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Abstract – The problem of developing a software service 
with a plug-in architecture for assessing the readability of text 
has been considered. The problem of text readability 
assessment has been analyzed. Approaches to the development 
of a software service for text readability assessment have been 
considered. The structure of the service for text readability 
assessment has been proposed. The structure of the service has 
been implemented using the Python programming language 
and the library Natural Language Toolkit (NLTK). The results 
of testing the service for text readability assessment have been 
presented.  

Index Terms: text readability, software service, plug-in 
architecture 

I. INTRODUCTION 
The development of modern society, including 

information technology and digital content, is characterized 
by a sharp increase in the amount of textual information of 
different origins and different purposes. Hence the problem 
of human perception and assimilation of textual information 
arises. One of the important aspects of this problem is 
readability - a property of the text that characterizes the ease 
of its comprehension in the process of reading. Readability 
depends on both the presentation of the text (for example, in 
print) and the linguistic features of the text material (for 
example, the complexity of syntactic constructions or the 
level of complexity of vocabulary). Among the factors 
influencing the readability of the text there are the 
following: the length of words and sentences, the speed of 
perception of the text, the frequency characteristics of 
words, the presence of complex words and terms in the text, 
the level of abstractness of the text, etc. [[1]-[7]]. 

The first steps in solving the problem of assessing the 
readability of the text were taken in the early 20th century. 
At that time, the issues of accessibility of educational texts 
for students of different years of study were mainly studied. 
Subsequently, the range of research questions has expanded 
significantly, and began to include the assessment of the 
readability of a wide range of textual information for 
various purposes (technical reports, advertising materials, 
text content of websites, scientific articles, etc.). At present, 
research and development of methods and services for 
assessing the readability of the text are particularly relevant. 

Many aspects of the problem of text readability assessment 
are given a lot of attention by researchers [[8]-[16]].  

The paper considers the problem of text readability 
assessment, analyzes approaches to developing a software 
service for readability assessment, proposes the use of a 
generalized text readability index, which allows to develop 
and use more flexible methods of readability assessment by 
analogy with the concept of multicriteria optimization. The 
paper considers the structure of the developed service for 
text readability assessment. The developed structure is 
implemented using the Python programming language and 
the Natural Language Toolkit (NLTK) library. Also, in the 
paper the question of testing the developed service for text 
readability assessment is considered. 

II. THE PROBLEM OF ASSESSING THE 
READABILITY OF THE TEXT 

Currently, there are dozens of methods for assessing 
the readability of texts in different languages. Among the 
most commonly used methods and metrics there are the 
following: Gunning Fog Index, Flesch reading ease test, 
Flesch-Kincaid grade level, Automated readability index 
(ARI), Coleman-Liau Index, Dale-Chall readability 
formula, McLaughlin's SMOG formula etc. [[1]-[16]]. In 
some countries, such as the United States, legal documents 
are required to be readable at no higher than the ninth grade 
(14-15 years) level of comprehension. The Flesch reading 
ease test is used to assess this.  

Assessing the readability of a text is an attempt to 
assess how easy it is to read and understand a text. Different 
parameters can be used for such an assessment, for 
example, the number of syllables in a sentence or the 
variety (uniqueness) of words in the text. The method of 
readability assessment includes finding values of key 
parameters of the text with the subsequent calculation of the 
result using one or more mathematical formulas. 

The most popular metrics for readability assessment 
are Flesch-Kincaid grade level and Flesch reading ease test, 
which take into account the number of syllables in 100 
words of the text and the average number of words in 
sentences of the text. These metrics are widely used in 
various software services that have readability assessment 
functionality. Over time, linguists conducted more and more 
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research on readability, and formulas became increasingly 
complex. Currently, there are more than 200 formulas 
(metrics) for readability assessment. 

There are many different factors that affect how easy it 
is to read and understand a text. When analyzing a short 
fragment or a small part of a large text, the question arises 
as to what extent the obtained linguistic "picture" can 
indicate the readability of the whole text. For example, in a 
large text, there are usually more unique words than in a 
short text. Because different readability metrics are 
calculated using different text parameters and different 
mathematical formulas, the assessment results usually differ 
significantly, depending on the chosen metric. That is why 
when analyzing texts, it is always useful to apply several 
readability metrics at once. 

