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We consider boundary value problems with periodic boundary conditions for first-order
linear systems of impulsive ordinary differential equations with unknown right-hand sides
and jumps of solutions at the impulse points entering into the statement of these problems
which are assumed to be subjected to some quadratic restrictions. From indirect noisy
observations of their solutions on a finite system of intervals, we obtain the optimal, in
certain sense, estimates of images of their right-hand sides under linear continuous opera-
tors. Under the condition that the unknown correlation functions of noises in observations
belong to some special sets, it is established that such estimates and estimation errors are
expressed explicitly via solutions of special periodic boundary value problems for linear
impulsive systems of ordinary differential equations.
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1. Introduction

In the present paper for periodic BVPs for systems of linear impulsive ordinary differential equations,
we propose a novel technique of finding optimal estimates of images of their data under linear continuous
operators from indirect noisy observations of solutions of these BVPs on a finite system of intervals.

We assume that right-hand sides entering into the statement of these problems and correlation
functions of errors in observations are unknown and belong to certain ellipsoids in the correspond-
ing function spaces. Here by observations of unknown solutions we mean functions that are linear
transformations of the same solutions distorted by additive random noises.

It is proved that optimal estimates and estimation errors are expressed explicitly via solutions
of special uniquely solvable systems of linear impulsive ordinary differential equations with periodic
boundary conditions.

To do that, we first solve the problem of guaranteed (minimax) estimation of values of linear func-
tionals from above-mentioned right-hand sides and obtain the boundary value problems, not depending
on specific form of linear functionals, that generate the guaranteed estimates as well as the optimal
estimates of right-hand sides. Further, we apply these results for obtaining the optimal estimates.

Notice that this work is a continuation of our earlier studies set forth in [1,2], where we elaborate
the guaranteed (minimax) estimation method for the case of the problem of estimation of linear func-
tionals from unknown solutions and right-hand sides of first order linear periodic systems of ordinary
differential equations.

2. Preliminaries and auxiliary results
Let C denote the field of complex numbers, A* denote the matrix complex conjugate and transpose

of a matrix A. Denote by X (¢) a matrix-valued function X (¢) = [z1(¢),...,z,(t)] whose columns are
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318 Nakonechnyi O. G., Podlipenko Yu. K.

linearly independent solutions z1(t),...,z,(t) of the homogeneous system
dx(t)
=A t 1
") _ Ay, )
Aw(t)‘t:ti = Bzx(t1)7 Z = 17 -4, (2)

such that X(0) = E, where! E is the unit n x n-matrix, 0 = tg < t; < .-+ <t, < t,41 = T is a given
system of points on the real axis, A(t) = [a;;(¢)] is an n x n-matrix with a;;(-) € L*(0,T), B; are n x n
constant matrices such that

det(E+ B;) #0, i=1,...,q. (3)

Further we will assume that the following condition is valid
det (E — X(T)) # 0. (4)
Under the conditions (3) and (4) the following nonhomogeneous problem

dx(t)

e A(t)z(t) + B(t)f(t) forae. te(0,T), (5)
Aa:(t)‘t:ti = Bix(t;) + Cigi, z(0)=2(T), i=1,...,q, (6)
as well as the problem
—dzgé W = A*(t)z(t;u) + g(t) forae. te(0,T),

Ax(t)],_, = —(B+B) B2t +gh i=1,....q, 2(0)==2(T),

that is adjoint of nonhomogeneous problem (5), (6), are unique solvable for any vector-functions f(t) €
C", g(t) € C" such that f € (L2(0,T))", g € (L?(0,T))" and for any vectors g; € C¥, g/ € C", where
B(t) = [bi;(t)] is an n x r-matrix with b;;(-) being piecewise continuous on [0, 7], C; are n x k constant
matrices.

