
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, Num. 1, 2021

SOFTWARE SERVICE WITH A PLUG-IN ARCHITECTURE FOR TEXT
READABILITY ASSESSMENT

Bohdan Tsebryk, Alexey Botchkaryov

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Authors’ e-mail: alb@lp.edu.ua

https://doi.org/10.23939/acps2021.01.___
Submitted on 01.05.2021
© Tsebryk B., Botchkaryov A., 2021

Abstract – The problem of developing a software service
with a plug-in architecture for assessing the readability of text
has been considered. The problem of text readability
assessment has been analyzed. Approaches to the development
of a software service for text readability assessment have been
considered. The structure of the service for text readability
assessment has been proposed. The structure of the service has
been implemented using the Python programming language
and the library Natural Language Toolkit (NLTK). The results
of testing the service for text readability assessment have been
presented.

Index Terms: text readability, software service, plug-in
architecture

I. INTRODUCTION
The development of modern society, including

information technology and digital content, is characterized
by a sharp increase in the amount of textual information of
different origins and different purposes. Hence the problem
of human perception and assimilation of textual information
arises. One of the important aspects of this problem is
readability - a property of the text that characterizes the ease
of its comprehension in the process of reading. Readability
depends on both the presentation of the text (for example, in
print) and the linguistic features of the text material (for
example, the complexity of syntactic constructions or the
level of complexity of vocabulary). Among the factors
influencing the readability of the text there are the
following: the length of words and sentences, the speed of
perception of the text, the frequency characteristics of
words, the presence of complex words and terms in the text,
the level of abstractness of the text, etc. [[1]-[7]].

The first steps in solving the problem of assessing the
readability of the text were taken in the early 20th century.
At that time, the issues of accessibility of educational texts
for students of different years of study were mainly studied.
Subsequently, the range of research questions has expanded
significantly, and began to include the assessment of the
readability of a wide range of textual information for
various purposes (technical reports, advertising materials,
text content of websites, scientific articles, etc.). At present,
research and development of methods and services for
assessing the readability of the text are particularly relevant.

Many aspects of the problem of text readability assessment
are given a lot of attention by researchers [[8]-[16]].

The paper considers the problem of text readability
assessment, analyzes approaches to developing a software
service for readability assessment, proposes the use of a
generalized text readability index, which allows to develop
and use more flexible methods of readability assessment by
analogy with the concept of multicriteria optimization. The
paper considers the structure of the developed service for
text readability assessment. The developed structure is
implemented using the Python programming language and
the Natural Language Toolkit (NLTK) library. Also, in the
paper the question of testing the developed service for text
readability assessment is considered.

II. THE PROBLEM OF ASSESSING THE
READABILITY OF THE TEXT

Currently, there are dozens of methods for assessing
the readability of texts in different languages. Among the
most commonly used methods and metrics there are the
following: Gunning Fog Index, Flesch reading ease test,
Flesch-Kincaid grade level, Automated readability index
(ARI), Coleman-Liau Index, Dale-Chall readability
formula, McLaughlin's SMOG formula etc. [[1]-[16]]. In
some countries, such as the United States, legal documents
are required to be readable at no higher than the ninth grade
(14-15 years) level of comprehension. The Flesch reading
ease test is used to assess this.

Assessing the readability of a text is an attempt to
assess how easy it is to read and understand a text. Different
parameters can be used for such an assessment, for
example, the number of syllables in a sentence or the
variety (uniqueness) of words in the text. The method of
readability assessment includes finding values of key
parameters of the text with the subsequent calculation of the
result using one or more mathematical formulas.

The most popular metrics for readability assessment
are Flesch-Kincaid grade level and Flesch reading ease test,
which take into account the number of syllables in 100
words of the text and the average number of words in
sentences of the text. These metrics are widely used in
various software services that have readability assessment
functionality. Over time, linguists conducted more and more

Bohdan Tsebryk, Alexey Botchkaryov 2

research on readability, and formulas became increasingly
complex. Currently, there are more than 200 formulas
(metrics) for readability assessment.

