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Calculations of characteristics of stars with axial rotation in the frame of polytropic model
are based on the solution of mechanical equilibrium equation — differential equation of sec-
ond order in partial derivatives. Different variants of approximate determinations of inte-
gration constants are based on traditional in the theory of stellar surface approximation,
namely continuity of gravitational potential in the surface vicinity. We proposed a new
approach, in which we used simultaneously differential and integral forms of equilibrium
equations. This is a closed system and allows us to define in self-consistent way integration
constants, the polytrope surface shape and distribution of matter over volume of a star.
With the examples of polytropes n = 0 and n = 1, we established the existence of two
rotation modes (with small and large eccentricities). It is proved that the polytrope sur-
face is the surface of homogeneous rotational ellipsoid for the case n = 0. The polytrope
characteristics with n = 1 in different approximations were calculated as the functions
of angular velocity. For the first time it has been calculated the deviation of polytrope
surface at fixed value of angular velocity from the surface of associated rotational ellipsoid.

Keywords: polytropic stars, heterogeneous ellipsoids, axial rotation, mechanical equilib-
rium equation, stability of stars.
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1. Introduction

Axial rotation is a factor which is inherent to all stars of different types, as well as to the majority
of celestial bodies and their systems. It is well known that normal stars of early spectral classes are
characterized by high angular velocity, and stars of late classes (older than F5) have a small angular
velocity and are surrounded by planets. For example, the stars of classes B5+F0 have angular velocity
which exceeds 107°s~! [1], while the angular velocity of the Sun is 3 - 107%s~!. The angular velocity
of neutron stars (pulsars) are 10s™! < w < 4-10%s7! [2].

The fundamentals of the polytropic model of stars in the frame of model without axial rotation were
developed in the following works: Lane [3], Emden [4], Fowler [5], Eddington [6] and others. In the
fundamental work of Milne [7], authors for the first time studied the influence of axial rotation of stars
on their characteristics — density distribution, temperature, and mass, within the frame of Eddington
model which corresponds to the polytropic model with the index n = 3. In ten years, Chandrasekhar
used the Milne method and received approximate numerical solutions of mechanical equilibrium of stars
within the frame of polytropic model for indices n = 1.0, 1.5, 2.0, 3.0, 4.0 and calculated dependence
of geometrical characteristics, mass, volume on the angular velocity for the case of small velocities. The
results obtained by him correspond to the perturbation theory of the first order relative to the squared
angular velocity [8]. In this work, in essence, a pure mathematical problem was solved and that became
a traditional approach for later works, which were performed over last century. In the later work of
James [9], the author calculated numerically equatorial and polar radii, mass and moment of inertia
relative to the axis rotation for the polytrope models in much wider range of angular velocities. For
a long time, the results received by him were considered as standards. However, this publication does
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not contain any data about solutions of equilibrium equation, on the basis of which it would be possible
to calculate other characteristics of rotational polytrope. Kopal [10] noted that in the particular case
n = 1 the equilibrium equation is a linear differential equation and its angular and radial variables
are separable, therefore its solutions are the products of spherical Bessel functions on the Legendre
polynomials. However, Kopal has not found the general solution which corresponds to the boundary
conditions and requires the calculation of the set of integration constants. Such solution was found
in the work of Williams [11] in the form of expansion and including the polynomial Pg(cos#). In the
work [12], the author generalized the Milne approach by more detailed description of the peripheral
region and used fitting parameters for merging the solutions at the boundary between inner region
and periphery. The obtained approximations for solutions are linear relative to the squared angular
velocity, and fitting parameters and integration constant do not depend on angular velocity.

General approximation which is used in the works [8,11,12] for finding of integration constants are
traditional approximation in the theory of stellar surface. It assumes that the gravitational potential
in periphery region is formed by distribution of matter in inner region and has a standard multipole
form. It is considered that the influence of matter distribution in periphery region on the formation
of gravitational potential inside periphery is negligibly small due to the small matter density. The
gravitational potential in inner region determines the solution of mechanical equilibrium equation.
Continuity condition of potential on the separation surface allows us to find integration constants.
With this purpose, in the work [8] the author choses the separation surface in the form of sphere with
Emden radius. The sphere with the radius smaller than the Emden radius was used in the work [12]
to find the integration constant and fitting parameters. In the work [11], the separtion surface was
chosen in the form of rotational ellipsoid, that yielded opportunity to find integration constants (at
n = 1) as functions of angular velocity.

In the work [13], the integration constant for the case n = 0 was found in self-consistent way
assuming that the surface of rotational polytrope is the surface of rotational ellipsoid. This method
improves slightly the Chandrasekhar solution for n = 1 (in the region of small velocities).

The results obtained in the work [9] for the polar and equatorial radii, as well as critical angular
velocity, at which instability occurs, played role of standards for approximate calculations performed
in the works [11,12].

A new method for finding solutions of the differential stellar equilibrium equation with axial ro-
tation in the polytropic model was proposed in our works [14-16]. We represent the solutions in the
form of multicomponent expansions, and the set of integration constants we determine using the in-
tegral form of equilibrium equation. As a result, the set of integration constants is determined by a
system of linear algebraic equations, and integration constants are functions of angular velocity. In the
works [14-16], we used a self-consistent approach assuming that the polytrope surface is the surface
of rotational ellipsoid with two parameters (equatorial radius and eccentricity) calculated numerically
by the iterative procedure.

