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An outbreak of the novel coronavirus disease was first reported in Wuhan, China in De-
cember 2019. In India, the first case was reported on January 30, 2020 on a person with
a travel history to an affected country. Considering the fact of a heavily populated and
diversified country like India, we have proposed a novel fractional-order mathematical
model to elicit the transmission dynamics of the coronavirus disease (COVID-19) and the
control strategy for India. The classical SEIR model is employed in three compartments,
namely: quarantined immigrated population, non-quarantined asymptomatic immigrated
population, and local population subjected to lockdown in the containment areas by the
government of India to prevent the spread of disease in India. We have also taken into
account the physical interactions between them to evaluate the coronavirus transmission
dynamics. The basic reproduction number (R0) has been derived to determine the com-
municability of the disease. Numerical simulation is done by using the generalised Euler
method. To check the feasibility of our analysis, we have investigated some numerical
simulations for various fractional orders by varying values of the parameters with help of
MATLAB to fit the realistic pandemic scenario.

Keywords: COVID-19, epidemic, fractional-order mathematical model (FOMM), repro-
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1. Introduction

Throughout history, diseases swept the globe, bringing down empires, weakening economies, and chang-
ing the course of history. When these infectious diseases exist as epidemics having widespread occur-
rence, the impact is such appalling that it continues afflicting not only the present but also the future.
For instance, the recent coronavirus disease (COVID-19) pandemic has chained the world in shackles
with 4307287 positive cases and 295101 deaths reported by May 15, 2020 [1, 2]. The first outbreak
was reported in Wuhan, China in December 2019 [3,4]. Despite attempted containment measures, the
virus spread to other parts of the world, soon resulting in a disastrous pandemic with many countries
affected.

The causative agent, the SARS-CoV2 virus is transmitted by coughing, sneezing and close personal
contacts such as touching mouth, nose or eyes or shaking hands. The Centers for Disease Control and
Prevention(CDCP) reported a wide range of symptoms ranging from mild to severe illness. Cough,
shortness of breath, fever, chills, muscle pain, sore throat and new loss of taste or smell are commonly
reported symptoms which may appear 2–14 days after exposure to the virus. Other less common
symptoms have been reported including gastrointestinal symptoms like nausea, vomiting or diarrhoea.
Older adults and people with underlying medical conditions are seen to be at higher risk for developing
more serious complications [5].
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In India, COVID-19 was transmitted through the immigrated population from infected countries.
The immigrated population act as a host in this epidemic. As on June 6, 2020, more than 2 lack cases
have been confirmed all over India. The variation in rate of infection has been observed due to diverse
factors like immigration rate, nature of lock down, population density and awareness, etc. [6].

Scientists and researchers are proposing mathematical models and analyse it using numerical sim-
ulation to understand the various aspects of disease transmission. It leads to the roadmap for future
strategy of either controlling the spread or recovery of the infected. Victor et al. [7] have framed
mathematical model for COVID-19 as a global pandemic and it is predictions. As COVID-19 emerged
from China in the end of 2019, IvorraB., et al. [8]. Tuite AshleighR., et al. [9], have demonstrated
the pandemic situation of transmission of COVID-19 at Ontario, Canada by defining the appropriate
mathematical model. Tian-Mu Chen, et al. [10] have focused on transmissible of COVID-19 by using
simulation of mathematical model.

Integer order mathematical models has limitations to analyse complicated real life phenomenons. It
is observed that it gives the ideal results and local dynamics. On the contrary, on account of property
of memory effect and non-local dynamics, fractional-order model is more efficient than integer order
model [11, 12]. Most of the scientists and researchers have diverted their attention towards fractional
calculus to define mathematical models for various diseases and natural phenomenons. PawarD.D. et
al. [13] have proposed fractional-order mathematical model for tuberculosis with two line treatment
and analysed it thoroughly by applying generalised Euler method successfully. Kumar Devendra,
et al. [14] have proposed fractional-order mathematical model of malaria with anti malarial drug
and control strategy for mosquitoes by spraying. PawarD.D. et al. [15] analise the dynamics of
malaria by fractional-order mathematical model. Shaikh, Amjad S. [16] have designed fractional-order
mathematical model of COVID-19 transmission taking into account dynamics of transmission and
control in India.