There are many different factors that affect how easy it
is to read and understand a text. When analyzing a short
fragment or a small part of a large text, the question arises
as to what extent the obtained linguistic "picture" can
indicate the readability of the whole text. For example, in a
large text, there are usually more unique words than in a
short text. Because different readability metrics are
calculated using different text parameters and different
mathematical formulas, the assessment results usually differ
significantly, depending on the chosen metric. That is why
when analyzing texts, it is always useful to apply several
readability metrics at once.

III. APPROACHES TO DEVELOPING A SOFTWARE
SERVICE FOR TEXT READABILITY ASSESSMENT

Many modern applications implement the function of
assessing the readability of the text. In addition, there are
specialized services that are designed exclusively for this
purpose. These services provide an opportunity to assess
readability by different metrics for texts in different
languages. These include services that are integrated into
the system or implemented as a web browser extension.
Some of these services not only evaluate readability, but
also offer options to improve the text.

One of the most well-known text readability
assessment services is Grammarly. It is also considered one
of the best in the field. This service is implemented as an
extension for Google Chrome, desktop application and
mobile application. The particularity of the Grammarly is
that it not only analyzes and evaluates the text, but also
corrects errors and advises possible options for improving
the text. Grammarly performs analysis on 1) the correctness
of the text, namely checks spelling, grammar and
punctuation; 2) readability of the text, i.e., how easy it is to
understand the text; 3) the reader's interest in the text, i.e.,
how interesting and effective the text is; 4) the impact of the
text on the reader (the level of formality, confidence and
friendliness in the text). In addition, Grammarly determines
the overall assessment of text quality. It is displayed in the
range from 0 to 100, and is calculated based on the
following parameters of the text: 1) the number of words,
letters and sentences (as well as the time required to read
the text); 2) readability (including the length of words,
sentences, and result of the Flesch reading ease test);
3) vocabulary of the text (taking into account the
uniqueness and rarity of the words of the text in comparison
with the texts of other users of the service).

Another very popular service for assessing the
readability of text is the Readable. Compared to
Grammarly, the Readable is more flexible, but in some
respects less efficient. The flexibility of the Readable means
the ability to choose how to assess the readability of the
text, integration with other software services, the presence

of its own API, the ability to scan emails and websites, and
more.

IV. GENERALIZED INDEX OF TEXT READABILITY
There are many metrics that reflect different aspects of

text readability. It would be convenient to have some
integral index that would summarize several different
metrics in the form of one value. This would allow the
development of more flexible ways to assess readability by
analogy with the concept of multicriteria optimization. The
idea of using a generalized readability index is that each
user can form their own version of the index, taking into
account the aspects of readability they need in the form of
relevant metrics.

Let’s define a generalized text readability index based
on such user-selected subset of readability metrics as

Q = w1f(m1) + w2f(m2) + … + wNf(mN), (1)
where,
М={m1, m2, … , mN} is a subset of readability metrics,

which are taken into account in the generalized index,
f(mi) is the normalized value of the metric mi.
For each readability metric in the subset M, the user

can assign some weighting factor w(mi). By default, the
weighting factor of the metric mi is equal to:

w(mi) = 1/N, (2)
where N is the number of metrics in the subset M.
To calculate the generalized index, the values of all

metrics are pre-normalized, i.e., reduced to the range from 0
to 1: f(mi)[0,1].

Different variants of generalized index can be used for
different types of texts in the form of different subsets of
metrics {M1, M2, …, MK} and different sets of weights
{W1, W2, …, WL}, where Wi={w1, w2,...}. Then define a
variant of the generalized index in the form:

H={Mi,Wj}, (3)
where
Mi is a subset of metrics used to calculate the index,
Wj is a set of corresponding weights of normalized

values of metrics Mi.
Different texts can be classified by volume, level of

difficulty for perception, level of complexity in terms of the
volume of the dictionary used and other parameters. That is,
we can consider a set of text parameters P={p1, p2,…,pn},
each of which relates the text to a particular class of texts.
Based on this, we can offer the following additional
function of the service for text readability assessment. The
service can recommend to the user this or that variant of the
generalized index of readability, depending on the
parameters of the text recognized by service and
corresponding class of the text:

H = F(P), (4)
where F is some way to convert a set of text

parameters into a variant of the generalized readability
index. That is, the service can offer the user a version of the
generalized index, which for one reason or another is most
suitable for the text of a particular class. To develop the
way of converting text parameters into a variant of the

Software Service with a Plug-in Architecture for Text Readability Assessment 3

Fig. 1. The structure of the service for text readability assessment.