Inspite of the century-long history of a study of stars in the frame of polytropic model, this approach
still has its methodological and applied meaning. The polytropic model is a good zero approximation
in the theory of white dwarfs [17,18], in the theory of main sequence stars [19,20], circumstellar disks,
giant planets, neutron stars and black holes [21]. In the works performed in the XXI century, the main
focus is not on methodological details of finding the solutions of equilibrium equation as a differential
equation of second order in partial derivatives, but the applied aspects are mostly considered. As an
example of research area is a search for parameters of polytropic equation of state for specific observed
stars with high angular velocities, that is, the construction of polytropic models of stars with known
observable characteristics. However, the preassigned index value n = 1 (as in the works [19,20]) of
polytropic models does mean restriction, which reduces the value of such approach.

In present work we represent an improved approach developed in the works [14-16]. Here we
generalize the self-consistent approach (the method of trial functions) and specify the system of linear
equations for integration constants and demonstrate advantages of the use of the integral form of
equilibrium equation. The geometrical characteristics of rotational polytropes, mass, and moment of
inertia have been calculated as the functions of angular velocity.
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2. General relations

The single-phase model of a star is generally accepted in the polytropic theory. It is based on the

polytropic equation of state
P(r) = Kp"(r) = Kp' /7 (x), (1)

where P(r) is the pressure at point with radius-vector r, p(r) is the local density in this point, and
constants K, n are the parameters of the model.

Using non-inertial reference system, with the presence of rotation the equilibrium equation of model
is written in the form [22]

VP(r) = —p(r) {V®@grav(r) + Vec(r)}, (2)
where
B (1) = -G [ 10T )

is the gravitational potential inside a star, and ®.(r) is the centrifugal potential. Let the axis Oz of
spherical coordinate system coincides with the axis of rotation then

1
O.(r) = —5 w?r?sin? 9. (4)

Here 0 is the polar angle, w is the angular velocity of the reference frame, which is considered to be
constant. Substituting expressions (1), (3) and (4) in equation (2) and taking into account the identity

1
(“*ﬁ)ﬂ””Jo»Vpu>=<1+n>vﬁﬁww, (5)
we get the equilibrium equation in the form of differential equation
1
K(1+n)Ap /™ (r) = —4nGp(r) + 3 w?A(r? sin” §), (6)

which determines the density distribution. In the presence of axial symmetry and symmetry relative
to the equatorial plane in the density distribution (p(r) = p(r,0) = p(r,m — 0)) the Laplace operator
is written in the form

Al L0 (00 A0y 0
A=At pde A= (Po). M= ga-f) 1, 7

where t = cos §, moreover A(r?sin?6) = 4. Let us introduce dimensionless variables
E=r/An Yal&0) = [p(r,0)/pc]"", (8)
where p. is the matter density in stellar center. In the dimensionless form equation (6) takes the form
Ago Ya(€,0) = Q2 = Y,(£,0), 9)

if the scale of length A, and the dimensionless angular velocity €2 are determined by relations

K(1+n) =47G\2 pl=1/" Q= w(2nGpe) V2, (10)
and 1 1 8 (,0
Agp=A¢+ & Dg, Ag= 2 % <£25_§> : (11)

According to the definition (8) Y;,(0,0) = 1, the condition 9Y,(§,0)/0§ = 0 at & = 0 corresponds to

the solutions regularly in the vicinity & = 0. The important conclusion follows from these boundary
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conditions: the asymptotics of the equation solutions (9) at £ < 1 and fixed value Q2 do not depend
on the polytropic index

In the case of large values (, it is possible a non-monotonic dependence Y;,(£,60) on the variable
£ in the equator vicinity, which leads to leakage of matter. The conditions of stellar stability in the
equator vicinity

NeD)-0 (el - w

determines the maximum value of the parameter Q,.x(n) and its corresponding value of the equatorial
radius {**(n). It is obviously that at < Qnax(n) instead of conditions (13) the following conditions
are satisfied

0

29
According to the definition (8), the physical meaning has only positive solutions of the equation (9),
which is two-dimensional differential equation of second order in partial derivatives with two dimen-
sionless parameters n, {2 > 0.

The equation (9) can be considered as a equation for dimensionless gravitational potential, created

by the distribution of the dimensionless matter density (47)~'{Q? — Y,*(&,6)}. In this regard, it can
be rewritten in integral form

Y, (g, g) —0, Y, (g, g) <o0. (14)

Val€,6) =14+ 30 CuPalt) - 1 [ {2 - V2L 00}QUE€) d€' (15)
=1

where Cy; are integration constants, Py (t) are the Legendre polynomials of 2(-th order, the kernel of
the equation is

QEE) =lE-¢1T - (), (16)
and the integration is performed over the stellar volume. Taking into account the identity
Agp{€"Palt)} = 0, (17)

we see, that equations (9) and (15) are equivalent.
The gravitational potential inside a star (3) is related to the dimensionless potential
1 [YELo) .
D,(8) =0,(,0)=—— | 5= dE 18
by expression
(I)grav(r) = 47TGpc)‘$L(I)n(E)' (19)

