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The paper deals with the Korteweg-de Vries equation with variable coefficients and a small
parameter at the highest derivative. The asymptotic step-like solution to the equation is
obtained by the non-linear WKB technique. An algorithm of constructing the higher
terms of the asymptotic step-like solutions is presented. The theorem on the accuracy of
the higher asymptotic approximations is proven. The proposed technique is demonstrated
by example of the equation with given variable coefficients. The main term and the first
asymptotic approximation of the given example are found, their analysis is done and
statement of the approximate solutions accuracy is presented.
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1. Introduction

In [1-3] we began to study new type of asymptotic solutions to the Korteweg—de Vries equation with
variable coefficients and a small parameter of the following form

EUgry = a(x,t,e)us + b(z, t,€)uuy, (1)
where
N N
a(w,t,e) =Y ag(e,t)e" + O(eNTY), bl t,e) =D bilw, )" + 0N,
k=0 k=0

ap(z,t) € C®°(R x [0;T)), bi(z,t) € C®°(R x [0;T]), k =0,N, T > 0, ¢ is a small parameter.

They are called the asymptotic step-like solutions and these ones are constructed by the non-linear
WKB technique that is the most suitable method [4] for obtaining such solutions [5-7|. The asymptotic
solution contains regular and singular parts. The regular part describes the background of the wave
process, while the singular part reflects the specific features of the behavior of the wave at infinity.
Special characteristics of the step-like asymptotic solutions are associated with the properties of its
singular part. The singular part of the searched asymptotic solution has the main term, which, like the
soliton solution, is a quickly decreasing function of the phase variable 7, in contrast to the other terms
that do not have this property. It means that higher terms of the singular part of the asymptotic tend
to zero as T — 400 and tend to non-zero as T — —oo0.

Now we proceed to constructing asymptotic step-like solutions to the singularly perturbed
Korteweg—de Vries equation with variable coefficients. The use of the WKB technique allows one
to find asymptotic solutions of equation (1) in the following form

u(x,t,e) = Yy (2,t,7,6) + O(eNT1/2), (2)
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where

—o(t
YN(w7t7T7E) :UN(x7t7€)+VN(x7t7T7E)7 T = ;Ui(’p()y

NG
~N(z,t,e) ZE’/ uj(z,t), Vn(z,t,7,¢) Zaj/2V x,t, 7).

The regular part Uy (z,t,¢) and the main term of the singular part Vy(z,t,7,¢) of (2) are have
been found in [1]. Below we will obtain the higher terms of asymptotic (2) and establish an estimate
of their accuracy.

2. Higher terms of the singular part on the discontinuity curve

Let come to studying the equation of the singular part of the asymptotics. Firstly, we examine
conditions of existence of solutions to equation for the singular terms on the discontinuity curve xz =
©(t), t € [0;T7], in the space G of the following form [1]

83 ov; 0v; ov

T8 4 a0l ) 3 (1)~ bolip 1) w0l )2 40,90 0y 20| = Ft, ), 3
where the functions F;(t,7), j = 1,2N, are considered to be known.
Let us consider differential operator
L= b (e 0 () = ol o — ol ol 1) e — 22 i,1), 0
Then for any j = 1,2N equation (3) can be written as
Loj=F;, j=T2N. (5)

Representation of operator (4) implies the following property, namely: if the function v;(t,7) € Gy
then Lvj(t,7) € Gy, j = 1,2N. Thus, we can consider a problem of existence a solution of equation (5)
in the space G provided that F;(t,7) € Go, j = 1,2N.

The following lemma is true.

Lemma 1. Let us suppose F;(t,7) € Go, j = 1,2N. Then a solution to equation (5) exists in the
space G if and only if the condition

—+o00o
Fi(t, T)vo(t,7)dr =0, j=1,2N (6)

—00

holds.

Proof. Firstly, assume that equation (5) has a solution in G;. We multiply both sides of (5) by vg(t, 7)
and integrate the resulting expression in 7. Taking into account the property vy € Gg and the evident
equality
“+oo
/ vo(t, 7)Lw;(t, 7)dT =0
—0o0

we come to orthogonality condition (6).

