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Accurate geospatial modeling of greenhouse gas (GHG) emissions is an essential part of
the future of global GHG monitoring systems. Our previous work found a systematic
displacement in the high-resolution carbon dioxide (CO2) emission raster data of the
Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission product. It turns
out this displacement is due to geolocation bias in the Defense Meteorological Satellite
Program (DMSP) nighttime lights (NTL) data products, which are used as a spatial emis-
sion proxy for estimating non-point source emissions distributions in ODIAC. Mitigating
such geolocation error (∼ 1.7 km), which is on the same order of the size of the carbon
observing satellites field of view, is especially critical for the spatial analysis of emissions
from cities. In this paper, there is proposed a method to mitigate the geolocation bias in
DMSP NTL data that can be applied to DMSP NTL-based geospatial products, such as
ODIAC. To identify and characterize the geolocation bias, we used the OpenStreetMap
repository to define city boundaries for a large number of global cities. Assumption is
that the total emissions within the city boundaries are at the maximum if there is no
displacement (geolocation bias) in NTL data. Therefore, it is necessary to find an optimal
vector (distance and angle) that maximizes the ODIAC total emissions within cities by
shifting the emission fields. In the process of preparing annual composites of the night-
time stable lights data, some pixels of the DMSP data corresponding to water bodies were
zeroed, which due to the geolocation bias unreasonably distorted the ODIAC emission
fields. Hence, an original approach for restoring data in such pixels is considered using
elimination of the factor that distorted the ODIAC emission fields. It is also proposed
a bias correction method for shifted high-resolution emission fields in ODIAC. The bias
correction was applied to multiple cities from the different continents. It is shown that
the bias correction to the emission data (elimination of geolocation error in non-point
emission source fields) increases the total CO2 emissions within city boundaries by 4.76%
on average, due to reduced emissions from non-urban areas to which these emissions were
likely to be erroneously attributed.
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1. Introduction

Satellite remote sensing data are widely used to analyze many processes of human activity [1–4].
In particular, remote sensing data on nighttime light intensity from Defense Meteorological Satellite
Program (DSMP) satellites [5–7], due to unique long record, are used as a proxy to model many
human activities and natural processes [8–11]. In an original way these data are also used to create the
Open-source Data Inventory for Anthropogenic CO2 (ODIAC) high-resolution raster data (30× 30 arc
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seconds or approximately 1× 1 km at the equator) on carbon dioxide (CO2) emissions from fossil fuel
consumption for energy purposes [12–14]. The ODIAC high-resolution maps are based on emission data
from point sources and disaggregation of country-level CO2 emissions data from non-point sources using
nightlight data. The emissions values distribution depends on the intensity of nightlight data, taking
into account the other factors [12].

ODIAC global data are widely used to estimate CO2 emissions from many regions of our planet [15–
17]. However, when analyzing ODIAC data for urban areas, we noticed a displacement of the data (to
be precise, the DSMP nightlight data that underlies them) in relation to real objects (see [18]). The
bias in the high-resolution raster data is visually noticeable for emissions data for many cities from all
continents, but it is best seen for small cities without neighboring settlements.

For example, Fig. 1 illustrates the shift/displacement of city emissions seen in the ODIAC raster
data on CO2 emissions for three global cities: Warsaw, Poland; New York, US; and Armidale, Australia.
Compared to the city boundaries, city emissions indicated by the ODIAC data seem to be shifted
towards the northwest direction. Warsaw, Poland (Fig. 1a) was particularly interesting to examine,
because of the Vistula River, which flows in the middle of the city towards the northwest direction
(it is parallel to the direction of the NTL bias). New York City (Fig. 1b) was also interesting to
examine, because of Hudson River (the width is commensurate with the DMSP/ODIAC data cell
size), which flows in parallel to the intensively built-up Manhattan area, but perpendicular to the NTL
geolocation bias. In contrast, Armidale, Australia is not a big city (population is 26 500) and there are
no neighboring settlements with intensive nighttime lights.