By a solution, for example of problem (5), (6), we mean a function z(t) € A that is left continuous,
satisfies the equation (5) almost everywhere (a.e.) on (0,7, and the conditions (6), where by A
we denote a class of functions y(t) € C™ defined on [0,7] such that y(.)‘(tiflvti) € Wi(ti—1,t:)",
i=1,...,q+ 1. Here Wi(a,b) is the space of functions absolutely continuous on an interval (a,b) for
which the derivative that exists almost everywhere on (a, b) belongs to space L?(a,b). These assertions
follow from the results contained in [3-5].

3. Statement of the problem of guaranteed estimation of linear functionals defined on
unknown data of periodic boundary value problems

Let Q;, j = 1,...,M; be a given system of subintervals of (t;_1,%;), F = (f,01,...,94) € H :=
(L?(0,T))" x Ck4. The problem is to estimate the expression

T q
Mmzé(mmwmw+z@wn (7)
=1

"Here and in what follows we assume that if a function ¢(t) is piecewise continuous then it is continuous from the left.
If ©(t) has a discontinuity of the first kind from the right at a certain point ¢;, we denote by Anp(t){t:t_ = o(t]) — p(ts:)

the jump of function () at this point, ¢(t}) = , liIthr o(t).
—tq
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from observations of the form

yit)y = Hy(t)x(t) + (), teQ, j=1,....M;, i=1,...,q+1, (8)

in the class of estimates ot M,
ZZ/ ) dt +c, ()

i=1 j=1

linear with respect to observations (8); here x(¢) is the state of a system described by problem (5),

(6), lp € (L*(0,T))", a; € C¥, H;(t) are [ X n matrices with the entries that are piecewise continuous
functions on Q;, u; (t) are vector-functions belonging to (L2(Q§-))l, c € C, and by (+,-)n, we denote the
inner product in C™.

We suppose that vector-function f and vectors gi,...,g, are unknown and the element F' =

(f,91,--.,9q) belongs to the set G, where
Glz{F:(f,gl, Jq) €H: f € (L*0,T))",g; € C, Z -9,

T ~ ~
+/ Q) () = fo(®)), f(t) = folt))rd 1}, (10)
0

£ = (5%(),,511\/[1(),, ‘11+1(-),...,£XZI1+1(-)) 6 Ga, Where 5;() are observation errors in (8),
that are realizations of random vector-functions &(t) = &j(w,t) € C! and G5 denotes the set of
random elements & := (5}(), . ,5}41 ()yeens ~‘11+1(-), .. ,5?\}11 ()), whose components have zero means,

Eg;() = 0, with Lebesgue square integrable second moments on Q;-, and unknown correlation matrices
R; (t,s) = Eé; (t)(g;)*(s) satisfying the condition

q+1 M;

ZZ/ Tr [Di(t)RL(t,1)]dt < 1, (11)

=1 j=1

Here fy(t) is a prescribed vector-function such that fo € (L2(0,7))", ¢9,... ,gg € CF are prescribed
vectors, D;- (t) and Q(t) are Hermitian [ x [ and r X r-matrices with entries that are piecewise con-
tinuous functions on 2; and [0, T, respectively, such that fQ;(D; (B)u(t), u(t))dt > OZHUH(L2(Q;))1 and
JEQU(E), o(®)rdt > ol g2(ryy for all u() € (F2(@) and () € (L0, 7)), a3 = const > 0,

Qi, i = 1,...,q are Hermitian positive matrices with constant elements for which there exist their
inverse matrices (D;)_l(t), Q(t), and Q;', TrD := Zézl d;; denotes the trace of the matrix

D= {dij}é,jzl'