Now let us consider the orthogonality condition to be true. We need to prove that under this
assumption a solution to equation (5) exists in the space G1. For this purpose, we demonstrate that
solution to equation (5) in the space G; can be written as
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vi(t,7) = v(t)n;(t,7) +¥;(t,7), j=1,2N, (7)

where
Vi (t) = [G/O((p(t% t)gp/(t) — bo(p(t), thuo(e(t), t)]_l TEIPOO P (t,7), (8)
&)= [ F0d + By 0

a constant of integrating E;(t) satisfies equality

lim_@(t,7) = 0,

and n;(t,7) € Gy is such that lim n;(t,7) = 1.
T——00

We must show that the function v;(t,7) € Go. Indeed, integrating equation (5) from —oo to 7
provides us the following relation
Ll’Uj = (I)j(t, 7’) (10)
with )
d
L1 = = +ao(¢(t), 0)¢'(£) = bo( (1), Juo(p(1), 1) = bo (e (1), t)vo(t, 7).

From (7), (10) we deduce that the function ;(¢,7), j = 1,2N, satisfies equation

L1¢j = (I)j — VleT]. (11)

Because of condition ker L} = {wo,}, accordingly Theorem 3.1 [12] a solution to equation (11)
exists in the space Gq if and only if the following condition

“+oo
/ (®; —viLin)vordr =0, j=1,2N, (12)

—00
takes place.
Relation (12) is equivalent to the following equality

+o0
Fi(t,m)vo(t, 7)dr =0, j=1,2N.

—00

So, a solution to (5) exists in G if and only if orthogonality condition (6) is hold. Moreover, the
solution is written as (7), where the function v;(¢,7) € Go.
The lemma is proven. [

Remark 1. The formula gives us a representation of the terms of the singular part of the asymptotics
on the discontinuity curve. This formula plays an essential role in the continuation of these terms from
the curve.

The following statement presents the important particular case of Lemma 1.

Lemma 2. Let F;(t,7) € Go, j = 1,2N, and condition (6) take place. The solution v;(t,T) to
equation (3) belongs to Go, j = 1,2N, iff

lim ®;(t,7) =0, j=T1,N. (13)

T——00

Proof. The proof of the statement follows from formula (7). Indeed, under condition (13) we have
vj(t) = 0. It means that v;(t,7) = ¢;(t,7) € Go for any j =1,2N.
The lemma is proven. ]

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 410-421 (2021)
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Remark 2. Inclusion v;(t,7) € Go implies the following relation

lim wv;(t,7) =0, j=1,2N.

T—+00

This allows us to set V;(¢,7) = v;(t,7) and thereby to obtain a singular part of the asymptotics of a
special form called an asymptotic soliton-like solution of soliton type [8§].

Remark 3. The general solution to equation (3) can be written in closed form using the following
formula

vi(t,T) = K /TT D;(t,&)voe(t,§) d€ + cl> /TT 1)0—52(t7§) d¢

0 0

_</T:q>j(t,n)v0n(t,n) /7—:1)0_52(t,§)d§d?7+62>:|’UOT(tﬂ')' (14)

It deduced by the method of variation of constants.

Remark 4. From the orthogonality condition (6) as j = 1 we obtain the second order ordinary
differential equation for the phase function ¢ = ¢(t) in the form:

d
15@0(@7 t) b0(907 t)EA((pa 90,7 t) + [(1001093(907 t) 60(907 t)_ 36@0(@7 t) bOSL‘((pa t)) 90,

+1Ob(2)(()07 t)qu((p, t) + 3(b(2)(()07 t))xUO((pa t) - 20@0(907 t)bOt((pv t) ] A(‘F’? (:0/7 t) = 07 (15)

where condition
A(@) (10/7 t) = —(10(4,0, t)('p/(t) + bO((')Dv t)’LLo(QD, t) >0 (16)

is supposed to be satisfied.

In a neighborhood of initial point equation (15) has a solution existing on finite or infinite interval
in general. We assume that the solution is defined on some interval [0;7], where T' > 0 is a real.
It should be also noted that for certain coefficients ag(z,t),bo(z,t) equation (15) can be written in
simpler form.