Fig. 1. Examples of cities from the different continents for illustration of geolocation biases in ODIAC emission
data (inherited from DMSP nighttime light data): Warsaw, Poland (a); New York, US (b); and Armidale,
Australia (c). ODIAC2014 emission data from non-point sources (emissions for 2014) on 30 arc seconds grid
are calculated basing on DMSP’2010/2011 data (see [13]). Blue polygons indicate city boundaries, according to

OpenStreetMap (OSM) data [19].

The displacement in ODIAC/DMSP raster data was also found when comparing this data with
the other high-resolution greenhouse gas data for Poland, which have been calculated using a so-
called “bottom-up” approach — Geoinformation technologies, spatio-temporal approaches, and full
carbon account for improving the accuracy of GHG inventories (GESAPU) [18, 20, 21]. Even if the
geolocation error is small (∼ 1.7 km), it can significantly distort the emission values within cities or
urban areas [15, 22, 23]. It is also important to note that the magnitude of geolocation biases is on
the same order of the size as the satellite footprints of the recent carbon observing satellites, such as
OCO-2 [24] and OCO-3 [25]. This means that the geolocation errors are large enough to impact the
analysis of city emissions using satellite data.

The specified ODIAC raster data bias was inherited from DMSP data. ODIAC directly uses the
DMSP data to distribute non-point source emissions (see [12, 13]). The use of the DMSP data for
geospatial modeling applications has been actively examined. In particular, there are publications
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devoted to analyzing specific effects and improving the parameters of these data (for example, the
effects of saturation, blooming, diffusion, etc. [26–30]). However, the bias of these data in relation
to real light sources has been not fully examined. Therefore, this study aimed to estimate the bias
vector (magnitude and direction of the bias) of ODIAC raster data inherited by the primary nightlight
data and to investigate which parameters or factors this bias depends on. We present methodology,
a mathematical apparatus, and algorithm for estimating the bias vectors of the ODIAC raster data
on CO2 emissions, using city boundaries from the open-source repository OpenStreetMap (OSM [19]).
After the bias vector estimation, our method is applied to compensate the geolocation error in ODIAC
high-resolution emissions and to improve city emissions estimations. As a result, a corresponding
algorithm for correcting the displacement of the initial raster data is presented. We demonstrate the
main stages of algorithm application for estimating displacement and compensation on a number of
cities from the different continents.

2. Methods

There are a few approaches to improve a number of parameters of high-resolution DMSP data on
nighttime lights, including geolocation error [31–33]. In this paper, it is presented an original approach
to estimating and compensating for geolocation error of ODIAC data on CO2 emissions (the error
inherited from DMSP data), which is based on data on city boundaries and water bodies. This approach
is a further improvement of a previously described approach [34]. It includes steps to estimate the bias
and computational procedures to compensate for this bias and reduce the geolocation error.

2.1. Bias calculation

The idea of the proposed method for bias vector search presumes that the total value of ODIAC CO2

emissions from non-point sources within the city boundaries should be at the maximum if the primary
remote sensing nightlight data (DMSP data) are correctly positioned without any geolocation error.
There is no bias in the nighttime lights remote sensing data if this condition is satisfied. Moreover, any
shift in nightlight data leads to the decrease in the total ODIAC CO2 emission value within the cities.
It can serve as an indicator of the bias in nighttime lights data. This assumption may not be true
for a separate city because of various reasons: industrial zone located outside of the city; neighboring
settlements and so on. However, this assumption is true for total emissions from a large number of the
cities.

In the analysis of the biases of nightlight raster data, there are used two methods based on the
calculation of the total emissions within vector polygons of:

— city boundaries from the open-source repository OSM [19];
— the set of city boundaries from OSM within a vector grid with cells of size 1◦ × 1◦ latitude and

longitude.