III. APPROACHES TO DEVELOPING A SOFTWARE 
SERVICE FOR TEXT READABILITY ASSESSMENT 

Many modern applications implement the function of 
assessing the readability of the text. In addition, there are 
specialized services that are designed exclusively for this 
purpose. These services provide an opportunity to assess 
readability by different metrics for texts in different 
languages. These include services that are integrated into 
the system or implemented as a web browser extension. 
Some of these services not only evaluate readability, but 
also offer options to improve the text. 

One of the most well-known text readability 
assessment services is Grammarly. It is also considered one 
of the best in the field. This service is implemented as an 
extension for Google Chrome, desktop application and 
mobile application. The particularity of the Grammarly is 
that it not only analyzes and evaluates the text, but also 
corrects errors and advises possible options for improving 
the text. Grammarly performs analysis on 1) the correctness 
of the text, namely checks spelling, grammar and 
punctuation; 2) readability of the text, i.e., how easy it is to 
understand the text; 3) the reader's interest in the text, i.e., 
how interesting and effective the text is; 4) the impact of the 
text on the reader (the level of formality, confidence and 
friendliness in the text). In addition, Grammarly determines 
the overall assessment of text quality. It is displayed in the 
range from 0 to 100, and is calculated based on the 
following parameters of the text: 1) the number of words, 
letters and sentences (as well as the time required to read 
the text); 2) readability (including the length of words, 
sentences, and result of the Flesch reading ease test); 
3) vocabulary of the text (taking into account the 
uniqueness and rarity of the words of the text in comparison 
with the texts of other users of the service). 

Another very popular service for assessing the 
readability of text is the Readable. Compared to 
Grammarly, the Readable is more flexible, but in some 
respects less efficient. The flexibility of the Readable means 
the ability to choose how to assess the readability of the 
text, integration with other software services, the presence 

of its own API, the ability to scan emails and websites, and 
more. 

IV. GENERALIZED INDEX OF TEXT READABILITY 
There are many metrics that reflect different aspects of 

text readability. It would be convenient to have some 
integral index that would summarize several different 
metrics in the form of one value. This would allow the 
development of more flexible ways to assess readability by 
analogy with the concept of multicriteria optimization. The 
idea of using a generalized readability index is that each 
user can form their own version of the index, taking into 
account the aspects of readability they need in the form of 
relevant metrics.  

Let’s define a generalized text readability index based 
on such user-selected subset of readability metrics as  

Q = w1f(m1) + w2f(m2) + … + wNf(mN),  (1) 
where, 
М={m1, m2, … , mN} is a subset of readability metrics, 

which are taken into account in the generalized index, 
f(mi) is the normalized value of the metric mi.  
For each readability metric in the subset M, the user 

can assign some weighting factor w(mi). By default, the 
weighting factor of the metric mi is equal to: 

w(mi) = 1/N,      (2) 
where N is the number of metrics in the subset M. 
To calculate the generalized index, the values of all 

metrics are pre-normalized, i.e., reduced to the range from 0 
to 1: f(mi)[0,1].  

Different variants of generalized index can be used for 
different types of texts in the form of different subsets of 
metrics {M1, M2, …, MK} and different sets of weights 
{W1, W2, …, WL}, where Wi={w1, w2,...}. Then define a 
variant of the generalized index in the form: 

H={Mi,Wj},      (3) 
where  
Mi is a subset of metrics used to calculate the index,  
Wj is a set of corresponding weights of normalized 

values of metrics Mi. 
Different texts can be classified by volume, level of 

difficulty for perception, level of complexity in terms of the 
volume of the dictionary used and other parameters. That is, 
we can consider a set of text parameters P={p1, p2,…,pn}, 
each of which relates the text to a particular class of texts. 
Based on this, we can offer the following additional 
function of the service for text readability assessment. The 
service can recommend to the user this or that variant of the 
generalized index of readability, depending on the 
parameters of the text recognized by service and 
corresponding class of the text: 

H = F(P),      (4) 
where F is some way to convert a set of text 

parameters into a variant of the generalized readability 
index. That is, the service can offer the user a version of the 
generalized index, which for one reason or another is most 
suitable for the text of a particular class. To develop the 
way of converting text parameters into a variant of the 
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Fig. 1. The structure of the service for text readability assessment. 