Prolonging the singular part from the discontinuity curve

Now we construct the terms Vj(x,t,7), j = 0,2N, by prolongation of the function v;(¢,7), j = 0,2N,
from the curve z = ¢(t), t € [0;T.
Because vy(t, 7) € Gy we put

_ _ A((‘D, w/at) — A(QO, (,D/7t)
Vo(z,t,7) = vo(t,7) = _3W cosh™2 (f(T +Co)> . (17)

Similarly the coefficients Vj(x,t,7) = v;(t, 1) if v;(t,7) € Go [3].
In another case let us consider the Cauchy problem

Au; (z,t) = f; (z,1), (18)
uj_(x7t)‘p = Vj(t)v (19)

where differential operator A is written as

0 0
A= ao(%t)a + bo(a:,t)uo(x,t)% + bo(z, t)uoy (z,t)
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and initial function v;(t) is given by formula (8).
Equation (18) is found by substituting (2) in (1) and calculating limits as 7 — —oo. For example
we have

fi(z,t) =0, fy(z,t)= —al(a;,t)aaitl - bo(a:,t)% (uruy) — bo(x,t)ul_aa% - bl(x,t)% (uwouy) .
For all ¢ € [0;T] the curve T' is transversal to characteristics of the operator A. So, the Cauchy
problem (18), (19) has a solution u; (z,t) € 0 (Q,(T)), where Q,(T) = {(z,t) € R x [0;T] :
|z — @(t)| < p} and p is a certain positive value.
According to representation (7), prolongation of the v;(¢,7), j = 1,2N, from the curve I is given
by the following formula [9]

Vi(z,t,7) = uj (z,t)n(t,7) + ¢;(t, 7). (20)

Thus, the problem of constructing asymptotic step like solution is completed.

3. Justification of the algorithm of constructing the solution

Now we come to estimation of higher asymptotic approximations. Let denote sets

D™ ={(z,t) e Rx [0;T] : z — (1)
Dt ={(z,t) eR x [0;T] : 2 — p(t)

The following statement is correct.

Theorem 1. Let be the following conditions take place:
1) the functions ay(z,t), by(z,t) € C°(R x [0;T]), k =0, N;
2) the functions Fj(t, ) € Gy, j = 1,2N, and satisfy orthogonality conditions (6);
3) function ¢(t), t € [0;T], is a solution of differential equation (15) and satisfies inequality (16);
4) the Cauchy problem (18), (19) has a solution uj_(aj,t), j =1,2N, in the set D~ .
Then the asymptotic step-like solution to equation (1) can be written as follows

Vi (,t,e), (2,1) € D\, (D),
un(z,t,e) =< Yn(z,te), (z,t)€Qul), (21)
V(o te), (5,6) € DAQ),

where
2N
Yy (z,t,6) = up(x,t) + Za—:j/2 [uj(aj,t) + u]_(aj,t)] , (22)
j=1
Y(z,t,¢) = QEN:W [uj(z,t) + Vi(x,t,7)], T = 2= olt), (23)
J=0 Ve
2N
Y (2, te) = Zsj/zuj(x,t). (24)
=0

Function (21) satisfies the Korteweg—de Vries equation (1) with accuracy O (V) on the set Rx[0; T7.
Moreover, it satisfies equation (1) with accuracy O(eN*t1/2) as 7 — 400 on the set R x [0;T].

Proof. To prove the theorem let us consider the domain €, (I") firstly. After substituting expression
(23) into (1) we get the following equality
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2N 2N 2N
o OB o3 V 83V 1 B3V 1 o O3V
Jj22 21 22 Y3 g2 2 10 g2 2 Y3 322 "3
c (ZE o +§E fz oc20r Z D072 \/gjz_:og 373)
N 2N
Z 33‘ t (Z ]/2 81@ Z j/2 8‘/ , Z ]/2 8‘/ )
k=0

2N
+ Zskbk x,t) (Zej/Quj(x,t) +Z€j/2Vj(:E,t,T))

7=0 7=0
2N 2N 2N
3227 j/22%y 4~ Jr2Z% N+1/2
X (;]E B —|—j§:%€ 5+ \/E;)E 87’) +0(e ). (25)

Taking into account equations for the terms of the regular and the singular parts [1], we pass to
the asymptotic estimation of the residual function gy (z,t,¢) in p-neighborhood of the curve I'. The

function gy (z,t,€) can be written as follows

2N k 2N—1 k
§- (VEn" otan(e.t) H(al(x,t)_ 3 e aktg;f,w)

| k
k! ox prd

gn(z,t,e) = [ao(aj,t) —
k=0

2N ‘

oY (an(a,t) — an(p,1) ] (Z 200 1&"”’”].205”2%?)
2N N1 K

ARl CCURDIE LA )

bo(z,t) Z Ok k! ozk
— k=0
2N k ok
o t
4+ 4N (bN($at)_bN(907t))] X [“0(“) - (\/lilT) ugsig? :
k=0 )