Set u = (ug(-),-- . ugg, (), u‘f“(),...,utfv}jﬂ(-)) € H, where H := (LQ(Q%))Z X oo X
(L2(Q}V[1))l X ... X (Lz(Q‘fH))l X ... (L2(Q‘]Z\Z,:11H))l. Norm in space H is defined by
q+1 M; 1/2
Jullzr = {ZZHU iz } -
i=1 j=1
Definition 1. The estimate
q+1 M;
ZZ/ ),dt + ¢, (12)
i=1 j=1

in which vector-functions 11;(), and a number ¢ are determined from the condition
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inf o(u,c) =o(a,é),

u€eH,ceC
where . />
o(u,c) = sup  E[(F)—I(F)P,
FeG1,€€G
I(F) = / (75(t), uj(t)),dt + c, (13)
i=1 j=17%
Jit) = Hi)a(t) + (), teQ, j=1,...,M;, i=1,...,q+1, (14)

and Z(t) is the solution to the problem (5), (6) at f(t) = f(t) and g1 = §1,...94 = Jq, will be called
the guaranteed (minimax) estimate of expression (7).
The quantity

L 1/2
o:={o(t,é)} /
will be called the error of the guaranteed estimation of I(F),
Thus, a guaranteed estimate is an estimate minimizing the maximal mean-square estimation error
calculated for the worst-case realization of the perturbations.

4. Representations for guaranteed estimates and estimation errors of [(F’)

In this section we deduce equations generated the guaranteed estimates.
For any fixed u € H introduce the vector-function z(¢;u) as a unique solution to the problem

dz(t;u) anguil - -
g = At - SN Xoi (D(H})* (Duj(t) for ae. t€(0,7), (15)
i=1 j=1
Az(t;u)‘t:ti = —(E+B) ™ 'Bf2(tyu), i=1,...,q, 2(T;u)=2(0;u), (16)

where xq(t) = { (1) i i ; g’ is a characteristic function of the set .

The unique solvability of this problem follows from condition (4) (see page 318) and from the results
contained in [4] and [3] it also follows that an a priori estimate

q+1 M;

D> xai()H) (s)uj(s)|ds Wt € [0,T] (17)

i=1 j=1

T
()| < K/
t

0

holds, where K is a constant not depending on ué()

Lemma 1. Finding the minimax estimate of functional I(F') is equivalent to the problem of optimal
control of the system (15), (16) with the cost function

T
I(u) = /0 Q7B (D2(t ) +lo(t)), B* (H)z(t;u) +lo(t)), dt

* Zq: (Q7 N (C(E+ B) 'a(ti;u) + ai), CF (E + B) '2(tisu) + as) .
- g+1 M; ' ' |
+ZZ/ ((D;')_l(t)u}(t),u}(t))ldt — Jlellg (18)
i=1j=1"°%
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Proof. Let & be a solution to problem (5), (6) at f(t) = f(t), i = §i, i = 1,...,q. From (13) and
(14), we obtain

qg+1 M;

I(F) = ZZ/ (7(1), i () dt +
i=1 j=1""%%
ey M; , ' g+l M;
- Z/ (5:(15), XQ;_(t)(H;)*(t)u}(t)) dt+zz/_ (E5(t), u;(t)) dt + ¢
i=1 Jti-1 j=1 n =1 j=1 5

Transform the first term in the right-hand side of this equality. Applying the integration by parts
formula, we have

Z / <5J(t)7§x9; () (i) ) de = Z / (50~ — () )
- —g(wr_l), At ) — (E(t), 2t ) ) — z: / (df;” AW, (¢ u)> a
- _i (Cigi, (E+ Bf) ™ '2(t:),, — i/ttl <B(t)f(t), 2(t; u))ndt. (19)
Here we have used the fact that ) Z
i((@(til),z(til;u))n — (&(ts), z(t,-;u))n) = i(@(tlf), 2(tF s u)) — (E(t), z(t,-;u))n)