Fig. 2. Function calls diagram.

Bohdan Tsebryk, Alexey Botchkaryov 4

Fig. 3. Data structures used in the text parameter analysis module.

Fig. 4. Test results of the analysis modules of text parameters: output of text parameters.

generalized readability index one can use ideas from
the recommender systems [[23]-[30]], context-aware
computing [[31]-[34]], and machine learning [[35]-[38]].

V. THE STRUCTURE OF THE SERVICE FOR TEXT
READABILITY ASSESSMENT

Developed service for assessing the readability of the
text is based on a plug-in architecture [[17]-[22]]. This
solution allows one to add to the service new readability

metrics in the form of separate plug-ins (Fig. 1. The
structure of the service for text readability assessment.).
Therefore, the user can extend the functionality of the
service using third-party plug-ins or plug-ins developed by
him. The developed structure is implemented using the
Python programming language (Fig. 2. Function calls
diagram.) using the software library Natural Language
Toolkit (NLTK).

Software Service with a Plug-in Architecture for Text Readability Assessment 5

Among the main modules that are part of the service,
we can distinguish the following groups of modules.

1) Text processing modules, which include: reading
input text, parsing input text, filtering input text. The text
reader can work with 4 file types (.txt, .pdf, .odt, .docx)
using the textract library. The PyPDF2 library is used to
read pdf-files. The parsing module breaks the input text into
sentences and the sentences into tokens using the NLTK
library. Token tagging is also performed in this module.

2) Modules for analyzing the parameters of the input
text, which in particular determine the number of letters,
syllables, words, sentences and paragraphs in the text,
determine the distribution of words in parts of speech (Fig.
3. Data structures used in the text parameter analysis
module., Fig. 5. Test results of the text parameters analysis
modules: output of word parameters.), perform frequency
analysis of words, determine the number of long and
complex words in the text, determine the average
quantitative indicators (average number of letters per word,
average number of syllables per word, average number of
words per sentence, average number of sentences per
paragraph).

3) Modules of text readability assessment, which
include: text readability metrics (in the form of separate
plug-ins), text readability assessment (according to user-
specified metrics), calculation of generalized index of text
readability (according to the user-selected index variant).
The following text readability metrics are implemented in
the service: Gunning Fog Index, Flesch reading ease test,
Flesch-Kincaid grade level, Automated readability index
(ARI), Coleman-Liau Index [[1]-[7]].

4) Auxiliary modules, which include: parsing
command line arguments, setting the service mode, reading
and writing to files, plug-in manager.

VI. TESTING THE SERVICE FOR TEXT
READABILITY ASSESSMENT

The operation of the text readability assessment
service was tested in two aspects: correctness of work
(detection of errors) and productivity of operation with
input texts of different volume. During testing, the absence
of critical errors in the service and acceptable performance
indicators of its operation were confirmed. Testing was
performed modularly. The black box testing method was
used. Testing the service for errors helped to improve the
performance of corresponding algorithms and to perform
optimization of program code. Fig. 4. Test results of the
analysis modules of text parameters: output of text
parameters. and Fig. 5. Test results of the text parameters
analysis modules: output of word parameters. show the
results of testing the modules of analysis of text parameters.
Fig. 6. Test results of the text readability assessment
modules. shows the results of testing modules for assessing
the readability of the text.

Fig. 5. Test results of the text parameters analysis modules:
output of word parameters.

Fig. 6. Test results of the text readability assessment
modules.

VII. CONCLUSION
The problem of developing a software service with a

plug-in architecture for assessing the readability of text was
considered. The problem of text readability assessment was
analyzed. Approaches to the development of a software
service for text readability assessment were regarded. The
structure of the service for text readability assessment was
proposed. The structure of the service was implemented
using the Python programming language and the library
Natural Language Toolkit (NLTK). The results of testing
the service for text readability assessment were presented.

References
[1] Gunning, R. (1952) The Technique of Clear Writing.