Therefore, equation (15) can be rewritten in terms Y, (&, 6) and ®,(&, ), namely

Y(€,0) + {@n(E,0) — D, (0,0)} =1+ > Cor €% Py(t) + Q2 {Do(€,0) — @(0,0)}, (20)
=1

where ®((£,0) is determined by expression (18) at Y, (£',0’) = 1. From the equation (2), which is
rewritten in the dimensionless form follows the relation

0 ) 0)+Y,(,0) = @ 1— Pyt 21
g {meonenl=Fea-no. (21)
Using equality (20), equality (21) can be rewritten in such form |7]:
0 | 0?2
7% {; Cor €7 P (t) + Q% [@0(€,8) — o(0,0)] } =& (1= Ro(1). (22)
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The difference of potentials ®y(&, 8)—P(0,0) are calculated by integration over volume of the polytrope
with index n. Using expansion in the series of kernel Q(¢,¢’) for the Legendre polynomials and
performing integration with respect to the variables —1 < ' < 1, 0 < & < &o(t'), where &y(¢') is the
root of equation Y;,(£,0) = 0 at fixed 6 and determines the equation of polytrope surface with a given
index n, we obtain the relation

2 2 o
%@@—@Mwﬁ¥%+%&@b+§)@wé%h
=2
Ih=— / " Py(t') In[&o(¢)] dt, (23)
-1

_ -1 IR / nN12—21 5,/
Iy =(-1) 1 Py(t)[&@)]" "dt' at 1>2.
-1

Substituting expansion (23) into equation (22), we find that

02
Cr=——= (1+30L), Cy=-0Iy at [>2. (24)
As a result, the integral equation (15) takes the form
— 9262 1 niel opl !/ /
Yu(§,0) =1+ (1= R(0) + = [ V(& 0)Q(&, &) de’. (25)

The system of equations (9) and (25) are closed, it does not require any additional information
and determines the general solution Y, (§,0) that corresponds to conditions in the center and on
configuration surface. We solve this system in the self-consistent way, which correctly describes the
polytrope surface, unlike in works [7,8,12].

3. The Emden equation

are

As was shown from the results of works [7-9,11,14-16|, maximum values of the parameter [nggx]Q
significantly less than one, therefore, the rotation plays role of correction at calculation the polytrope
characteristics. The influence of rotation appears the most strongly on change of geometrical poly-
trope parameters, but these changes do not exceed 40%. Because of this the zero approximation of

equation (9) is the Emden equation [4]

Ae yn(&) = —yn(6), (26)

which describes the polytrope model without rotation with spherical symmetry of density distribution.
Equation (26) corresponds to the boundary conditions y,(0) = 1, dy,/d§ = 0 at £ = 0, as well as
the condition y,(£) > 0. By integrating with respect of the angular variables of the kernel Q(&,¢’) of
equation (25) at 2 = 0, we transform it to such form

m© =1+ [ 5 { “22 -¢} e ae. (27)

The properties of equation solutions (26), (27) are illustrated by known analytical expressions at

n=0,1and 5 [22]

yo(§) =1—¢€%/6, &(0) =V6;
_ siné

n)=—7 &@)=m (28)

£
(&) = {1+2/3) 7% 4(5) = .
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Here &1(n) is the dimensionless polytrope radius, the smaller root of equation y(£) = 0 at fixed value

of index n. The condition
&1(n) 52
[ e <§ - > a =1 (29)

&1(n)
is a kind of normalization condition. Because of that the subintegral function y, (&) is a decreasing
positive function of &, from equality (29) it fol- 1

lows that & (n) is a monotonically increasing func- 08 |
tion of index m. Dependence of functions y, ()
on index n were calculated numerically and are
illustrated in Fig. 1. These are alternating or os- 04 1
cillating functions, which have physical meaning

0.6

in the range 0 < £ < & (n), moreover the poly- 2]
trope index can change continuously in the range 0
0 < n < 5. In the region of small values of vari- 02 |
able £ the Emden functions are represented by
expansions 041 | | | | | | | | | &
0o 1 2 3 4 5 6 7 8 9 10
(8n — )

' 564_' .., (30) Fig. 1. The Emden solutions of equation for the poly-
3.7 tropic index 0 < n < 3.0.

yol€) = 13 4T 4"

from which we can see that with accuracy ¢? the asymptotics of functions y,(¢) are the same, and
it confirms the condition (12). Let us adduce here main characteristics of the polytropic stars in the
Emden model. The mass

M(n,0) = /Vp(r)dr =471 X3 p.. Ba(n),

&1(n) dun (31)
pam) = [ @ de =g ||
0 £ £=¢£1(n)
the volume of a star and its radius
47
V(n70) Y ( nfl( )) ) R(n,O) = )‘nfl(n); (32)
moment of inertia relative to the axis of rotation
{7 €1(n) .
In,0) =5 pe N2 Balm), A = [ €t o) e (33)
The gravitational energy
G
W(n,0) = -3 /p(rl) dry /p(rg) lry — rg\_ldrg (34)

after integrating with respect to the angular variables and transition to the dimensionless variables
and using equation (26) it is reduced to such form