Recently, researchers and scientists have formulated fractional-order mathematical models using
Atangana–Baleanu derivative which satisfies Lipschitz condition. KhanM.A., et al. [17] have proposed
a fractional-order mathematical model for tuberculosis with relapse via Atangana-Baleanu derivative
in Caputo sense. Khan et al. [18] have proposed mathematical model of novel coronavirus (2019-nCov)
with Atangana-Baleanu fractional derivative by considering bats as a source of infection.

In the current scenario, with no specific drugs or vaccine available, we resorted to control measures
as part of our strategy. One such strategy adopted around the world with sketching of many guidelines
is quarantine. Quarantine is the separation and restriction of movement or activities of persons who
are not ill but are believed to have been exposed to infection, to prevent transmission of disease. The
recommended duration of quarantine for COVID-19 based on available information is upto 14 days
from the time of exposure.

In the present work, the authors inspect the efficacy of quarantine and asymptomatic nature of
the disease as a containment measure in India by formulation of a novel fractional-order mathematical
model in the form of a time dependent system of fractional-order differential equations by applying
Atangana–Baleanu derivative. The population has been divided into three compartments as local
population subject to lockdown by Government of India, immigrated quarantine population and non
quarantine immigrated population. The model is imperative for prompt analysis of effectiveness of
these measures with consideration of efficacy of quarantine as a containment measure and asymptomatic
nature in some individuals.

2. Preliminaries

2.1. Fractional calculus: brief summary

In this section, we have presented the definitions of fractional derivative and integration, demonstrated
by Atangana–Baleanu.
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Definition 1 (Refs. [11], [12]). The Mittag–Leffler function of one parameter is denoted by Eα(z)
and defined as

Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)
, α ∈ C, Reα > 0. (1)

Definition 2. Atangana–Baleanu fractional-order derivative in Caputo sense [17,18]. Let g : [a, b] →
R be a bounded and continuous function then Atangana–Baleanu fractional derivative in Caputo sense
of order 0 < α 6 1 is defined as

ABC
a Dα

t g(t) =
M(α)

(1− α)

∫ t

a

Eα

(

−α
(t− q)α

(1− α)

)

g′(q) dq, (2)

where Γ(·) is the gamma function and M(α) = 1− α+ α
Γ(α) is normalisation function.

Definition 3. Atangana–Baleanu fractional-order integral [17, 18]. Let g : [a, b] → R be a bounded
and continuous function. The corresponding fractional integral concerning to Atangana–Baleanu
fractional-order derivative of order 0 < α 6 1 is defined as

ABC
a Iαt g(t) =

(1− α)

M(α)
g(t) +

α

M(α)Γ(α)

∫ t

a

(t− q)α−1 g(q) dq, (3)

where M(α) = 1− α+ α
Γ(α) is normalisation function.

Theorem 1. For a function g(t) ∈ C[a, b], the following results holds as in [17, 19]

∥

∥

ABC
a Dα

t g(t)
∥

∥ 6
M(α)

(1− α)
‖g(t)‖, where ‖g(t) = max

a6t6b
|g(t)|,

Further, the Atangana–Baleanu derivative fulfils the Lipschitz condition

∥

∥

ABC
a Dα

t g1(t)−
ABC
a Dα

t g2(t)
∥

∥ 6 L‖g1(t)− g2(t)‖,

where 0 < α 6 1 is the order of fractional derivative.

Theorem 2. Atangana–Baleanu type fractional-order differential equation defined as follows

ABC
a Dα

t g(t) = F (t) (4)

has the unique solution [17] as

g(t) =
(1− α)

M(α)
F (t) +

α

M(α)Γ(α)

∫ t

a

(t− q)α−1F (q) dq. (5)

2.2. Analysis of generalised Euler method [GEM]

In this section, we are presenting extension of generalised Euler method as explained in [13] for the
system of fractional order ‘n’, the number of linear and non-linear differential equations as

aDα
t yi(t) = fi

(

t, y1(t), y2(t), y3(t), . . . , yn(t)
)

, 0 < α 6 1, t > 0, (6)

with the initial conditions yi(0) = yi0 for i = 1, 2, 3, . . . , n.
We have to find the solution in the finite interval [0, a]. Assume that yi(t),D

α
a yi(t), . . . are continu-

ous on [0, a] for all i = 1, 2, 3, . . . , n. The formula for generalised Euler method (GEM) For tj+1 = tj+h
for all j = 0, 1, 2, 3, . . . , k such that h is sufficiently small is
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yi(tj+1) = yi(tj) + fi
(

t, y1(tj), y2(tj), y3(tj), . . . , yn(tj)
) hα

Γ(α+ 1)
(7)

for all i = 1, 2, . . . , n.