36 432 cities from the OSM city boundaries database (the first method), and 2 237 cells with cities
(the second method) have been analyzed. To find a bias vector (distance and direction) for a separate
city, it would be necessary to shift the ODIAC raster data pixels with emission values by a certain
distance and angle, then iteratively calculate total emissions within the city and find such a bias vector
(distance and direction), which provides maximum value of emissions (Fig. 2a). But the emission
values are represented by raster data with a fixed global regular grid and a pixel size of 30 arc-seconds.
Therefore, in computational experiments it is much easier to shift city boundaries as vector objects in
the opposite direction and iteratively search for the optimal bias vector, which provides the maximum
total emissions within cities boundaries (Fig. 2b).
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Fig. 2. The proposed bias search method illustrated for the city of Armidale, Australia. The ODIAC2014
dataset is used (ODIAC emissions from non-point sources for 2014 are calculated based on DMSP’2010/2011
data, see [13]). In case there is a bias in the nightlight data in relation to the real objects, the first idea is to
shift all pixels of the data for some distance and for some angle to get the maximal emission value within the
given city boundary (a). The second idea is to shift a city boundary polygon in the opposite direction that

provides the maximum emissions within the city boundary (b).

To find the optimal bias vector (distance and direction), moving city boundaries is an optimization
task (Fig. 3). Let θi,j be the pixel of the ODIAC emission raster data with coordinates i and j, and its
value ei,j are the total emissions within this pixel. Let Pcity be the polygon of analyzed city boundary,
and P ′

city be the polygon of this city shifted by distance b in direction γ. The total emissions within
the polygon P ′

city can be calculated using the formula:

Ecity(b, γ) =
∑

∀θi,j∩P
′

city(b,γ)

ei,j,

where ∩ is the operation of intersection (common territory) of two geographical objects. Emissions
from the incomplete pixels of the intersection are calculated in proportion to the common area. The
task to find the optimal bias means the task of finding such values of distance (bopt) and angle (γopt)
that provide the maximum total emissions within the city boundaries:

max
b∈[0;bmax],γ∈[0,360]

[Ecity(b, γ)] → Ecity,max(bopt, γopt).

It is assumed that the function Ecity(b, γ) is continuous because a vector map of city boundaries
was used and emissions of pixels being partially within the city boundaries were calculated (sampled)
in proportion to the intersection. In the process of calculation of correction vector, its direction was
opposite to the found bias vector, so it showed how much and at what angle was necessary to shift the
ODIAC raster emissions data to compensate for the geolocation error of nighttime light data.

The algorithm for bias vector calculation is iterative one. In the beginning, the city boundary was
shifted in eight directions (east, southeast, south, etc.) with a given step of 0.01◦(it is approximately
1.1 km at the equator), and then eight values of total emissions within the new shifted city boundaries
were calculated. We identified the city boundary centroid, which corresponds to the maximum value
of the total emissions, and then shifted the initial city boundary centroid to this point. Then, the
step size was halved, and the same operations were realized: shifting in eight directions, emissions
calculation, finding direction with maximum emissions, and shifting the city boundary to the point
with maximum emissions. After eight such iterations of step size halving, it was equal to 0.01◦/28

(which is close to 4 meters at the equator, and it decreases with increasing latitude; for example, for
the latitude of Ukraine this step is approximately 2m in the horizontal direction) and thus the optimal
bias vector was found.
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Fig. 3. Illustration of the algorithm for bias calculation (Armidale, Australia as an example). In the first step
(a) the city boundary polygon is shifted by 0.01◦ in eight directions, each time calculating the emissions within
the city. Next, we chose as a basis the bias variant that provided maximum emissions, reduced the step size
by half, and again shifted the polygon in eight directions. After eight such iterations of step size reduction, we

obtained the desired bias vector (b).

It was shown in our previous work [34] that the proposed algorithm well determines the bias in
the horizontal and vertical directions, which is translated into the bias length and angle. Using this
approach, one can find the correction vector (opposite to bias vector), that shows how far and in what
direction it is necessary to shift the emission data, so the total emission within the city boundaries
is at the maximum. It was shown in [34] that this geolocation error depends on latitude, and the
corresponding formulas are established, by virtue of which the correction vectors can be calculated to
compensate for the bias.