McGraw-Hill, pp. 36–37.
[2] Flesch, R. (1948) A new readability yardstick. Journal of

Applied Psychology. 32 (3), pp. 221–233.
[3] Farr, J.N., Jenkins, J.J. and Paterson, D.G. (1951)

Simplification of Flesch Reading Ease Formula. Journal of
Applied Psychology. 35 (5), pp. 333–337.

[4] McClure, G. (1987) Readability formulas: Useful or useless.
(an interview with J. Peter Kincaid). IEEE Transactions on
Professional Communication. 30, pp. 12–15.

[5] Kincaid, J.P., Aagard, J.A., O'Hara, J.W. and Cottrell, L.K.
(1981) Computer Readability Editing System. IEEE
Transactions on Professional Communication. 24 (1), pp.
38–42.

[6] Senter, R.J. and Smith, E.A. (1967) Automated Readability
Index. Aerospace Medical Research Laboratories, University
of Cincinnati, Wright-Patterson Air Force Base, Ohio,
AMRL-TR-66-20. - 14 p.

[7] Coleman, M. and Liau, T. L. (1975) A computer readability
formula designed for machine scoring. Journal of Applied
Psychology, Vol. 60, pp. 283–284.

[8] Zhou, S., Jeong, H. and Green, P. (2017) How Consistent
Are the Best-Known Readability Equations in Estimating the

Bohdan Tsebryk, Alexey Botchkaryov 6

Readability of Design Standards?. IEEE Transactions on
Professional Communication, vol. 60, no. 1, pp. 97-111.

[9] Karmakar, S. and Zhu, Y. (2010) Visualizing multiple text
readability indexes. In: 2010 International Conference on
Education and Management Technology, pp. 133-137.

[10] Karmakar, S. and Ying Zhu (2010) Visualizing text
readability. In: 2010 6th International Conference on
Advanced Information Management and Service (IMS), pp.
291-296.

[11] Iram, N., Zafar, S. and Zahra, R. (2018) Web content
readability evaluation using fuzzy logic. In: International
Conference on Advancements in Computational Sciences
(ICACS), pp. 1-8.

[12] Antunes, H. and Lopes, C. (2019) Readability of web
content. In: 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), pp. 1-4.

[13] Naderi, B., Mohtaj, S., Karan, K. and Möller, S. (2019)
Automated Text Readability Assessment for German
Language: A Quality of Experience Approach. In: 2019
Eleventh International Conference on Quality of Multimedia
Experience (QoMEX), pp. 1-3.

[14] Tra My, H., N., Suzuki, S. and Miyazaki, Y. (2017) Building
Personalized Readability Equation and Personalized English
Vocabulary List for Continued Study". In: 2017 6th IIAI
International Congress on Advanced Applied Informatics
(IIAI-AAI), pp. 791-795.

[15] Qumsiyeh, R. and Ng, Y. (2011) ReadAid: A Robust and
Fully-Automated Readability Assessment Tool. In: 2011
IEEE 23rd International Conference on Tools with Artificial
Intelligence, pp. 539-546.

[16] Liu, Y., Ji, M., Lin, S., Zhao, M. and Lyv, Z. (2021)
Combining Readability Formulas and Machine Learning for
Reader-oriented Evaluation of Online Health Resources.
IEEE Access, vol. 9.

[17] Decasper, D., Dittia, Z., Parulkar, G. and Plattner, B. (2000)
Router plugins: a software architecture for next-generation
routers. IEEE/ACM Transactions on Networking, vol. 8, no.
1, pp. 2-15.

[18] Zhu, J., Yin, Q., Zhu, R., Guo, C., Wang, H. and Wu, Q.
(2008) A Plugin-Based Software Production Line Integrated
Framework". In: International Conference on Computer
Science and Software Engineering, pp. 562-565.

[19] Schleinzer, B., Cabac, L., Moldt, D. and Duvigenau, M.
(2008) From Agents and Plugins to Plugin-Agents, Concepts
for Flexible Architectures. In: New Technologies, Mobility
and Security, pp. 1-5.