3. Fractional-order model formulation

In this section, the authors have analyzed the efficacy of quarantine as a containment measure with
infection by using the proposed novel fractional-order mathematical model of transmission control of
COVID-19. The biological characteristics of the disease have been considered in detail to effectively
design this model such that optimum possible vectors are formulated for the designated classes. The
construction of the model is explained in the current section.

The proposed model is a simulation of the SEIR (Susceptible-Exposed-Infected-Recovered) model
in epidemiology. We have considered the immigrated population as the source of disease. It is further
divided into two compartments — one is quarantined and the other is non-quarantined. A separate
compartment with the local population subjected to lockdown by the government of India is also taken
into consideration. By extrapolating the SEIR model to the three formulated compartments, the total
population is taken as Λ of the containment region, and further this population is divided into ten
classes as follows:

i) Susceptible class, Sl(t), denotes susceptible local population with no travel history with the prob-
ability of recruitment ’σ’. Those from the immigrated compartment are classified into the quaran-
tined immigrated susceptible population and the non-quarantined immigrated susceptible popula-
tion denoted by Sqm(t) and Snqm(t), respectively. The rates of recruitment to Sqm(t) and Snqm(t)
are σ1 and σ2 respectively.

ii) Exposed class. On assumption of exposure to the virus, the individuals from the susceptible class
move to the exposed classes. El(t) indicates the exposed local population with the probability of
recruitment ’el’. For those from the compartments of quarantined immigrated exposed popula-
tion and non-quarantined immigrated exposed population are indicated by Eqm(t) and Enqm(t)
respectively. The rates of recruitment to Eqm(t) and Enqm(t) are β1 and β2, respectively. These
individuals are asymptomatic and will be in the incubation period and can be moved to the infected
class.

iii) Infected class. This class includes the symptomatic individuals that are presenting clinical signs.
Il(t) denotes the exposed local population with the probability of recruitment ’il’. For those from
the immigrated compartments: quarantined immigrated exposed population and non-quarantined
immigrated exposed population are denoted by Iqm(t) and Inqm(t) respectively. The rates of
recruitment to Iqm(t) and Inqm(t) are γ1 and γ2, respectively.

iv) Recovered class. R(t) includes individuals who have recovered from the disease from all the com-
partments. The rate of recruitment to the recovered class from Iqm(t), Inqm(t) and Il(t) are δ1, δ2
and rl, respectively.

The following conditions are also contemplated in the construction of this model:

1. The recruitment rates of individuals including births are assumed to be constant.
2. Individuals in all classes have a natural rate of mortality d. Those in the infected class with

disease-induced deaths owing to age or other comorbidities are denoted by did.
3. We have assumed that not all individuals exposed to the virus will develop the symptomatic disease.

Such individuals as in Eqm(t) and Enqm(t) will directly shift to the recovered class with the rates
r1 and r2, respectively.

4. Existence of physical contacts and interactions between immigrated non-quarantined and local
populations contributes dramatically to the transfer of the disease to the local population.

5. The exposed local population gets transferred to the compartment of the non-quarantined immi-
grated exposed population with the rate elnq.
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6. Those who are quarantined, strictly and diligently follow it hereby eliminating the possibility of
transmission to others.

7. The non-quarantined immigrated and local populations are asymptomatic as per the observations,
they do not show any symptoms but facilitate spread of disease.

Thus, N(t) denotes the total number of individuals in population such that N(t) = Sqm(t) +
Eqm(t) + Iqm(t) + Snqm(t) + Enqm(t) + Inqm(t) + Sl(t) + El(t) + Il(t) + R(t). Let cnqmel be the
probability that non-quarantined individuals in incubation period come in contact with local susceptible
individuals. The rate of infection to local susceptible individuals from non-quarantined in incubation
period individuals denoted by ‘knqmel’ is

knqmel = cnqmel nb Tb
Enqm

N
.