I
.MQ

I
—_

(((E + B;)z(t;) + Cigi, (E — (E + B;‘)_lB;‘)Z(tﬁu))n — (2(t:), Z(ti§u))n>

(2

(B + Bo)itt), (B — (B + B)) ™ B)a(ti u)hn — (#(t:), 2(ti5 )

i=1
+ > (Cigi, (B — (B + Bf) ™' B)=(tis u))n
i=1
= Z(((E + Bi)a(ti), (B + BY) ™ 2(tiu))n — (@(t), Z(tz’;u))n> +> (Cigi, (B + Bf) '2(ti;w)),,
i=1 i=1
=Y (5, C;(E+ Bf) '2(ti;w),.
i=1
Since . q
UF) = [ (FO. e dt + > (G
0 i=1
we get
— T q
U(F) = U(F) = /0 (F@lo(t) + B*®)2(tw)) dt + 3 (G ai + CH(E + BY) ™ 2(tisw),
i=1 -~
—ZZ/Z_ (E5(t), u;(t)),dt —c. (20)
i=1 j=1"%
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The latter equality yields

—

T q
E[I(F) —I(F)] :/0 (f(t),lo(t)+B*(t)z(t;u))rdt+z(gi,ai—I—C’f(E—l—Bf)_lz(ti;u))k—c. (21)
i=1

From the equalities (20) and (21) we find

— T q 2
BE) 1) = | [ (000 + B @)2(60) -+ 3 s + CH(E + B sltin), e
q+1 M; _ - 2
+E &5(t),u;(t)),dt
XY [, G0sto),
T q
= /0 <f(t) — fo(t),lo(t) + B*(t)z(t; u))rdt)rdt + Z (3 — g ai + CF(E + BZ)_lz(ti;u))k
i=1

T q 2
+ /0 <f0(t), lo(t) + B*(t)z(t; u))rdt>rdt + Z (99, ai + CF(E+ Bf) " 2(tisu)), — ¢

i=1

> /Q (€1(t),uy (1)) dt| -

i=1 j=1

+E

Thus,

—_

inf o(u,c) = inf  sup E‘l(ﬁ’)—l(ﬁ’)!z
ceC ceC FEGLEEGQ

T q
= i&f: ;:gl /0 (f(t) — fo(t),lo(t) + B*(t)z(t; U))rdt)rdt + ;(gi — g7 ai + Cf (E + Bf) "2 (ti; u))k
T q 2
+ / <f0(t), lo(t) + B*(t)z(t; u))rdt> dt + Z (99, ai + CF(E+ Bf) *2(tisu)), — ¢
0 u =
1 q+1 M; B 2
+spE[YY / (E(t)u; (1) dt| . (22)
geGy =1 j=179

Set

T q
y::/o (f(t)—fo(t),lo(t)+B*(t)z(t;u))rdt> dt +> (5 — 97, ai + CF (B + BY) ™ 2(ti; )k,

T X
=1

q

T
d=c— /0 <f0(t),lo(t) + B*(t)z(t; u))rdt)rdt — Z(g?,ai +C/(E+ B;‘)_lz(ti;u))k.
i=1

Then generalized Cauchy—Schwarz inequaity and (10) imply

T
ly| < [/0 Q71 () (Io(t) + B*(t)2(t;u)), lo(t) + B*(t)z(t; u)) dt

3 (@ e+ CHE + B s + CEE + B) 2]
1=1 . ) ) "
<[ @ - - )+ [ (@O - R0 £~ 1o, @]
=1
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T
< {/0 (Q_l(t)(lo(t) + B*(t)z(t;u)), lo(t) + B*(t)z(t;u))rdt

1/2
+Z TNai+ CF(E+ Bf)2(ti), ai + CF (B + BY) a(tisw), | =:J.