2N—-1 k qk
+e (ul(az,t) -y (*/Z) 0 “al:if’t)) +o 42N (uy(a,t) —uN(go,t))]

k=0

2N 2N 2N
0V 1 19 OV )* 0k bo(p, 1)
32770 4 3223 0(
X (;z—: B +\/EZ:€ 87-) bo(x,t) — kzzo Dk
21
)¥ 9%y (p,1) N
<b1 (z,1) EZ: ook + ..+ N (by(x,t) — by(p,t))
auo (x,t) 2N (e7)* O+ lug (g, t) Oui(z,t) 2 (e7)* 9%y (p, )
2 e Y Tar T 2w o
k=0 k=0
dun(a,t)  dun(e)\] <= 2y, o (VBN ho(e,1)
+...4e¢ < o JZ::OE Vi + |bo(z,t) kzzo o Dk

2N—-1 k ok
| <bl<$’t>‘ > e béfi’”) et <bN<:n,t>—bN<go,t>>]

k=0
2N 2N 2N
: 0V 1 190V
32y, TR R 32270 N+1/2
X (;05 VJ) X (;05 5+ ﬁ;:og 67) +0(e ), (26)

where ¢ = p(t).
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Since the functions a;(z,t), j = 0, N, are infinitely differentiable, then for all (x,t) € Q,(I") the
following inequality is true

2N—j ok .
TCOEDY (‘/i!) 0 aﬂ;‘,f’t) <G |(VEr)™™H| e =),
k=0

where the constant Cj, j = 0, N, depends on a compact K C R x [0;T].

Similar asymptotic estimations hold for the functions by(z,t), k = 0, N, V;(z,t,7), uj(x,t), j =
0,2N. Thus, we draw a conclusion that the residual function gy(z,t,¢) satisfies asymptotic relation
gn(z,t,e) = O(eN) as e — 0 for all (z,t) € Q,(T).

Now let us consider the set DT\, (I"). Since for all k& € N any function f(z,¢,7) € G; satisfies
inequality

Ci(f)

(T2 + 1)k
with some constant Cy(f), k € N, depending on K C R x [0; T}, then relation

[f (@, t,7)] < 720,

|(VEr)™ fa.t,)| < *Cu(f), 720, KEN,

holds. It implies statement of Theorem 1 for all (x,t) € DT\Q,(T).
Finally we consider the set D7\€Q,(I"). Using the representation of the function Vj(x,t,7), j =
1,2N, in the form (20) we conclude

Cr(Vj)

(7P + 1F

‘/}‘(ﬂi‘,t,T)—u-_(ﬂi',t) < ( E

Cik 0
j 172 + 1)k’

Vj(:v,t,f)' <

for all 7 < 0 and any k € N, where Cy;, Ci(V;) are constants depending on a compact K C R x [0;77].

Recall now that we are considering the asymptotic accuracy of the constructed solution as ¢ — 0.
This means that the variable 7 is unbounded, i.e. |7| — 400. Since Vj(z,t,7)—u; (z,t) — 0 sufficiently
quickly as 7 — —o0, where u; (x,t) is a solution of the Cauchy problem (20), we come to statement of
the theorem in the set D™\, (I").

Putting together all the properties proved above, we arrive at asymptotic estimation for the residual
function of the form gy (z,¢,e) = O(e"V) ase — O for all (z,t) € K, where K C Rx[0;T] is an arbitrary
compact.

This means that the first part of the statement is proven.

Since the property Vj(z,t,7) € G1, j = 0,2N, from (25) we deduce that asymptotic solution (21)
satisfies equation (1) with accuracy O(eV*1/2) as 7 — 400 on the set R x [0; 7.