Let Cnqmil be the probability that non-quarantined infected individuals come in contact with local
susceptible individuals. The rate of infection to local susceptible individuals from non-quarantined
infected individuals denoted by ‘knqmil’ is

knqmil = Cnqmil nb Tb
Inqm(t)

N(t)
,

where ′n′b is the average number of local individuals being in contact with non-quarantine immigrated
for the period ‘Tb’.

Let Clel be the probability that local susceptible individuals come in contact with local exposed
individuals. The rate of infection to local susceptible individual from local exposed individual denoted
by ‘klel’ is

klel = Clel na Ta
El(t)

N(t)
.

Let Clil be the probability that local infected individuals come in contact with local susceptible indi-
viduals. The rate of infection to local susceptible individuals from local infected individuals denoted
by ‘klil’ is

klil = Clil na Ta
Il(t)

N(t)
,

where ‘na’ is the average number of local susceptible individuals coming in contact with local infected
individuals for the period ‘Ta’. The total rate of coronavirus transfer from local susceptible to local
exposed population is ‘el’ and it is given by

el = klel + klil + knqmil + knqmel.

The fractional-order system of differential equations that defines the proposed model of COVID-19
is given as follows

ABC
a Dα

t Sl(t) = σΛ− (el + d)Sl(t),
ABC
a Dα

t El(t) = elSl(t)− (il + elnq + d)El(t),
ABC
a Dα

t Il(t) = ilEl(t)− (rl + did) Il(t), (8)
ABC
a Dα

t Sqm(t) = σ1Λ− β1SqmIqm(t)− dSqm(t),
ABC
a Dα

t Eqm(t) = β1Sqm(t)Iqm − (γ1 + r1 + d)Eqm(t),
ABC
a Dα

t Iqm(t) = γ1Eqm(t)− (δ1 + did) Iqm(t),
ABC
a Dα

t Snqm(t) = σ2Λ− β2 Snqm(t)Inqm(t)− dSnqm(t),
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ABC
a Dα

t Enqm(t) = β2 Snqm(t)Iqm(t) + elnq El(t)− (γ2 + r2 + d)Enqm(t),
ABC
a Dα

t Inqm(t) = γ2Enqm(t)− (δ2 + did) Inqm(t),
ABC
a Dα

t R(t) = r1Eqm(t) + r2Enqm + δ1Iqm + δ2Inqm + rlIl − dR(t),

where 0 < α 6 1 is the order of fractional derivative and we obtain integer order model at α = 1. The
classes of the model have respective initial conditions as mentioned in numerical analysis.

Fig. 1. A schematic flow chart of dynamics of transmission of coronavirus disease
(COVID19) along with the direction of infection represented by dash line.

3.1. Mathematical analysis of the model

In this section, we have performed some mathematical analysis of the model to study some of the
biological and mathematical properties of the model. Here, we define a set of vectors [17] of all the
classes of the model as

△ =

{

(Sl, El, Il, R, Sqm, Eqm, Iqm, Snqm, Enqm, Inqm) ∈ R10
+ : Sl + El + Il +R+ Sqm +Eqm

+ Iqm + Snqm + Enqm + Inqm 6
(σ + σ1 + σ2)Λ

d

}

. (9)

The above set ‘△’ proves that the dynamics of COVID-19 transmission is biologically well defined.

3.1.1. Non-negative solution

The positivity of the proposed model has been derived as follows:

Lemma 1. The closed set such that △ = {(Sl, El, Il, R, Sqm, Eqm, Iqm, Snqm, Enqm, Inqm) ∈

R10
+ : Sl + El + Il + R + Sqm + Eqm + Iqm + Snqm + Enqm + Inqm 6

(σ+σ1+σ2)Λ
d

} is positively in-
variant with respect to (8).