The direct substitution shows that last inequality is transformed to an equality at F := (f.01,---,0q) €

G, where
L o1

f(#) = fo(t) £ j(Qi)_l(t)(lo(t) + B*(t)z(t; w)),

Gi=g"+ %Q;l(ai + CH(E + Bf) ™ 2(ti; u)),

Taking into account the equality
inf sup |y —d> =

4eClyl<r
we find
T, q
inf sup / (f(t) — fo(t),lo(t) + B*(t)=(t; u)»dt) dt+ (i — 97 ai + Cf (B + B)) ' a(ti;w),
- Fexy r i=1
T q 2
+ / (fo(t), lo(t) + B*(t)z(t; u))rdt> dt + Z (99, ai + CH(E+ Bf) *2(tisu)), — ¢
0 " i=1
T
=7 = [ Q@00 + B (®(t ), b(t) + B (02t w),de
0
q
+ (@ (ai + CJ(E + B) ' 2(t)), ai + Cf (E + Bf) '2(tisu)),, (23)
i=1
where the infimum over c is attained at
T q
c= [ (falthdo(®) + B @x(u))at) e+ (ofas + CH(E+ BY) et (240)
0 " i=1
The last term on the right-hand side of (22) is calculated analogously. As a result, we get
q+1 M; q+1 M; '
sup B[ ) / (E4(t),u;(t dt => 3 / ub(t), ul (t)),dt. (25)
£eGe li=1 j=1 ; i=1 j=1

The statement of the lemma follows now from (22), (23), (24) and (25). The proof is complete. [
Further in the proof of Theorem 1 stated below, it will be shown that solving the optimal control
problem (15)—(18) is reduced to solving some system of impulsive periodic differential equations.

—_

Theorem 1. The minimax estimate 1(17’) of expression [(F') has the form

q+1 M;
ZZ/ ) dt + & = U(F),
i=1 j=1
where ' ' '
ﬁ;(t):D;(t)HjZ(t)p(t), i=1,....,q+1, j57=1,..., M, (26)
T q
c:/o (fo(t),lo(t) —i—B*(t),é(t)),,dt)Tdt—i—Z (60, ai + CH (B + B '4(t)),. (27)

=1
F:: (f)glv"'vgq) with
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FO) = folt) + QT OB (1B(t), §i=¢) +Q;'CH(E+B))p(ti), i=1....q, (28)
and vector—functions p(t), z(t), and p(t) are determined from the solution of the systems of equations

q+1 M;

—dz(tt) = =D Xai (t ()DLt Hi(t)p(t) for a.e. te (0,T), (29)
=1 j=1
Az(t)|,_, = —(E+B)'Bi2(t), i=1,...,q, 2(T)=2(0), (30)
d];—(tt) = A(t)p(t) + B(t)Q_l(t)(B*é(t) +1o(t)) forae te(0,T), (31)
Ap t)|t:ti = Bip(t:) + CiQ; (CH(E+ Bf) "4(t:) + i), i=1,...,q, p(0)=p(T) (32
and

(1) S~y - ~

= =D Xoi (t () D) [Hit)2(t) — yi(t)] forae. t€(0,T), (33)
=1 j=1

Ap(D)|,_, = —(E+B) ' Bipt), i=1,....q, H(T)=p0), (34)
dl;it) = A()i(t) + BA)(Q 7 () B*(t)p(t) + fo(t)) for ae. te (0,T), (35)
A&(t)],_, = Bid(t:) + CiQ; ' (CF(E+ B 'p(t) +g:), i=1,....,q, &(0)=&(T), (36)

respectively. Problems (29)—(32) and (33)—(36) are uniquely solvable. Equations (33)—(36) are fulfilled
with probability 1.
The minimax estimation error ¢ is determined by the formula

o =[P, (37)

P = (Q‘l(')(lo(') +B7()2(-)), Q7 (CT(E + BY) ™ 4(t) + a1, Qg (CF(E + By)'2(ty) + aq)-

Proof. It is not difficult to verify, using the inequality (17), that I(u) is a weak lower semicontinuous
strictly convex functional on H. Therefore, since

q+1 M;