 

Fig. 2. Function calls diagram. 
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Fig. 3. Data structures used in the text parameter analysis module. 

 

Fig. 4. Test results of the analysis modules of text parameters: output of text parameters. 

generalized readability index one can use ideas from 
the recommender systems [[23]-[30]], context-aware 
computing [[31]-[34]], and machine learning [[35]-[38]]. 

V. THE STRUCTURE OF THE SERVICE FOR TEXT 
READABILITY ASSESSMENT 

Developed service for assessing the readability of the 
text is based on a plug-in architecture [[17]-[22]]. This 
solution allows one to add to the service new readability 

metrics in the form of separate plug-ins (Fig. 1. The 
structure of the service for text readability assessment.). 
Therefore, the user can extend the functionality of the 
service using third-party plug-ins or plug-ins developed by 
him. The developed structure is implemented using the 
Python programming language (Fig. 2. Function calls 
diagram.) using the software library Natural Language 
Toolkit (NLTK). 
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Among the main modules that are part of the service, 
we can distinguish the following groups of modules.  

1) Text processing modules, which include: reading 
input text, parsing input text, filtering input text. The text 
reader can work with 4 file types (.txt, .pdf, .odt, .docx) 
using the textract library. The PyPDF2 library is used to 
read pdf-files. The parsing module breaks the input text into 
sentences and the sentences into tokens using the NLTK 
library. Token tagging is also performed in this module. 

2) Modules for analyzing the parameters of the input 
text, which in particular determine the number of letters, 
syllables, words, sentences and paragraphs in the text, 
determine the distribution of words in parts of speech (Fig. 
3. Data structures used in the text parameter analysis 
module., Fig. 5. Test results of the text parameters analysis 
modules: output of word parameters.), perform frequency 
analysis of words, determine the number of long and 
complex words in the text, determine the average 
quantitative indicators (average number of letters per word, 
average number of syllables per word, average number of 
words per sentence, average number of sentences per 
paragraph). 

3) Modules of text readability assessment, which 
include: text readability metrics (in the form of separate 
plug-ins), text readability assessment (according to user-
specified metrics), calculation of generalized index of text 
readability (according to the user-selected index variant). 
The following text readability metrics are implemented in 
the service: Gunning Fog Index, Flesch reading ease test, 
Flesch-Kincaid grade level, Automated readability index 
(ARI), Coleman-Liau Index [[1]-[7]]. 

4) Auxiliary modules, which include: parsing 
command line arguments, setting the service mode, reading 
and writing to files, plug-in manager. 

VI. TESTING THE SERVICE FOR TEXT 
READABILITY ASSESSMENT 

The operation of the text readability assessment 
service was tested in two aspects: correctness of work 
(detection of errors) and productivity of operation with 
input texts of different volume. During testing, the absence 
of critical errors in the service and acceptable performance 
indicators of its operation were confirmed. Testing was 
performed modularly. The black box testing method was 
used. Testing the service for errors helped to improve the 
performance of corresponding algorithms and to perform 
optimization of program code. Fig. 4. Test results of the 
analysis modules of text parameters: output of text 
parameters. and Fig. 5. Test results of the text parameters 
analysis modules: output of word parameters. show the 
results of testing the modules of analysis of text parameters. 
Fig. 6. Test results of the text readability assessment 
modules. shows the results of testing modules for assessing 
the readability of the text. 

 

Fig. 5. Test results of the text parameters analysis modules: 
output of word parameters. 

 

Fig. 6. Test results of the text readability assessment 
modules. 

VII. CONCLUSION 
The problem of developing a software service with a 

plug-in architecture for assessing the readability of text was 
considered. The problem of text readability assessment was 
analyzed. Approaches to the development of a software 
service for text readability assessment were regarded. The 
structure of the service for text readability assessment was 
proposed. The structure of the service was implemented 
using the Python programming language and the library 
Natural Language Toolkit (NLTK). The results of testing 
the service for text readability assessment were presented. 
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