Proof. The Atangana–Baleanu Caputo–sense derivative of the total population N(t) is

ABC
a Dα

t N(t) = (σ + σ1 + σ2) Λ− d(Sl(t) + Sqm(t) + Snqm(t) +El(t)

+ Eqm(t) + Enqm(t) +R(t))− did(Il(t) + Iqm(t) + Inqm(t)) (10)

6 (σ + σ1 + σ2)Λ− dN(t).
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Performing the Laplace transform of (10)

N(t) 6

(

β(α)

β(α) + (1− α)d
N(0) +

(1− α)(σ + σ1 + σ2)Λ

β(α) + (1− α)d

)

Eα,1(−β t
α) (11)

+
α(σ + σ1 + σ2)Λ

β(α) + (1− α)d
Eα,α+1(−β t

α),

where β = αd
β(α)+(1−α)d and Ea, b(x) is the Mittag–Leffler function of x with two parameters of ‘a’

and ‘b’ as defined above. As Mittag–Leffler function has asymptomatic behaviour [17]. Therefore, it
obviously proves that N(t) 6 Λ

d
by taking limit t→ ∞.

Thus the solution of the model exists in △ and it proves the positivity for all the solutions in the
region △ defined in R10

+ for the model. �

3.1.2. Equilibrium points

In order to obtain the equilibrium points of the model which is the system of differential equations, we
have to equate all the equations to ‘0’. So,

ABC
a Dα

t Sl(t) =
ABC
a Dα

t El(t) =
ABC
a Dα

t Il(t) =
ABC
a Dα

t R(t) =
ABC
a Dα

t Sqm(t) = 0,
ABC
a Dα

t Eqm(t) =ABC
a Dα

t Iqm(t) =ABC
a Dα

t Snqm(t) =ABC
a Dα

t Enqm(t) =ABC
a Dα

t Inqm(t) = 0

by solving all these equations, we get the disease free equilibrium as

X0 = (Sl, El, Il, R, Sqm, Eqm, Iqm, Snqm, Enqm, Inqm)

=

(

σΛ

d
, 0, 0, 0,

σ1Λ

d
, 0, 0,

σ2Λ

d
, 0, 0

)

.

3.1.3. Basic reproduction number

To determine the growth of infection among population, we need to compute the basic reproduction
number by using next generation matrix method [17]. The special matrix ‘F ’ gives us the newly infected
cases generated by a single infected individual present in the model in the susceptible population and
the remaining terms present in the model are carried out as the terms of another matrix ‘V ’. The
spectral radius of FV −1 gives the basic reproduction number of the model,

F =

















ClelnaTa ClilnaTa 0 0 CnqmelnbTb CnqmilnbTb
0 0 0 0 0 0
0 0 0 β1 0 0
0 0 0 0 0 0
0 0 0 0 0 β2
0 0 0 0 0 0

















and

V =

















(il + elnq + d) 0 0 0 0 0
−il (rl + did) 0 0 0 0
0 0 (γ1 + r1 + d) 0 0 0
0 0 −γ1 (δ1 + did) 0 0

−elnq 0 0 0 (γ2 + r2 + d) 0
0 0 0 0 −γ2 (δ2 + did)

















The spectral radius of A = F.V −1 gives the reproduction number (R0). Numerical values of reproduc-
tion number has been calculated with the help of MATLAB for every set of values of parameters.
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3.1.4. Existence and uniqueness of solution of the model

In view of crucial role of existence and uniqueness of solution in the analysis of mathematical model
of natural phenomenon, we have examined existence and uniqueness of solution of fractional-order
mathematical model with exponential law by using fixed point theory.

Now we apply fractional integral operator (2) to the mathematical model. For further understand-
ing, the mathematical model can be written as

ABC
a Dα

t Y (t) = F (t, Y (t)), (12)

Y (0) = Y0, 0 < t < T <∞.

Where, Y (t) = (Sl(t), El(t), Il(t), R(t), Sqm(t), Eqm(t), Iqm(t), Snqm(t), Enqm(t), Inqm(t))T . The func-
tion F : R+ ×R10

+ → R10
+ is C∞(R10

+ ).
Let us take initial condition for all classes as

Y0(t) = (Sl(0), El(0), Il(0), R(0), Sqm(0), Eqm(0), Iqm(0), Snqm(0), Enqm(0), Inqm(0))T .

As Atangana–Baleanu derivative satisfies Lipschitz condition, as

‖F (t, Y2(t))− F (t, Y2(t))‖ 6 N‖Y2(t)− Y1(t)‖. (13)

Theorem 3 (Ref. [17]). Fractional order model involving Atangana–Baleanu fractional-order deriva-
tive of Caputo sense (2) has a unique solution such that

(1− α)

M(α)
b+

1

Γ(α)M(α)
b(Tmax)

α < 1.