ZZ/ (t),u?-(t))ldt > cllul|3;, Yu€ H, c—=const,

=1 j=1

then, by Theorems 13.2 and 13.4 (see [6]), there exists one and only one element @ € H such that
I(a) = inlf{I(u). Hence, for any fixed v € H and 7 € R the functions s1(7) := I(4 + 7v) and
ue

s9(7) := I(4 + iTv) reach their minimums at a unique point 7 = 0, so that

1d 1d
§El(u + 71v) = 0 and §El(u + iTV) = 0, (38)

where i = /—1. Since z(t;u+ 7v) = z(t;u) + 72(t;v) and z(t; 0+ itv) = 2(t; ) +i72(¢;v), from (18)
and (38), we obtain

T
0= [ (@B Wstts) + b(0), B O)=(t:0)) di
0

T
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q
+ 20 (QH B + B lts) 4 ) CF (B + B sttin),

23 B M (ARG ORI AT

Let p(t) be a solution of the problem

dz_f) = A(t)p(t) + BO)Q™(t)(B"2(t; @) +lo(t)) for ae. t € (0,T),

Ap(t)|,_, = Bip(t:) + CiQ;  (CF(E + BY) '4(ti;0) + ai), i=1,....q, p(0) = p(T).
Taking this into account, transform the first summand in the right-hand side of (39). We have

g+1

T N
/0 (Q—l(t)(B*(t)z(t;ﬁ) +1o(t)), B*(t)2(t; v))wdt = Z/ (d];—sft) — A(H)p(t), 2(t: v)) dt
i=1 7 ti-1 n
q+1 G+l g dx(t:v *
= ;((p(ti), 2(t0))n — (6 ), 2(6 ;5 v))n> - ; /ti1 <p(t), % +A (t)z(t;v)> ndt
== ; (QZI (CH(E + BY) ™' 2(ti; @) + i), Cf (E + Bf) ™' 2(t;; v))k
T q+1 M; ‘ '
- /0 (P, >3 xa (t)(H;)*(t)v;-(t))ndt. (40)
i=1 j=1
From (39), (40) we find
g+l M; ) . ' q+1 M; ' .
>3 [ (@) i o)d =33 [ e, ) 0 0)
i=1j=1""% i=1 j=1"%
for any v := (v} (-),.., vy (s 0 )05 () € H, whence @(t), i = 1,...,q+1, j =

1,..., M; are defined by (26). Setting u = 4 in (24), (15), and (16) and denoting 2(t) = z(t; ), we see
that Z(t) and p(t) satisfy system (29)—(32); the unique solvability of this system follows from the fact
that functional I(u) has one minimum point .

Now let us establish that o = [[(P)]'/2. Substituting expression (26) into (18), we obtain

T
o2 = I(d) = /0 (@0 (B*(1)2(0) + 1o(1)), B*(02(1) + o(1))

* Z <Q;1(O:(E + B)72(t) + @), Cf (B + Bf)'4(t) + ai>k
i=1 qg+1 M; . ' .
2.0 / (H}(p(®), DYOHp(0) dt. - (41)
i=1 j=1"%

However,

LN i L3 (dp(t) .
/0 (Q l(t)(B (t)z(t) + lo(t)),B (t)z(t))rdt = ZZ:; /til <7 — A(t)p(t), z(t))ndt
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=qZH((p<ti>,é<ti>>n—(p<t?—W i/ ( |
q+

(1)2 <t>)ndt

i=1
q 1 M;
= =3 (QiMCHEBY) T H(t)+ar) O (BB E(1)) =30 Y / D} (0)H(1)p(1))
=1 =1 j=1

From here and from (41) it follows (37).
The representation

1(/7?) = I(F). (42)

can be proved in much the same way as the representation

q+1 M;

ZZ/ ) dt + &

=1 j=1
This completes the proof. [

Remark 1. Inthe representatlon I(F) = ( F') of the guaranteed mean square estimate of [(F), where

(
Fi=(f.g1,-.9q), Fi=(f,01,...9¢) W
ft) = fo&) + Q7 )B*()p(t), 4 =g + Q7 'CHE+B;) pts), i=1....q,

vector—function f (t) and vectors g; do not depend on a specific form of functional .