W(n,0) = —48\> 712G p? pc— T,
35)
&1(n) n+1 (
_ 2 n+1 _ 2
Jy = /0 Y€ de = g TS B, <5
The total energy (gravitational and inner) equals [22]
E(n,0) = W(n,0) + U(n,0) = 1672G X> ——°__ 2(n). (36)

(5—n)¢ (n)

It follows that in single-phase model the polytropic star is stable at n < 3.
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Table 1. The parameters of the Emden polytropic models.
| »n | 0 ] 02 | 05 | 10 [ 15 | 20 [ 25 [ 30 |
n) | 2.4495 2.5921 2.7527 3.1416 3.6538 4.3529 5.3553 6.8969

&1(
ﬁg(n) 4.8990 4.2579 3. 7887 3.1416 2.7141 24111 2.1872 2.0182
(n) 17.6371 | 15.5178 | 14.0352 | 12.1567 | 11.1197 | 10.6110 | 10.5197 | 10.8516

Dependence of the parameters &1 (n), f2(n), S4(n) on the polytropic index (0 < n < 3) is shown in
Table 1 According to the formulae (31), (33) mass and moment of inertia of polytrope with index n at
the presence of rotation can be represented in the form

M(n|Q) = M(n|0)n(n|Q), 1(n|) = I(n|0) {(n[S), (37)

where

n(nlQ) = (2Ba(n /dt / Y1 (€.0) de,
(33)

col) = (36:m) i a1 - /050 €Y7 (6. 6) de.

Here &y(t) determines the polytrope surface of index n.

4. The rotational polytrope n =0

Equations (9) and (25) in general case are two-dimensional, twoparametric and nonlinear, since the
index n can take arbitrary interval values (0 =+ 5). In the case n = 0, n = 1 equations are linear,
which allows to find approximate solutions in analytical form. It makes them important also in a
methodological sense.

The polytrope n = 0 describes a model with constant density. Therefore, in this case the problem
reduced to determine the surface shape of rotational polytrope. According to equation (25) and
relations (18) and (23) the condition Yy(&,0) = 0 is integral equation

12922P2()2Q2 21 _

L= e ¢ +3I ) =) &Py (t) Iy =0. (39)
>2

It is easy to see, in the approximation Iy; = 0 at [ > 2 the root of equation (39) &y(t) can be

represent in the form of function, which describes the surface of rotational ellipsoid. For the purpose
of self-consistent determination of ellipsoid parameters we choose a trial function in the form

—1/2
D ¢10) = ){1+1€20t2} . (40)

From equation (39) in the mentioned approximation
—-1/2
D) = 61/2{1 — Q%+ Py(t) [92 + 3I§°>} } . (41)

Equating the right sides of equations (40) and (41), we find equatorial radius

3 —1/2
¢ — 6/ 2{1 -3 <Q2 + I§°)> } (42)

and the relation between eccentricity and angular velocity
9 3
L [3e§ - 5} ¥ = 50 (43)
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)

Using expression (40) for self-consistent calculation 12(0 , we find

I(O)_ 2(0)(6) 2 1—6(2)_\/1—6(2)

2 = 0)=75+ 2 3
3 g €

arcsin eg. (44)

Expression (43) is known as the Maclaurin formula [23]. Dependencies of functions ey(€2) and 1. éo) Q) =

Iéo)(eo(ﬂ)) on the angular velocity are shown in Figs. 2 and 3.

According to the expression (44) at small

.. (0) 9 (Q)
values of eccentricity I ’'(e) = 2e°/15 + 1
8¢*/105 + .... In this approximation from the
Maclaurin formula it follows, that at small an- 08 { Q,=047399,¢(Q,,) = 092995
gular velocities e? = 1502 /4 + ..., and because
of that 06 1
1 45
Iéo)(Q):§Q2+%Q4+.... 45) o4
It can be seen in Fig. 2, eccentricity is an 02 |
ambiguous function of angular velocity. The
maximal value of angular velocity Q.. = 0 ‘ ‘ ‘ ‘ 3 ‘ Q
0.47399..., at which instability occurs, corre- 0 0.1 0.2 0.3 0.4 0.5 0.6
sponds to eccentricity e(Qmax) = 0.92995....  Fig.2. Dependence of eccentricity ey(2) on angular
In the region of large values of eccentricity velocity €2.
(e(2max) < e < 1) and small angular velocities
12(0)(9)%2—92—94—1—..., (46)
which leads to the asymptotics
Q4 —1/2 2
e (119) = \/5{7 +t2} LG e Q)2 VE (47)

which corresponds to the disk of constant thickness and large radius. Dependence féo) (Q) and 51(,0)(9)
on angular velocity is shown in Fig. 4.

55
1 70
0.7 1(2 Q) EE)D)(Q)’ E(po)(Q)
5 |
0.6 1
45 A
05 1
4
04 1
35
0.3 1
3
0.2 1 25 |
0.1 1 2
Q
0 ; T T T L 15 T T T T T T T T T
0 0.1 0.2 0.3 0.4 05 0.6 0O 005 01 015 02 025 03 03 04 045

Fig. 3. Dependence of function 12(0) (Q) on angular ve- Fig.4. Dependence of equatorial &SO)(Q) and polar

locity €2. Dashed-dot curve corresponds to small veloc- 5120) () radii on angular velocity © (the dashed-dot
ity at small value of eccentricity, dashed curve corre- curve corresponds to small velocity).

sponds to small velocity at large values of the eccen-
tricity. IS (Qmax) = 0.27698.
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What is the polytrope surface for n = 07?