Proof. Applying Atangana–Baleanu fractional integral (3) to both sides of (12), gives rise to Voltera
integral equation as

Y (t) = Y0 +
(1− α)

M(α)
F (t, Y (t)) +

α

Γ(α)M(α)

∫ t

0
F (ψ, Y (ψ))(t − ψ)α−1dψ. (14)

Let J = (0, T ) and take a operator Ω: C(J,R10) → C(J,R10) defined as

Ω(t)[Y (t)] = Y0 +
(1− α)

M(α)
F (t, Y (t)) +

α

Γ(α)M(α)

∫ t

0
F (ψ, Y (ψ))(t − ψ)α−1dψ

By taking spectrum norm on J , as ‖ · ‖J = sup
t∈J

‖Y (t)‖, Y (t) ∈ C. As C(J,R10) and ‖ · ‖J construct a

Banach space.
We have

‖Ω[Y2(t)]− Ω[Y1(t)‖j =

∥

∥

∥

∥

(1− α)

M(α)
(F (t, Y2(t))− F (t, Y1(t))) (15)

+
α

Γ(α)M(α)

∫ t

0
(F (ψ, Y2(ψ)) − F (ψ, Y1(ψ)))(t − ψ)α−1dψ

∥

∥

∥

∥

j

.

Applying Lipschitz condition

‖Ω[Y2(t)]− Ω[Y1(t)]‖ 6

(

(1− α)

M(α)
B +

B

Γ(α)M(α)
Tα
max

)

‖Y2(t)− Y1(t)‖j .

Hence it deduce that
‖Ω[Y2(t)]− Ω[Y1(t)]‖ 6 b‖Y2(t)− Y1(t)‖j .

We conclude that we obtain the uniqueness of the solution of the model. �
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4. Numerical analysis and description

In this section, numerical analysis of results are represented in the form of graphs using MATLAB.
The authors believe, it is of great importance that numerical analysis is based on real-time situations
in the world for estimation to be feasible and accurate. The main purpose of such analysis for an
epidemic model is to investigate the dominant features associated with certain interventions which
greatly affects the disease dynamics. As the data is not available to define the values of parameters,
we have done various possible combinations of parameters by using least square fitting technique to
estimate close to real-world situations and a variety of results.
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Fig. 2. Analysis of infected and recovery type of classes with values of parameters σ = 0.25, Λ = 500000,
d = 2/69.5, il = 0.09, rl = 4/122, did = 4/122, r1 = 0.09, r2 = 0.06, δ1 = 0.09, δ2 = 0.8, σ1 = 0.0002,
σ2 = 0.00008, β1 = 0.00567, β2 = 0.00764, γ1 = 0.006, γ2 = 0.056, Cnqmel = 0.00021, Cnqmil = 0.00012,
Clel = 0.41, Clil = 0.032, na = 1.5, nb = 1.65, Ta = 0.7, Tb = 0.56, elnq = 0.008 and Sl(0) = 4, Il(0) = 2,
El(0) = 3, Sqm(0) = 2, Eqm(0) = 1, Iqm(0) = 1, Snqm(0) = 3, Enqm(0) = 2, Inqm(0) = 1, R(0) = 2,

R0 = 4.0128.
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Fig. 3. Analysis of infected and recovery type of classes with values of parameters σ = 0.25, Λ = 500000,
d = 1/69.5, il = 0.8, rl = 1/122, did = 2/122, r1 = 0.09, r2 = 0.009, δ1 = 0.009, δ2 = 0.009, σ1 = 0.0006,
σ2 = 0.0006, β1 = 0.0567, β2 = 0.00964, γ1 = 0.0018, γ2 = 0.009, Cnqmel = 0.21, Cnqmil = 0.21, Clel = 0.31,
Clil = 0.32, na = 0.85, nb = 0.9, Ta = 0.7, Tb = 0.6, elnq = 0.3 and initial values Sl(0) = 4, Sqm(0) = 3,
Snqm(0) = 2, El(0) = 3, Eqm(0) = 2, Enqm(0) = 1, Il(0) = 2, Iqm(0) = 1, Inqm(0) = 1, R(0) = 2 and

R0 = 3.8247.