[20] Adhikari, S. and Jones, B. (2019) A Modular Plugin
Architecture for Literate Programming Editors". In:
Proceedings of the of 2019 SoutheastCon (IEEE Region 3
Technical, Professional, and Student Conference), pp. 1-4.

[21] Minh Vu and Thompson, C. (2005) E2 agent plugin
architecture. In: International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pp. 26-31.

[22] Bako, B., Borchert, A., Heidenbluth, N. and J. Mayer (2006)
Linearly Ordered Plugins through Self-Organization. In:
International Conference on Autonomic and Autonomous
Systems (ICAS'06).

[23] Ricci, F., Rokach, L., Shapira, B. and Kantor, P. (eds.)
(2015) Recommender Systems Handbook. 2nd ed., Springer.
- 1020 p.

[24] Aggarwal, C. (2016) Recommender Systems: The Textbook.
Springer. - 519 p.

[25] Schrage, M. (2020) Recommendation Engines. The MIT
Press. - 296 p.

[26] Falk, K. (2019) Practical Recommender Systems. Manning
Publications. - 432 p.

[27] Robillard, M., Maalej, W., Walker, R. and Zimmermann, T.
(eds.) (2014) Recommendation Systems in Software
Engineering. Springer-Verlag Berlin Heidelberg. - 560 p.

[28] Jannach, D. (2010) Recommender Systems: An Introduction.
Cambridge University Press. - 352 p.

[29] Jie Lu, Qian Zhang, Guangquan Zhang (2020) Recommender
Systems: Advanced Developments. WSPC. - 362 p.

[30] Suresh Kumar Gorakala (2017) Building Recommendation
Engines. Packt Publishing. - 357 p.

[31] Schilit, B., Adams, N. and Want, R. (1994) Context-aware
computing applications. In: Proceedings of the IEEE
Workshop on “Mobile Computing Systems and
Applications”, IEEE Computer Society, pp. 85-90.

[32] Perera, C., Zaslavsky, A., Christen, P. and Georgakopoulos,
D. (2014) Context Aware Computing for The Internet of
Things: A Survey. IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, First Quarter, pp. 414-454.

[33] Grifoni, P., D’Ulizia, A., and Ferri, F. (2018) Context-
Awareness in Location Based Services in the Big Data Era,
In: Skourletopoulos, G., Mastorakis, G., Mavromoustakis,
C., Dobre C. and Pallis, E. (eds.) Mobile Big Data. Lecture
Notes on Data Engineering and Communications
Technologies, Springer, vol. 10, pp. 85–127.

[34] Capurso, N., Bo Mei, Tianyi Song and Xiuzhen Cheng
(2018) A survey on key fields of context awareness for
mobile devices. Journal of Network and Computer
Applications, Volume 118, pp. 44-60.

[35] Sutton, R.S., Barto, A.G. (2018) Reinforcement Learning: An
Introduction. 2nd ed., A Bradford Book. - 532 p.

[36] Weber, C., Elshaw, M. and Mayer, N. (eds.) (2008)
Reinforcement Learning: Theory and Applications. Vienna:
I-Tech Education and Publishing. - 424 p.

[37] Wiering, M., van Otterlo, M. (eds.) (2012) Reinforcement
Learning: State-of-the-Art. Springer. - 672 p.

[38] Bertsekas, D. (2019) Reinforcement Learning and Optimal
Control. Athena Scientific. - 388 p.

Bohdan Tsebryk was born in 2000 in
Lviv, Ukraine. Currently, he is a student of
the Computer Engineering Department at
Lviv Polytechnic National University. He
has been doing scientific and research work
since 2020. He has two years of professional
experience working in IT as a Quality
Assurance Engineer. His research interests
include software architecture, computational
linguistics and natural language processing.

Alexey Botchkaryov was born in
1975 in Lviv, Ukraine. He received the B.S.
and M.S. degrees in computer engineering
from Lviv Polytechnic National University,
in 1998 and the Ph.D. degree in computer
systems and components at Lviv
Polytechnic National University in 2019. He
has been doing scientific and research work
since 1994. Currently, he is an associate
professor at the Computer Engineering

Department, Lviv Polytechnic National University. His research
interests include self-organization in complex systems, structural
adaptation, intelligent information-gathering agents and multi-
agent systems.