The theorem is completely proven. [

4. Example

Let us demonstrate the technique of constructing the asymptotic step-like solutions for example. We
set
a(z,t ) = —(2® + 132, blx,t,e) =1, (27)

and consider the variable coefficient Korteweg—de Vries equation with a small parameter of the following
form
€ Upzy = — (22 + 1)3/2ut + U Uy (28)

Let proceed to determining terms of the asymptotic expansion. To simplify the calculations we
assume that the regular part of the asymptotic is trivial.
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Firstly it is necessary to search the phase function ¢ = ¢(t). Under given formulation of the
problem it satisfies equation (15) which is reduced to the following relation

d
(@ +1** ==y, yeR (29)
Lemma 3. For any positive vy the Cauchy problem for differential equation (29) under initial condi-
tion p(0) = 0 has solution defined for all t € R.

Proof. Taking into account the initial condition ¢(0) = 0 we reduce the Cauchy problem to relation
of the form

VP2 1 (8¢ + 2602 +33) + 1510 ‘tp Vet 1( — 481, (30)

Thus, the function ¢ = ¢(t) is given implicitly.

Let us verify conditions of the implicit function theorem [10]. The functions on the left and the
right sides of (30) are defined for all values of ¢, ¢ and are infinitely differentiable with respect to their
arguments. In particular, the first derivative of the left side function in variable ¢ is positive. The
applying the implicit function theorem ensures the existence of a function ¢ = ¢(t) defined in some
neighborhood of the initial point (0, 0).

Moreover, the function ¢ = ¢(t) is determined for all ¢ € R [11]. The last property follows
from its monotonicity as well as its finiteness as |t| — +oo accordingly relation (30) and inequality
0<¢(t) <n.

This completes the proof of Lemma 3. ]

Easy to see that condition (16) takes place in the case v > 0 because of inequality A(p, ¢’ t) =
(©? +1)%2 0" > 0.

Formulas (17) provide us with the main singular term in the following form

3 cosh™29(t, 7)

\%Z t = t =
0(.’1’, 7T) UO( 7T) (’02_'_1

; (31)

where

VT T — @ 9
V(t = = = p(t t R-.
tr)= e = p=eD e

Now let set v = 1. By calculating F(¢,7) accordingly (9) we get

@212%1)3 [V + 1 (tanh 9(t,7) — 1) = 7 cosh ™2 9(t, 7))

D(t,7) =

As a result of formula (14) as j = 1, one receives that the first singular term on the discontinuity
curve is given with expression

3
vi(t,T) = ﬁ H (36 —10V/? + 1) T+ ((207’ +12)V/ 2 + 1 — 107> cosh 2 9(t, 7)
- (30 +10v/02 + 1) rcosh™ 9(t, 7)
1 105 72
———— —35\/¢? + Lcosh ™2 9(t,7) + e
/(‘02 +1 4 (,02 +1

+ 1401/ ¢? + 11Incosh ¥(t, 1) — 3T> tanh 75‘(t,7')} cosh™29(t,7) — 4v/¢? + 1 (tanh 9(t,7) — 1) |. (32)

- <5 e +1+ cosh™ 9(t, 1)

Taking into account (8), we have

241
nlt) =~ +1) lim_By(t,7) = 24551

W %)
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1 1
m(t,7) = =5 tanh 9(t,7) + 5, Yu(t,7) = vi(t,7) — vi(t)m(E, 7). (34)
To prolong the function vy (¢, 7) from the discontinuity curve I'
4] (see Fig. 1) we solve the Cauchy problem of form (18), (19)
0
2 -3/29  — _ - _
| @A) @) =0, wr @l =n) 3
¢ and obtain its solution as follows
2 4
uy (z,t) = 24x(a® + 1)73/2. (36)
L Representation (20) implies formula for the first singular term
as
Vi(z,t,7) = uy (z,0)m(t, 7) + ¢ (E,7), (37)
K 2 i . 6 8 1 where the functions uy (z,t), 71 (t,7), 11 (t,7) are found in exact
Fig.1. The discontinuity curve z = form above.
p(t),t>0,v=1. Higher terms of the asymptotic step-like solution can be found

by means of formula (14).

Theorem 2. The function

—(t
Yi(z,t,e) = Vo(z,t,7) + VeVi(z, t,7), 7= xf\/f(), (38)
€
is the asymptotic step-like solution to the singular perturbed Korteweg—de Vries equation (28) and sat-
isfies the equation with accuracy O(y/g) as e — 0 for all (z,t) € R%. Moreover, it satisfies equation (1)
with accuracy O(e) as T — £o0 on the set R x [0; 7.
In (38) the functions Vy(z,t,7), Vi(z,t,7) are defined by formulas (31), (37) according to expres-

sions (36), (33), (32).