The authors have graphically represented 3 sets of numerical simulations obtained based on inte-
gration of realistic information and certain estimations of initial conditions and parameters. We have
come across a good agreement between the reported data from various locations in India and some
estimations of the other components. While estimating the parameters used in the enumerated figures,
we observed the simulation results with the help of MATLAB for multiple set of parameters. After
that we have selected from these which are parallel between case formulation and available real life
field data in the containment area in India. For each set of values of parameters and initial values of
classes, the reproduction number is also calculated.

We have estimated the total population as 5,00,000 considering the average population of contain-
ment areas and the average mortality rate in India to be d = 1/69.50 per year [16]. We have the time
level up to 60 days for the numerical simulation.
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Fig. 4. Analysis of infected and recovery type of classes with values of parameters σ = 0.0025, Λ = 500000,
d = 1/69.5, il = 0.4, rl = 1/122, did = 2/122, r1 = 0.09, r2 = 0.06, δ1 = 0.09, δ2 = 0.6, σ1 = 0.0002, σ2 =
0.00008, β1 = 0.000567, β2 = 0.00764, γ1 = 0.006, γ1 = 0.6, Cnqmel = 0.0021, Cnqmil = 0.0012, Clel = 0.0041,
Clil = 0.0032, na = 2.5, nb = 1.6, Ta = 1.8, Tb = 1.5, elnq = 0.09 and initial values Sl(0) = 400, Sqm(0) = 230,
Il(0) = 280, El(0) = 380, Eqm(0) = 210, Iqm(0) = 150, R(0) = 140, Snqm(0) = 200, Enqm(0) = 160,

Inqm(0) = 80, R0 = 0.6124.

We have calculated the reproduction number (R0) for each set to study the global stability of dis-
ease free equilibrium and endemic equilibrium of the system. If R0 < 1, then disease free equilibrium
is globally asymptomatically stable; if R0 > 1, then endemic equilibrium is globally asymptomati-
cally stable and disease free equilibrium is globally asymptomatically unstable [17]. With help of the
reproduction number, we are able to predict the nature of the disease in the compartment.

The variation in infection rate with respect to time (Figure 2) indicates the volatile scenario of the
dynamics of infection as we observed in India. As the reproduction number R0 = 4.0128 > 1, hence
the disease free equilibrium is globally asymptomatically unstable and endemic equilibrium is globally
asymptomatically stable. In this case, there is a growth in the coronavirusly affected individuals in
non-quarantined compartment; while after a peak, the rate of infection in the local population slows
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down and it results in a decrease in the quantity of the local infected population. The nature of
graphical results 2 of this set of parameters and initial guesses match the results given by Kankan
Sarkar et al. [20] who has taken integer-order model as the base of their study.

In Fig. 3, the steady growth in all infected classes has place which results in the constant rate of
infection. The continuous growth in the set of recovered individuals is also observed. The reproduction
number of the data of Fig. 3 is R0 = 3.8247 > 1, so the endemic equilibrium is globally asymptomat-
ically stable as shown. Hence behaviour of the disease will stabilise at a certain level and the flow of
infection will increase. This scenario will not be some what suitable to avoid the pandemic situation.
Biswas Sudhanshu Kumar, et al. [21] and Kaustuv chatterjee et al. [22] have analysed different math-
ematical models for COVID-19 impact and prediction. The graphical results given by them coincide
with the presented results of Fig. 3 of this work. The present results focus broadly on the real scenario
of the pandemic in the containment zones of India.

The estimated data of Fig. 4 gives reproduction number as R0 = 0.6124 < 1. The disease free
equilibrium is globally asymptomatically stable. The figures also demonstrate that there is considerable
downfall in the number of infected population over the period of time. In this case, we have proposed
the set of parameters to decide the control strategy. Since, the reproduction number is less than a unit,
here, the disease will be under control after some period. The scenario will be some what suitable to
avoid the pandemic situation.

5. Conclusions

We have proposed a novel fractional-order mathematical model to investigate the efficacy of quarantine
as a containment measure. With the posed assumptions,the model successfully attempts to analyse the
current scenario as a wider picture and to decide the control strategy. The existence and uniqueness
of the proposed model has been confirmed by applying fixed point theorem.