2.2. Geolocation bias and water objects

Preparing annual composites of nighttime lights data, the DMSP team used a procedure of “cleaning”
the remote sensing data from the background noise in which a zero value of light intensity was assigned
to some pixels [7]: areas that correspond to large rivers, lakes, seas, or oceans, according to landcover
maps. But the ODIAC non-point source emission fields were built using these cleaned DMSP data.
Therefore, considering the bias of nightlight data, the “cleaning” procedure may assign zero values to
pixels with nonzero emissions in reality. When calculating the total greenhouse gas emissions within
the city boundaries, the values of such “cleaned” pixels can influence the results. For example, it is
shown in Fig. 1b that the maximum of emissions corresponding to Manhattan was shifted towards the
Hudson River due to the bias in nighttime lights data, and then some cells were additionally filled
with zero as for the water objects. With the aim to compensate for the geolocation error, we should
shift these zero data towards Manhattan, that doesn’t correspond to reality. Therefore, before the bias
compensation, it is necessary to “restore” the data in such “cleaned” pixels. There are proposed two
methods of operating with such pixels within the water objects:

— for the small water objects within high emission areas (for example, rivers or lakes within the
cities) there is applied the second-order polynomial interpolation using pixel values around the
target pixel;

— for the large water objects (coastal areas, big lakes, etc.) there is applied the second-order interpo-
lation polynomial built on pixel values from the coast side (the pixels were used from the opposite
direction to the bias) and extrapolated emissions for “cleaned” pixels.

Because the DMSP data bias is in the northwest direction, according to the first method mentioned
above, we moved horizontally along the rows of the ODIAC data raster and selected zero cells that
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had at least three non-zero neighboring cells on each side. Based on the emissions of these cells,
we created two second-order interpolation functions on each side, approximated using them the two
emission values in the target cell, and then calculated the average value.

Again, since the DMSP data bias is in the northwest direction, the second method deals with
zero cells, which also have neighboring zero cells on the left and at least three non-zero cells on the
right. Based on these non-zero cells, there is constructed the second-order interpolation polynomial to
approximate the emission value in the target cell. This method allowed us to deal with the emission
values for biased cells on the western coastal lines of seas, lakes, and other large water bodies.

Fig. 4, illustrates the proposed methods of dealing with zero value cells on the examples of Warsaw,
Poland and New York, US. According to the formulas given in Kinakh et al. [34], the bias of the
ODIAC emission data (inherited from the DMSP bias of nighttime lights data) is 1 659 meters (at an
angle of 27.4◦ in the northwest direction) for Warsaw, and 1 762 meters (also at an angle of 27.4◦) for
New York.

Fig. 4. Illustration of dealing with the ODIAC biased data on emissions from non-point sources, which due to
the bias of the DMSP data on nighttime lights were occurred in the cells covering the water bodies and were
“cleaned” in the process of preparation of annual composites of stable lights. In particular, the data are shown

at the location of the Vistula River in Warsaw, Poland (a) and Hudson River in New York, US (b).

3. Results: geolocation bias mitigation

The bias vector can be estimated for any geographical area using the approach described above. There-
fore, the next step was to compensate emission data for the spatial displacement. The first idea was to
shift ODIAC emissions data by the estimated compensation vector. But the compensation procedure
could not consist of shifting ODIAC pixels by a certain distance and angle as the data should be
presented using a 30 arc-second regular grid. Consequently, there is proposed the next compensation
algorithm. The compensation for the cell θi,j should consist of the following steps (Fig. 5):

— shifting the cell θi,j, where i and j are its coordinates, to the bias direction for the distance bopt
with angle γopt (θ′i,j is the shifted cell);

— calculating the sum of emissions e(θi,j) =
∑

k,l;∀θ′i,j∩θk,l
e
′

(θk,l) as parts e
′

(θk,l) of corresponding

cells values, crossed by the shifted pixel (in proportions to the overlapped area between each cell
and shifted cell), where ∩ is the intersection operation between two geographical objects: cells
θ′(i, j) and θ(k, l);

— saving the results as the corrected emissions for the initial cell θ(i, j).
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Fig. 5. Illustration of the compensation algorithm (a); examples of input pixels that take part in calculations
and their values (b); calculated pixels and their values (c) (fragment of ODIAC emissions from non-point sources

for Warsaw, Poland).