5. Optimal estimation problem of unknown data

Now consider the problem of finding optimal estimate of the vector ¢ = LF among estimates of the

form

1= 33 Ui() + (43)
i=1 j—=1
here y;() are observations (8), L is a linear continuous operator acting from the space H into a
separable complex Hilbert space V' with inner product (-,-) and norm || - ||, U} are linear continuous
operators acting from (L2(Q§-))l toV,CeV.
Let {e1,e2,...} be an orthonormal basis of V. Denote by o1(U,C) and o3(U,C) the quantities
defined by
01(U,C) = sup Elg - g||*

G1,G2

and

(U, Z sup E|(g — g, )|,

1 G1,G2
i R 1 1 g+1 q+1
respectively, where U := (Uy, ..., Upys -5 U7 "7UMq+1)’ G and G are defined on page 319.
Definition 2. The estimates él and gz which are determined from the condition?

i € Argmin o;(U, C)
geL

2Notice, that Definition 1 is a special case of the Definition 2.
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are called the guaranteed and optimal estimate of g, respectively, where by L we denote the set of all
estimates of the form (43).

Parseval’s formula implies that the following inequality holds
Ul(U7 C) < UQ(Ua C)

The equality sign in this inequality holds if V = R.
Lemma 2. Suppose that for an arbitrary vector e € V there holds the equality

inf sup E|(g,¢) — (g,€)]" = sup E|(g,¢) — (g,¢)|,

(g,e) G1,G2 G1,G2

—
——— —

where (g,e) = (é, e), é does not depend on vector e, and (g,e) is a linear estimate of inner product

(g,€). Then vector g is the optimal estimate of vector g.

Proof. Notice that

o0 [e.e]

. . . 2 . 2
inf o(U,C) = inf > sup E|(g—g,ex)|” > inf sup E|(g,ex) — (g, €x)]|

gecL 9eL — G1,G2 —1 (g,ex) G1,G2

—_—, < . 9
= sup ]E‘(gvek)_(gvek)‘ :Z sSup E‘(Q—Q,Ek”
G1,G2 =1 G1,G2
and the lower bound is attained at g = § This completes the proof. ]

Further we will obtain the optimal estimate of element ¢ = LF using this lemma. Note first that
for any e € V, we have

q+1 M; o
(9.¢) — (3.¢) = (LF.¢) — (ZZU;y;-<-> el )

wm
=(F,L'en—> > / (yi(t), (UD*e(t)), dt — (C.e)
i=1 j=1"%%
= U(F) — I(F),

where L* and (U ]Z)* denote the adjoint operators of L and U ]Z:, respectively,

T q
I(F) = (F,L*e)H:/O (P, 16(0) dt+ 3 (i i)k,
=1

with some Iy € (L%(0,T)", and a; € C¥,

(F) = (F Lo =33 /Q 0, (0) e

i=1 j=1

i (1Y — ([T0)* ~ : 20006 Y o —
where uf(t) = (Uj)"e(t) are vector—functions belonging to (L*(£2}))", ¢ = (C.e) € C.

By Theorem 2,

inf sup E‘(F, L*e)y — (F,/L*\e)H|2 = sup E|(F, L¥e)y — (F,/L*\G)H

2
At )
(F,L*e)y G1,G2 G1,G2
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—
—

where (F, L*e)y = (F,L*e)y with F := (f,d1,...,4q) and f(-),é1,...,J, being determined by (28).
From the latter relationship and from the fact that F' does not depend on L*e (see Remark 1) it follows
that vector § = LF satisfies the assumptions of Lemma 3. This proves the validity of the following
assertion.