The following distinctive features of our model are:

1. We have considered the immigrated population as a source of infection. This has also been observed
in the real world scenario during early stages of the pandemic.

2. We have also considered the asymptomatic state of the disease of some individuals. Interactions
between asymptomatic (non-quarantined and local) persons can further provoke the coronavirus
transmission.

3. We have taken into account the fact that nobody in the exposed class will be infected owing to
differential viral load. Hence, they directly move to the recovered class.

These features have been observed all over India in this pandemic situation of COVID-19.
While computing the reproduction number, not only the infected but also the exposed individuals

contribute to secondary infection. This assumes special importance in transmission dynamics of the
disease. The authors have kept this into account while making certain conclusions.

For numerical simulation of the model, RK4 and generalised Euler method (GEM) are applied for
integer order with the help of MATLAB and the results obtained by applying both methods matching
those for integer order. Further, we extended the numerical simulation for fractional order by applying
generalised Euler method (GEM).

If we take following precautions then the disease will be controlled and eliminated from the pop-
ulation. First of all, we should restrict the involvement of immigrated population directly with local
population by restricting them to compulsory quarantine. Numerical simulations in graphical form
predict that a significant cause of spread of infection is due to the non-quarantined asymptomatic
population. So the rate of transfer of infection to the local exposed individuals should be minimised.
Further, to identify the infected individuals from non-quarantined asymptomatic individuals, the ran-
dom testing has to be conducted in the containment areas. To increase the direct recovery rate from
the local exposed population and the non-quarantined immigrated population, the immunity power
should be enhanced by some appropriate medical guidelines, so that the recovery rate at these stages
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will increase and the chances of spread of disease will minimise. To bring more accuracy in the model
and to decide the strategy to control the disease, we can vary fractional-order components. Fractional-
order model carries memory effects. It has found to be more effective than integer-order model. In
the numerical analysis, if the reproduction number is greater than a unit, then it is observed that the
fractional-order component is directly proportional to the infection rate and inversely with the recovery
rate. It is reverse when the reproduction number is less than a unit. As the fractional-order model
possess non-local dynamics and has long memory, it gives real behaviour of the nature of COVID-19
rather than ideal behaviour. In such complex study of the disease, we get a wide platform through the
fractional-order model than integer-order one. So fractional-order model may help better than integer-
order model to choose from the various patterns in disease progression in a certain containment area.
Finally, we may conclude that the present fractional-order model has given wide platform to decide
the future strategy for the control of COVID-19 in India.
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Математична модель дробового порядку для аналiзу впливу
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Вперше про спалах нової коронавiрусної iнфекцiї повiдомили у мiстi Ухань, Китай, у
груднi 2019 року. В Iндiї про перший випадок було повiдомлено 30 сiчня 2020 року,
це була особа з iсторiєю перемiщень до iнфiкованої країни. Беручи до уваги факт гу-
стонаселеної та диверсифiкованої країни, такої як Iндiя, запропоновано нову матема-
тичну модель дробового порядку, щоб визначити динамiку поширення коронавiрусної
хвороби (COVID-19) та стратегiю її контролю в Iндiї. Класична модель SEIR застосо-
вана до трьох секцiй населення, а саме: мiгранти на карантинi, безсимптомнi мiгранти
не перемiщенi на карантин та мiсцеве населення, яке уряд Iндiї пiддав блокуванню в
зонi стримування для запобiгання розповсюдженню хвороби в Iндiї. Також враховано
фiзичну взаємодiю мiж ними для оцiнки динамiки поширення коронавiрусу. Встанов-
лено базове репродуктивне число (R0) для визначення заражуваностi COVID-19. Чи-
сельне моделювання проведено за допомогою узагальненого методу Ейлера. Щоб пе-
ревiрити актуальнiсть нашого аналiзу, ми дослiдили деякi чисельнi моделювання для
рiзного дробового порядку, змiнюючи значення параметрiв за допомогою MATLAB,
щоб дослiдження вiдповiдало реалiстичному сценарiю пандемiї.

Ключовi слова: COVID-19, епiдемiя, математична модель дробового порядку
(ММДБ), число вiдтворення, узагальнений метод Ейлера (УМЕ).
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