Examples of cells of ODIAC gridded emission data that take part in these procedures (compensation
of bias) and their values for Warsaw emissions are presented in Fig. 5b, while compensated cells and
their values are illustrated in Fig. 5c. The described procedures enable to mitigate the emission data
that fell into the water bodies due to the DMSP data bias, and compensate for the bias. Presented
in Fig. 6 are examples of emission data for several cities; we show data in which the geolocation error
caused by the DMSP data was compensated.

Fig. 6. The illustration of ODIAC’2014 emission data from non-point sources with compensated bias inherited
from DMSP data on the following: Warsaw, Poland (a); Gdynia and Gdansk, Poland (b); and New York, USA (c).

The emission data described above, obtained from the bias compensation, are much better because
the geolocation error was minimized. However, these data may consist of non-zero emission values at
the sites of water and other objects, which were cleaned/assigned with zero values of nighttime lights
when preparing annual composites of the DMSP data. Therefore, at the final stage of the ODIAC
data bias compensation, the emission data should be filled with zero values in cells corresponding to
these objects. To fill such cells with zeros, we extracted the mask of cells with zero values from the
initial data, and then use the mask for filling in zeros for corresponding cells in the resulting raster.
As a result of this operation, we obtained an adjusted raster of the ODIAC emission data (Fig. 7),
which completely corresponds to the input raster for cells with zero and non-zero emissions, but with
compensated bias caused by the geolocation error of the DMSP nighttime lights data.
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Fig. 7. Examples of ODIAC emission data from non-point sources with compensated bias and recovered zero
value mask within the water and other objects: Warsaw, Poland (a); Gdynia and Gdansk, Poland (b); and New

York, USA (c).

Table 1 presents the results of implementing our approach to compensate for bias of the ODIAC
emission data (bias which was inherited from the DMSP data bias) at the level of total emissions
from non-point sources from the country’s cities (US cities were additionally split into four parts to
better consider the specificity of the DMSP data bias). For all the countries analyzed, eliminating the
geolocation error led to an increase in total emissions from non-point sources within cities, and this
was due to a decrease in emissions from non-urban areas.

Table 1. Results of compensation of the bias of the ODIAC’2014 emission data at the country level: total
emissions from non-point sources within cities under analysis (city boundaries from OSM repository).

Country

Number
of cities
under

analysis

Total
emissions
with bias,

tC

Bias:
Longitude
direction,
degree

Bias:
Latitude
direction,
degree

Bias
dis-

tance,
m

Bias angle
to Western
direction,
degree

Total emissions
(after bias

compen-sation),
tC

Emission
increase,

%

Brazil 844 17 584 358 -0.0126 0.0032 1 386 14.88 18 223 439 3.63

China 1 471 126 300 508 -0.0087 0.0112 1 474 58.03 133 009 431 5.31

France 630 6 712 919 -0.0209 0.0078 1 817 28.53 7 108 942 5.90

Germany 2 207 15 717 867 -0.0208 0.0025 1,817 10.86 16 496 187 4.95

India 950 26 683 982 -0.0156 0.0101 1 968 34.68 28 886 771 8.26

Italy 255 1 862 212 -0.0200 0.0058 1 778 21.18 1 993 781 7.07

Japan 508 10 074 234 -0.0165 0.0116 1 932 41.69 11 278 865 11.96

Poland 891 6 085 082 -0.0216 0.0070 1 667 27.94 6 491 137 6.67

South Africa 151 6 114 083 -0.0134 -0.0040 1,377 -18.76 6 260 143 2.39

Spain 309 3 675 575 -0.0155 0.0098 1 718 39.55 4,051,115 10.22

Ukraine 2 491 8 404 550 -0.0209 0.0064 1 702 24.72 8 979 201 6.84

US, bottom 688 26 958 833 -0.0159 0.0035 1 589 14.24 27 540 459 2.16
left part 1

US, bottom 2 811 56 686 725 -0.0131 0.0074 1 488 33.65 58 597 494 3.37
right part