As can be seen from above, in the approximation Iy = 0 at [ > 2 the surface of polytrope n = 0 is
the surface of rotational ellipsoid and is determined by expression (40). In Section 5 of this work it is
shown, that the polytrope surface n = 1 deviates from the surface of rotational ellipsoid and the value
of this deviation increases with increasing calculation accuracy. Due to the fact that in equation
242
1+%<1—P2 >—|——/Q££ (48)
which determines the polytrope surface n = 0, in-
) tegration over vector &' is performed within this
A surface, then the equation (48) is nonlinear inte-
. gral equation. as was shown in Fig.5. And this
A S equation can have solution, which is different from
h expression (40). To clarify this question, we ap-
plied iterative method of finding of equation so-
) lution (48), in which zero approximation for the
\ surface &(t) is different from (40). For this pur-
\'"-. pose we used expansions of gravitational potential
v in equation (48) for the Legendre polynomials in

6 ; regions 1 (0 < € < &), 2 (§ < € < &) and
> 3 (& < &), where , is the minimal distance from
& T & the origin to the surface, &, is the maximal, Solid

Fig. 5. Space regions in which gravitational potential ~ Curve represents the polytrope surface § = &o(t').
has different representation. Solid curve shows the In the region 1 the potential ®4(&,6) — ®0(0,0)
meridional section of the polytrope surface, which is  determined by formulas (23). In the region 3 we

in the region 2. have standard multipole expansion of potential of
external gravitational body,

1
o / Q&€ dg = — / &)+ o ]fé e /0 Py(¥)[Go®)*at’. (49)

l>0

In the region 2 the potential is superposition of expressions (23) and (48) and written in the form

P 1
(5 9) (I)O O 0 = __/ fo dt +Z 2[ +2:l)) §214_1/ le(t,)(fo(t,))2l+3dt/

= (
¢ 2 / o(t") Py(t)€? Py(t) /
- [ {5 renomom (22) R ET sy = KA
¢ Py (t) Py (t') Py (t) Py (t')\ ./
+§2/0{; 20+ 3 +§ 20 -1) }dt'

At the pole point (at ¢t = 1) expression (50) continuously turns into expression (23), and in the vicinity
of equator (¢t = 0) it turns into (49). Expression (50) determines the potential on sphere of radius £
both inside the polytrope and outside it in the region 2. Each sphere of radius £ crosses the polytrope
surface in the circle of radius (1 — #2)Y/2¢(t). Putting in expression (50) & = &(t), we obtain the value
of gravitational potential on the sphere surface at a point with coordinates 6, £y(6), or at points on the
polytrope surface with coordinates ¢, £y(t).

Substituting expression (50) in equation (48) we obtained equation, the root of which determines
the meridional section of the polytrope surface £y(t) at fixed 2. We solve this equation by the iterative
method. In zero approximation only taken into account those terms of equation (48), in which appear
Py(t) and Py(t'). Found in this way the root &(t) used for the next accounting terms, in which appear
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the Legendre polynomials of higher order. In Fig. 6 is shown the solution &y(t) at Q = 0.45 (curve 1),
as well as solutions, which correspond to accounting in the first order of perturbation theory of the
terms with Py(t) (curve 2), Ps(t) (curve 3) and Ps(t) (curve 4). As was shown in Figure, there is a very
good convergence on influence of the multipole terms of equation (48). To estimate the convergence,
we use second term of equality (50)

Py (
“)‘Z;@zféw [ Pt et at G

[1]

2.5 4

2 4
2 .

1.5 A
15 A

1 4
l 4

1\\2\3 4
0.5 A 05 |
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4

Fig. 6. The meridional section of the polytrope surface Fig.7. The meridional section of the polytrope sur-

at Q = 0.45. Curve 1 corresponds to accounting the face at different values of angular velocity Q2. Curve 1

terms with P5(t), curve 2: Pa(t) and Py(t), curve 3: corresponds to Q = 0.1, curve 2: Q = 0.2, curve 3:
Py (t)-Ps(t), curve 4: Py(t)—Pg(t). Q2 =0.3, curve 4: 2 =0.45.