Theorem 2. The optimal estimates F and § of F and ¢ = LF are determined by F =

(f(),41,---,3q) and LF, respectively, where f(-),d1,...,J, are determined by (28).

Remark 2. All the results of the paper remain valid if we assume that the components 5;(), of
random elements € := (5%(), . ,E}wl(-), ce ~[11+1(-), ce Nﬂ;il(-)) entering into the set G are pairwise
uncorrelated and satisfy the condition

/Tr[D;l(t)R;l(t,t)]dtgL i=1,...,q+1, j=1,...,M,.
Q

J
6. Conclusion

The method proposed in the present paper enables one to obtain the optimal estimates of unknown data
of periodic boundary value problems for the first-order linear impulsive systems of ordinary differential
equations from noisy observations of their solutions.

It has been deduced the periodic boundary value problems for linear impulsive ordinary differential
equations of the special kind that generate the optimal estimates.

The results presented above aimed at elaborating mathematically justified estimation techniques
for various direct and inverse problems with uncertainties describing periodic evolution processes char-
acterized by the combination of a continuous and abrupt change of their state.
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OnTumanbHe OuiHIOBAHHSA HeBI,EI,OMI/IX OaHUX neplop,VNme KpanoBuUx
3a4a4 4N CUCTEM NIHIAHNX IMNYIbCHUX 3BUYaRHUX
AndepeHuianbHUX PiBHSIHB NEPLUOro NOpsiAKY 3a _HenpsMumu
3alyMIEHUMIN CMOCTEPEXKEHHAMM TX PO3B A3KIB

Hakoneunwnii O. I'., ITognunenko 0. K.

Kuiscokut nayionarvnut ynisepcumem iment Tapaca Illesuenka,
6ys. Boaodumupcoka, 64/13, 01601, Kuis, Yxpaina

Posrnsgnarorsbes kpaiiosi 3a1a4i 3 mepiofuIHIMU TPAHUIHUMHA YMOBAMH JIJIsI CUCTEM JIiHii-
HUX IMIIYJIbCHUX 3BUYARHUX JudepeHItiagbHuX PiBHAHD MEPIIOTO MOPSIKY 3 HEBITOMUME
[IpaBUMH YaCTHHAMHU Ta CTPUOKAME PO3B’S3KiB B IMIIYJILCHIX TOYKAX, Ki BXOJATH JI0 I10-
CTaHOBKU 3aJad, y TPUIYINEHH], [0 BOHU IiIOPSIKOBAHI KBAIPATHIHIM OOMEYKEHHSIM.
3a HepAMUMU 3aIlyMJIEHIME CIOCTEPEXKEHHSIMU 1X PO3B’SI3KiB HA CKiHYeHHIi{l cucTeMi iH-
TepBAJB OTPUMAaHI ONTUMAJbHI, y JETKOMY CEHCI, OIIHKK 0Opa3iB IuX HEBIIOMUX JTAHUX
pu iX JiHIHHUX HEIEPEePBHUX BiobOpakeHHsaX. BCTaHOBJIEHO, IO SKIO HEBiIOMI KOpeJs-
nittHi QyHKIHT MTOXHOOK ¥ CIOCTEPEKEHHIX HAJIEXKATh JCAKUM CIEIaJbHIM MHOXKUHAM,
TO TaKi OIIHKYU BUPaKATHCS 9€pe3 PO3B’I3KU JeAKNX MMEPIOAUIHIX KPAXOBUX 3189 JIJIs
JIHIHHAX CHCTEM IMITyJIbCHUX 3BUYANHUX Iu(epeHIiagbHX PIBHIHbD.

Kno4oBi cnoBa: onmumasvhi ouinky, 2apaHmosami OuinKy, 3aUYMAEHT CLOCTNEDEIICEH-
M, NEPIoOuUYHT Kpatioss 3a0ani, IMNYNbCHT 36UMAGTHT QUPEPEHUIANOHT PIBHAHHI.
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