US, top 765 8 949 422 -0.0131 0.0078 1 374 39.19 9 386 657 4.89
left part

US, top 2 907 84 180 755 -0.0186 0.0084 1 374 33.56 87 005 027 3.36
right part

1To split US emissions to bottom and top parts we used 39◦N, and to left and right part we used 99◦W.
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4. Discussion and conclusions

The high-resolution ODIAC data on CO2 emissions from non-point sources have a bias that is inherited
from the bias of the DMSP data on nighttime lights. There is no analysis of the physical nature of this
bias in the paper, but there are studied the possibilities of reducing the geolocation error of non-point
emission sources caused by such a bias. The presented approach makes it possible to find the magnitude
and direction of the bias, recover the data distorted due to the overlap of biased emission data on water
and other zero-emission objects, compensate for the bias, and present the emission data on a regular
grid. The approach uses the boundaries of a large number of cities from the OSM repository. It can’t be
applied to a separate city, because in this case, undesirable disturbing factors can play a significant role,
such as the presence of suburban industrial zones, neighboring settlements with significant emissions,
and large zero-emission zones within the city (park or river) and neighborhood (sea, forest, etc.). Such
perturbing factors make it impossible to correctly identify the distance and direction of the bias, but
in the case of a large number of cities under analysis, these factors are mutually compensated.

As calculations [34] have shown, the bias distance of the ODIAC/DMSP data is about 1 600−1 800
meters and is weakly dependent on other parameters. The direction of the bias is northwestern, the
angle varies mainly in the range of 7◦−32◦ in relation to the western direction, and this angle depends
significantly on latitude. The perturbing factors, to some extent, affect the results of calculations,
as seen in Table 1. In countries with a large number of analyzed cities, the distance and direction
of the bias correspond to the values given in Kinakh et al. [34]. But, in South Africa, for example,
the bias distance, and especially its direction, deviate from the general rule. The main factors that
influenced this result are the smaller number of cities under analysis, the big cities are mostly located
close to large zero-emission territories (the ocean), and the country is located at high latitudes in the
southern hemisphere. In general, the impact of a long coastline is more noticeable in countries where a
significant part of the coastline is perpendicular to the direction of the DMSP data bias (Italy, Japan,
parts of the US), and less noticeable when a significant part of the coastline is parallel to the DMSP
data bias (e.g., Poland, Ukraine).

The above results on the identification of emission data bias and its compensation were calculated
for the ODIAC emission data for 2014 (they were obtained on the basis of the DMSP data for 2010
and 2011 as a spatial proxy [12], and therefore they inherited the bias of these data). The question
arises: what is the bias of other DMSP data on nighttime lights? A detailed analysis of the DMSP
data bias for other years and different DMSP satellites using many cities from all continents is beyond
the scope of the current study. But as an example, Fig. 8 presents the results of a study on the bias
of the DMSP data on nighttime lights using the approach based on the analysis of 653 biggest cities
of Ukraine. The study covered all available uncalibrated nighttime lights monitoring data from all
DMSP satellites [7]. In the figure, the monitoring data (annual composites) from different satellites
are highlighted in different colors. As we see, the data from the satellites F12, F14, F15, and F16 in
the first years of their operation had a fairly low bias magnitude, which did not exceed 600 meters. For
F15 satellite data for 2000, the lowest bias value was observed (82 meters). Although for this satellite,
the largest observed bias value was in 2008 and 2007.

It can be concluded that if more than one satellite is available for a given year, it is possible to
select data with a smaller bias. For example, the 1994 F12 satellite data have a smaller bias than F10
data, the 2002 F14 satellite data have a smaller bias than F15, and in 2008 there was a moderate bias
for the F16 satellite data as opposed to the maximum observed bias for F15 data. Also, from Fig. 8,
one can notice that the satellites’ data’s accuracy worsens in the last years of operation. The bias
angle, in most cases is close to 30◦ in the northwest direction. It is worth noting that the analyzed
Ukrainian cities did not differ in high nighttime lights compared to other urban areas of the world,
which caused some difficulties considering sensitivity of nighttime lights data and the research method
used. It should be emphasized that although satellite monitoring data covered more than 20 years,
the study used only the current/latest city boundaries. Although these results are valid only for the
latitude of Ukraine, they reflect the general characteristics of the bias of widely used DMSP data on
nighttime lights.
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Fig. 8. Bias distance in meters and bias angle to the east in the radial coordinate system (a), and bias distance
only (b) of all annual DMSP-OLS nighttime lights data composites [7]. The results were calculated after a
simultaneous shift in the boundaries of 653 of the largest cities in Ukraine. DMSP satellite numbers and years

of monitoring are indicated (for example, F15’08 means data from F15 satellite for 2008).