Proof. The statement of the theorem follows from proving Theorem 1. ]

Remark 5. It should be mentioned that asymptotic solution (38) is defined globally, i.e. for all
(z,t) € R?, in contrast to Theorem 1.

The plots of the main and the first terms, as well as the plots of the first approximation of the
asymptotic step-like solution of problem (28) for ¢ = 0.95 and ¢ = 0.25 are given in Figs. 2—4 respec-
tively.

Fig. 2. The main term Vp(x,t,¢) as e = 0.95 (at the left) and € = 0.25 (at the right) for v = 1.
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Fig. 3. The first term Vi (x,¢,7) as € = 0.95 (at the left) and e = 0.25 (at the right).

Fig. 4. The first asymptotic approximation Y71 (x,¢,¢) as e = 0.95 (at the left) and € = 0.25 (at the right).

A comparison of corresponding graphs for the main and the first terms demonstrates that for a
suitable description of the qualitative properties of the asymptotic step-like solutions of the considered
Korteweg—de Vries equation, it is necessary to construct at least the first asymptotic approximation.

5. Conclusions

We apply the nonlinear WKB-technique and present the algorithm of constructing the asymptotic
step-like solution to the singularly perturbed Korteweg—de Vries equation with variable coefficients in
detail. The theorems on the accuracy of the main and the higher terms of the asymptotic solution are
proven. There is also presented example of applying the algorithm to the equation of the given type.
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The soliton properties of solutions of singularly perturbed equations of integrable type are mani-
fested in some neighborhoods of the so-called discontinuity curve, which in the general case is deter-
mined only for a finite interval. In this example, the corresponding discontinuity curve is defined for
all values of the argument. As a result, the constructed asymptotic solution is global, i.e., defined for
all values of arguments (z,t) € R?, that is important.
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AcCMMNTOTUYHI PO3B’'sI3KU CXOANHKOBOIo TUNY ANS PIBHAHHSA
KopTteBera—ae ®pisa i3 CUHIynsapHUM 30ypeHHsIM Ta TX TOYHICTb

Jlamko C. 1Y, Camoitnenxo B. It Camoitrenko FO. 1.1, Tar’sk 1. B.!, Opsosa M. C.2

I Kuiscokuti nayionanvrutd ynisepcumem imeni Tapaca Iesverka,
6yn. Boaodumupcora, 64, 01601, Kuis, Yxpaina
2 Kuiscokuti ynisepcumem imewni Bopuca I'pinuenka,
sys. Byaveapro-Kydpascora, 18/2, 04053, Kuis, Yxpaina

Jana cTaTTs CTOCYETHCS TOOYI0BU ACUMIITOTUIHUX COJTITOHOIIOMIOHIX PO3B’SI3KiB CXO/IMH-
KOBOrO Ty s piBHsHHsS KopreBera—ae ®piza 31 3MiHHUME KOEDIIIEHTAMI Ta MAJIAM
napamMeTpoM MpU CTapImii moXimHiil. ACUMITOTHYHUN CXOIUHKOBOTO THUITY OYIYyETHCS 32
normomororo Heminiitaoro meroxy BKB. [Ipencrasieno amropurm modymoBr BUIIX aCHMII-
TOTUYHUX HAOJIMXKEHb, JOBEJIEHO TE€OpeMY IPO IX TOYHICTH. 3aIlpPONOHOBAHUI AJITOPUTM
MIPOJIEMOHCTPOBAHO HA TPUKJIA I PIBHIHHS i3 KOHKPETHO 3aJaHUMU 3MIiHHUMHU KoedirtieH-
TaMu. 3HANEHO OCHOBHUU JOJAHOK Ta IEpIle ACUMITOTHYIHE HAOJIMKEHHS I JTAHOTO
MIPUKJIAIY, TPOBEIECHO IX aHAJI3 Ta IMPEICTABIEHO TBEP/KEHHS IIPO 1X ACUMITOTAYHY TOY-
HICTb.

Kntouosi cnosa: pishanns Kopmeseza—de @piza, acumnmomuunull po3e’asor muny
CTOOUHKY, COAIMON, CUHYAAPHE 30YDERHA, ACUMNMOMUNHT PO36 AZKU.
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