In the vicinity of equator, where t is a small value

e2 —1-3/2
(~2 % / P2l(t/)[f£0)]2l+3{1 = W} t' =

>2

(1]

1P21 [fe ]2H-3 21(1 2)1/2

- Z 20+1 (52)
= g2+ (2l +1)(20 + 3)
Z | Py (0 _2)1/2
(2 + 1 21 +3)

is expansion in powers of eccentricity, and all terms of the sum are positive. The solution, which
corresponds to curve 4 is used for finding of solution in next iterations. The results of such calculation
for several values of angular velocity 0.1 < £ < 0.45 are shown in Fig. 7

In Table2 it is shown the value of polar and  Taple 2. Dependence of polar and equatorial radii with
equatorial radii of polytrope n = 0, calculated index n = 0 on angular velocity €.
b s vl s o o wor 19 o e 0 T G T €0 [ @ TSI ]
the polytrope 7surface at any values 2 which’ 0.1 | 24310 | 2.4777 2.4220 2.4959

. . . o 0.2 | 2.3744 | 2.5708 2.3712 2.5746
calculated by iterative method, is approaching
the surface of rotational ellipsoid, which is de- 0.3 | 2.2744 | 2.7645 2.2733 2.7709
p )

fined by formula (40), with increasing number 0.4 | 2.1130 | 3.1926 | 2.1115 3.2021
of multipole terms in expansion of gravitational 0.45 | 1.9826 | 3.7136 1.9745 3.7587
potential. Therefore, the solution determined by formula (40) is precise and unique.
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5. Polytrope n =1

This model occupies an important place in general theory, because it manages to work out approximate
methods of finding solutions of equation (9) for any n. With the help of substitution

2
T(60) = (@) + 0 {o(e.0) + 5 sno). (53)

where y1(§) = sin £/¢ is the Emden function for n = 1, equation (9) is reduced to equation for function
(&, 0), which do not depend on parameter 2

AE,0) 9lE,0) +plE,0) = — 5”6, (54)

Solution of corresponding homogeneous equation in which variables are separated, can be represented
in the form

Zazljm ) Pa(1), (55)

where

2 S
) =YL (—%) (lat+1 4 25))~ (50
s=0

are the spherical Bessel functions of first kind [24], Py (t) are the Legendre polynomials on ¢t = cos ¥,
Qo) are integration constants.
Particular solution of equation (54) we represent in the form

Ppart g 6 Z b2l SSIHH (57)
Using the equality
A(&,0){£sin 9}2l (2l) {&sin 0}2l 2 (58)
we find the coefficients
by = (=122 n—2 (59)
Therefore,
1
Z 52 Sin2 9 + Sppart (67 6) =1- Jo(f sin 6)7 (60)
where

e’} ' 22 7
nie) =S -1 () @ (61)

=0
is the Bessel function of an integer (zero) order [24]. Thus the solution of equation (9) at n = 1 takes
the form

Yi(€,0) = jo(€) + 97 {1 — Jo(€sin0) + > ag ju(€) P2l(7f)} : (62)

=1
The function Jy(€sin @) has such expansion for the Legendre polynomials [24]

Jo(€[1 1/2 ZD2I Jou(&) Py(t), Doy = (414 1)(21)! 2_21(“)—2' (63)

Because of solution (62) can be ertten also in the form of an ordinary expansion for the orthogonal
functions

371(579)=j0(5)+92{1—30 +Za2lj2l ) Par( )} (64)

where ag; are new integration constants (ag = ag — Dgl). Representations (62) and (64) are quite
equivalent. In fact, at practical calculation it is necessary to restrict accounting the finite number of
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terms (1 < I < ly), therefore, the calculated polytrope characteristics are somewhat different from each
other. Representation (62) can be considered as a result of selected summation of series (64). Note
that the Jy(z) has a very accurate analytical approximations [24], and

1 +1

5/ Jo(2[1 — £2)Y2) dt = jo(2). (65)
-1

Using expression (12) and equating the asymptotics of functions Yy(€,0) and Y;(€,6) at € < 1 (with

accuracy to £2), we find, that

15(Q) = — 5{1+£21(Q)}, (66)

where I5(€2) corresponds to the polytrope with index n = 0 is an ambiguous function of . Therefore,
in the region of small angular velocities and small eccentricities according to expression (45)

ar(0) = 2 { ¥y } (67)
In the region of small angular velocities and eccentricities, which are close to one,
Q%as(Q) — —5(1 — Q% +...). (68)
If we restricted the approximation ag; = 0 at [ > 2 -

in expansion (64), then in mode (67) the poly-
trope surface is the surface of rotational ellipsoid, 3]
which is close to the Emden sphere. Instead, in
mode (68) the polytrope surface is the surface of
strongly compressed rotational ellipsoid, indicat- 2 | 2
ing the formation of disk structure. Boundary
forms of the meridional section of the polytrope
surface with index n = 1 at small angular veloci- 1
ties, which correspond to formulae (67) and (68),

25 1 1

15 4

are shown in Fig. 8. 05

Since Y71(&,6) in form (62) or (64) is the solu- 0 | | | | |
tion of equation (26) at n = 1, then this provides 0 1 2 3 4 5 6
an alternative opportunity to determine integra-  Fig.8. The meridional section of the polytrope sur-

tion constants. Let us show it on the example of face with index n = 1 at fixed value of angular velocity
expansion (64). Substituting it in equation (25), =0.2. Curve 1 02(?rresp0n(.is t(g.ap;z%og()lmatlon (67),
we reduce the last one to the following form CUEve £ approximation '

(1 =92 5o(€) + 9% ag jui(€) Pu(t) = 1 — 0% — Q*{ (¢, 0) — 0(0,0) }
>1
2 2
+4i<1—92> [ &) i) dg + 25 (- Pao) (69)
+ Y au [ Q€€ ul€) Pult) i€’
>1