The approach presented in this article for the analysis and compensation of the ODIAC emission
data bias (bias inherited from DMSP nighttime lights data bias) enables a significant reduction in the
geolocation error of non-point sources of CO2 emissions, which is very important for urban areas. As
we can see from Table 1, the reduction of the geolocation error of non-point sources led to an increase
in emissions within the boundaries of 17 878 cities by 4.76% (increase by 19 317 542 tC). Accordingly,
emissions from non-urban areas decreased by the same amount, as the geolocation error unreasonably
attributed these emissions to these areas.
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освiтлення та глобальних растрових даних про емiсiї CO2
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Точне геопросторове моделювання емiсiї парникових газiв (ПГ) є важливою части-
ною майбутньої глобальної системи монiторингу цих газiв. У нашiй попереднiй роботi
було виявлено систематичний зсув у глобальних вiдкритих растрових даних про ан-
тропогеннi емiсiї дiоксиду вуглецю (CO2) (ODIAC данi). Виявляється, що цей зсув
зумовлений змiщенням геолокацiї первинних даних про нiчне освiтлення (NTL) су-
путникової програми метеорологiчного монiторингу (DMSP програми), якi викори-
стовуються як просторовi iндикатори для оцiнювання розподiлу неточкових джерел
емiсiї в ODIAC. Зменшення такої похибки геолокацiї (∼ 1.7 км), яка є того ж поряд-
ку, що i величина комiрки растру супутникiв, що здiйснюють монiторинг вуглецю, є
особливо критичним для просторового аналiзу емiсiй мiст. У цiй роботi запропонова-
но метод компенсацiї змiщення геолокацiї даних NTL DMSP, який можна застосувати
до геопросторових продуктiв на основi цих даних, зокрема до даних ODIAC. Для ви-
явлення та оцiнювання змiщення геолокацiї застосовано репозиторiй OpenStreetMap,
щоб визначити межi великого числа мiст з усiєї планети. Використано припущен-
ня, що сумарнi емiсiї у межах мiста є максимальними, якщо у NTL даних нiчного
освiтлення вiдсутнє змiщення (зсув геолокацiї). Тому ми шукали оптимальний вектор
(вiдстань та кут), який максимiзує сумарнi ODIAC емiсiї у мiстах, шляхом змiщення
емiсiйних полiв. У процесi пiдготовки рiчних композитiв даних нiчного освiтлення де-
яким пiкселям DMSP даних, якi вiдповiдають водним об’єктам, було присвоєно нульо-
вi значення, що iз-за змiщення геолокацiї необґрунтовано спотворило ODIAC емiсiйнi
поля. Тому запропоновано оригiнальний пiдхiд до вiдновлення даних у таких пiксе-
лях, що усунуло фактор, який спотворював емiсiйнi поля ODIAC. Розроблено також
метод корекцiї зсувiв для змiщених емiсiйних полiв ODIAC даних високої роздiльної
здатностi. Процедуру корекцiї зсувiв застосовано до емiсiйних даних багатьох мiст з
рiзних континентiв. Показано, що така корекцiя (усунення похибки геолокацiї в по-
лях неточкових джерел емiсiї) збiльшує сумарнi емiсiї CO2 у межах мiст у середньому
на 4.76% шляхом вiдповiдного зменшення емiсiї з позамiських регiонiв, куди цi емiсiї
початково бути помилково вiднесенi.

Ключовi слова: дистанцiйне зондування, данi нiчного освiтлення, емiсiя парни-

кових газiв, змiщення супутникових даних, алгоритм аналiзу змiщення.
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