@CZT:HZZ%CH/TPW;( HZ:OCHZ:dl Ut

where

t _
[Pl =2t Ly Uy Badeads
U = t1tats .
r t _ l 1 4.1 2t1 2t2 2t3
. P ) it hiltaltslar ay % ag

Using the previous relations, we obtain

3Vt - Z 22t — 1)1 (25 — 1)1 (2t5 — 1)1

Mt tots s
dmlnl Kl &~ t—l s = m) T2t — n) T2t — R+ N )1 0

/Wmnkut dr =

and, finally, for even m, n, k, we have
/ Wk Undr = ¢ Y d, / Wkt dr.
T n=0 =0 T

4. The case of the globular planet

For a piecewise continuous function §%(p) represented by the expression (3) in the case of a sphere, the
potential in the interlayer 7; {p;—1 < p < p;} is defined

—+2
Mg =372 ST . +2
Jj=0 " j+2 / j+2 P’
Wi = + M + e 22
Z . > (- 2, 2
j= 0
where M;_; is the mass of the body 7 U U...UT;_;, M/_, is the constant potential inside the body
T UmU...UT;—1, which are determined by the sum of the interlayers 7,11 U ... U Ty,
So, using this potential, we can determine the energy of the i-th layer

m 42N\ mk 20+2 20+2
Qi 5P (pz —Pi1 )
E =|M_.— Y L R
‘ ( -t Zj+2>z 20 +2
7=0 =0
k k 2l+5 2l+5
s ai (P70 — ) SRR ay b, (1T — gl )
+M§ § § (23)
— 20 +3 —~ = (+2)(+3)(G+2+5)

Thus,
nk mk nk
E=Y [ wd eulir=Y . (24)
i=1"Ti =0 i=1

The above formulas (22)—(24), which coincide in content with the results of the work [17], allow
us to write down the relation for determining the gravitational energy in each layer as well for a
one-dimensional model (model PREM [18]) as for its modification — an ellipsoid.

5. Some preliminary calculations, comparisons and analysis of the obtained results

Let us show the practical application of the above algorithms and formulas on a specific example,
focusing on the calculation of potential energy. For this, we present the found energy values for the
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Table 1. Exact and approximate energy values for a sphere and an ellipsoid.

Figure Approximate Exact Amendment
energy values energy values for inhomogeneity
Sphere | —2.4692036680 - 10°° ergs | —2.4696997141 - 103" ergs —
Ellipsoid | —2.4270418572- 103 ergs — —1.989389474 - 1039 ergs

Earth mass distribution function [18] accepted in geophysics for a spherical and ellipsoidal planet [19].
Also, complete the [19] results considering the three-dimensionality of the planet. Calculations are
made for a three-dimensional mass distribution, taken from the work [8].

6. Conclusions

The given formulas of potential and energy of three-dimensional bodies of spherical and ellipsoidal shape
differ from each other. For a sphere it is possible to compare calculations in two ways. The value of
energy is determined approximately with the required accuracy, as evidenced by the results of Table 1
(—2.4692036680 - 103 ergs and —2.4696997141-10% ergs). For an ellipsoid, there are no exact formulas
for calculating the energy, and therefore we used the values, which was found approximately. Analysis
and comparison of this value (—1.989389474 - 103 ergs) together with the correction for ellipsoidality
(—1.8108 - 103 ergs) showed that their influence on the final energy value is the same. Although the
total energy value is three orders of magnitude higher, regional studies (for example, the movement of
tectonic plates inside the Earth) should take into account both the ellipsoidal nature of the planet and
its inhomogeneity.
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Miaxig Ao BU3HA4YeHHSI BHYTPIWHLOrO NOTEHWiany Ta rpasiTauiiHol
eHepril enincoiga

®uc M. M., Bpunya A. M., FOpkis M. L.

Havionasvruti ynisepcumem «/Iv6i8CoKa noAIMeETHIKA»,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

Bceranosnieno dhopmynn it 009MC/IEHHS TIOTEHITAIY TiJI, TOBEPXHS SIKUX € Ky ab0 eJTin-
coif, a (PYHKIlisT PO3MOJIIY Ma€ CIENMiaJbHUN BUTJIS: KYCKOBO-HEIlepepBHA OJHOBUMIipHA
byuKIisg a60 TPUBUMIpHIH PO3MTOIiT Mac. [l KOKHOTO 3 X BUTAIKIB BUBEIeHI (DOPMY-
JIA Jisi OOYMCJIEHHsI SIK 30BHIIIHBOTO, TAK 1 BHYTPIIIHKOIO IMOTEHIHATIB. 3 IX JOIIOMOTOI0
JIaJIl OJIAIOTHC BUPA3U JJisi O0UUCJICHHS MOTEHIIaIbHOT (rpaBiTaliiinol) eHeprii Mac Takux
Tia Ta iX BimmoBimHux posnosiiais. s Tin KyapoBol ¢hopMu MOJAIOTHCS TOYHI Ta HADJIU-
2KEH] CITIBBITHOIIIEHHS BU3HAYEHHS €Hepril, 110 JIa€ MOXKJIUBICTb MTOPIBHAHHS 1TepaIlifHOro
[IPOIIECY Ta MOXKJIMBICTH flOro 3acTocyBaHHsI 10 eJiincolmga. Onurcana MeToauKa alpoboBaHa
Ha KOHKPETHOMY YHCJIOBOMY IIPUKJIAJI.

Knrouosi cnoBa: snympiwnit nomenyian, 2pagimauiting enepeis, gopmyaa Kowsi, xoe-
Piyienmu poskaady.
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