Integration over vector &' is performed over the volume of polytrope. Therefore,

+ [aeerier e~ [ " o©) {(522 - g’} '

&o (')
F > Pl / Pult / jol€) (€)1 —2de,

l>1

(70)

where &y(t') determines the equation of the polytrope surface. Taking into account the following, the
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Jo(&) satisfies equation (27), and taking into account expression (23), we rewrite equality (69) in such
form

2
> ag ju(€) Pu(t) = —Pa(t) % 1+305) = Y Pu(t) Iy
1>1 1>2 (71)
+) Lo &Pyt +—Za2l/Q€E ) 21 (€") Pau(t') d€'.
>1 1>1
Herewith Iy are determined by formulae (23), and
Q_2 / St c (eI (eNT=20 gt gyt
Ly = — P2l(t ) Jo(&)(&) 7 dg'dt’. (72)
-1 ™

As noted above, in approximation (40) the coefficients Iy; = 0 at [ > 2. However Lo and in this
approximation are nonzero, although in our previous publications [14-16] they were not taken into
account, as well as Iy;.

Calculation of the last term on the right side of equality (71) are carried out by expansion of kernel
Q(&,¢) for the Legendre polynomials,

3
= [ Q€€ i€ Put)de = Paloar + 17 (€ (e e

0
+
+ 11321(1t) ¢ /

-1

1 o)
P22l(t’)dt’/5 jzz(i/) (5/)1_2ld§’ (73)
+1 Eo(t')
+35 Z Po (t §2m 1 —6my) / X dt/PQl(t/) Pgm(t/)/ j2l(§/)(§/)1_2m de’,

s

where d,,; is the Kronecker symbol, and §y(t') determines the surface equation. Integration with
respect to the variable ¢’ in the first two terms of right side of equality (73) is performed in analytical
form,

3
— / ()22 () dE' = € fon (6):
0 (74)

o
/5 (&) (€)' 72de" = =67 jar1(60) + € ja1(9),
where & = £o(t'). Taking into account relation

Jou (&) = [4l + 17 ¢ {1 (&) + jau—1(€) }, (75)

we see, that the sum of first two terms of right side of equality (73) can be rewritten in the form

1
Po(t)jar () — Py(t) €% {/0 Py €72 jau—1(&o(t)) dt/} : (76)

As a result, the terms of equation (71), in which jg;(§) appear explicitly, are mutually compensated
and remain only the terms of type £2 Py (t), €27 P, (t).

Comparing the coefficients at the same products €% Py (t) in equation, we obtain the system of
linear inhomogeneous algebraic equations for integration constants ao;

1
a25%2 + asS2.4 + ... + agyS2.21, = 5 (1 +313) + Lo,

2542 +asSaa + ...+ agySaoy = La — Iy; (77)

a2591y2 + a4S91.4 + - .. + a21,52 210 = Loy, — Tog,-
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Matrix elements Sg; 27, Som 21 are determined by expressions

1
Sot01 = / P (t) €7 o1 (&) dt;
' (78)

1 o
Som,21 = —/0 Pom (t) Py (1) dt/ (€)' (€) de.

After integration with respect to the variable £ non-diagonal elements are also reduced to single
integrals

1
So4 = /0 Po(t) Pa(t) €57 {360) + 265 L (60) el
(79)
1
S = /0 Po(t) Ps(t) & {5 (&0) + 4€5 " a (o) + 865 25 (&o) }at.

At small values of angular velocity in zero approximation in expressions (78), (79) it is enough to
replace &o(t) on dimensionless Emden radius with £ = 7, resulting

Sar01 = 5;?7)21 =W+ 1) o1 (&);

© (80)
521727” = 521727” =0 at | 75 m.
In such approximation Iyy = Loy =0at [ > 1,
5
ago) =72, agl]) =0 at [>2 (81)

6

which coincides with the result of work [8]. In this work the approximate solution of equilibrium
equation is presented in the form

VIO (€,0) = y1(€) + 2 {1o(€) + az Pa(t) ¥2(€)}, (82)

and integration constant as found by the Milne method [7] from condition of continuity of the gravita-
tional potential on the Emden surface £ = £;(1) = m. At the same time functions 1y () and 12(&) found
by numerical integration of the corresponding linear differential equations in the region 0 < & < &1(1).
Equation of the polytrope surface found from condition Y;°%(¢,8) = 0, which at y; (&) = 0 takes the
form

(dy1/d€)e=¢, (0 — &) + Q3 {tho(€1) + az o (1) Pa(t)} = 0. (83)
According to formula (63) 1o(&1) =1 — jo(&1) = 1, ¥2(&1) = ja(&1) = 3/72, therefore [8]

ot~ {1+02 1= 3 n) ). (s4)

In the work [15] we solved the system of equations (77) by method of numerical iterations at
lo = 3. Herewith integration over the polytrope volume performed within the rotational ellipsoid (see
form. (40)) with some eccentricity and equatorial radius, which were found self-consistently. In zero
iteration constants ag; chosen in the form (81). In the frame of i-th iteration

3
Y{(€,6) = jo(€) + {1 —jo(§) + Y al) Pu(t) j2l(§)} , (85)
=1
equatorial §£i)(Q) and polar 51(,i)(§2) radii are determined numerically from condition Yl(i) (&,0) =0, and
eccentricity — from condition e;(2) = {1 — | S)(Q)/Sel)(Q)F}Uz. Coefficients of matrix Sé;?zl, Sé;?2m
are determined by formulae (78) at §((f) (t) = fei)(Q){l + t2e2(Q) [1 — e2(Q)] 71} and used for next
iteration. Found in this way constants ag(Q2) for some value 2y are used as zero approximation for
Qg = Q1 + AQ. Herewith the coefficients Lo; in equations (77) were neglected, and Iy; = 0 at [ > 2 due
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to the approximation of the rotational ellipsoid model. The results of calculations for dependencies of
equatorial and polar radii, eccentricity, mass and moment of inertia of polytrope on angular velocity
were shown in Table3. Note, that the used algorithm is applicable to the description of typically
ellipsoidal configurations, for which are typical not very large eccentricities. In Table was shown,
that the maximal value of angular velocity Q,.x(1) approximately equals to 0.246. . ., and eccentricity
varies within 0 < e < 0.7868.... Rotation leads to the relative increasing equatorial radius, that
does not exceed 41%, and the relative decreasing of polar radius does not exceed 14.3%. Increasing of
total mass due to rotation does not exceed 26%, but moment of inertia relative to the axis of rotation
increase almost in 2 times. As was shown in Table, taking into account terms ag; Py (t) jor(§) at | > 2 is
insignificant in the region 0 < © < 1/3Qax (1), which determines the scope of the results of works |7,8|
and other. Also note, that expansion (64) is alternating, which testifies to its convergence, even in
the region 2/3 < Q/Qmax < 1 coefficients as(2), a4($2), ag(2) are commensurate with each other for
modulo.

Table 3. Dependence of the model characteristics with index n = 1 on angular velocity according to represen-
tation (64) in approximation ag; = 0 at { > 4 and Lo =0 for [ > 1.

L 2 [ e(@ [ &) [ &) | a(@® [ a(®) | as(§2) [ n(n.9) [ (0,9 |
0.01000 | 0.02739 | 3.14112 | 3.14230 | —8.22784 | 0.00610775 | —8.02713-10~° | 1.00023 | 1.00062
0.02000 | 0.05478 | 3.13971 | 3.14443 | —8.23739 0.02449 —0.000128907 | 1.00092 | 1.00249
0.03000 | 0.08219 | 3.13734 | 3.14799 | —8.25338 0.055325 —0.000656943 | 1.00207 | 1.00563
0.04000 | 0.10961 | 3.13402 | 3.15302 | —8.27594 | 0.0989151 —0.00209575 1.00369 | 1.01006
0.05000 | 0.13706 | 3.12973 | 3.15955 | —8.30523 0.155695 —0.0051788 1.00580 | 1.01583
0.06000 | 0.16455 | 3.12447 | 3.16765 | —8.34151 0.226242 —0.0108998 1.00839 | 1.02298
0.07000 | 0.19208 | 3.11820 | 3.17737 | —8.38505 0.311294 —0.020555 1.01150 | 1.03158
0.08000 | 0.21967 | 3.11092 | 3.18880 | —8.43625 0.411773 —0.0358001 1.01513 | 1.04172
0.09000 | 0.24733 | 3.10259 | 3.20205 | —8.49557 0.52881 —0.0587258 1.01933 | 1.05351
0.10000 | 0.27507 | 3.09318 | 3.21725 | —8.56357 0.663789 —0.0919578 1.02410 | 1.06707
0.11000 | 0.30291 | 3.08266 | 3.23456 | —8.64098 0.818398 —0.13879 1.02951 | 1.08256
0.12000 | 0.33087 | 3.07097 | 3.25416 | —8.72865 0.9947 —0.203359 1.03557 | 1.10016
0.13000 | 0.35900 | 3.05807 | 3.27632 | —8.82768 1.19523 —0.290887 1.04237 | 1.12011
0.14000 | 0.38731 | 3.04388 | 3.30131 | —8.93941 1.42314 —0.408009 1.04994 | 1.14270
0.15000 | 0.41586 | 3.02832 | 3.32953 | —9.06557 1.68239 —0.563239 1.05839 | 1.16830
0.16000 | 0.44471 | 3.01127 | 3.36147 | —9.20840 1.97802 —0.767633 1.06782 | 1.19736
0.17000 | 0.47394 | 2.99259 | 3.39779 | —9.37084 2.31667 —1.03579 1.07834 | 1.23047
0.18000 | 0.50367 | 2.97208 | 3.43938 | —9.55694 2.70721 —1.3874 1.09014 | 1.26843
0.19000 | 0.53407 | 2.94946 | 3.48752 | —9.77240 3.16206 —1.84985 1.10343 | 1.31232
0.20000 | 0.56538 | 2.92430 | 3.54414 | —10.02570 3.69946 —2.46274 1.11855 | 1.36371
0.21000 | 0.59802 | 2.89594 | 3.61237 | —10.33050 4.3481 —3.28708 1.13597 | 1.42496
0.22000 | 0.63273 | 2.86321 | 3.69793 | —10.71110 5.15825 —4.42644 1.15648 | 1.50007
0.23000 | 0.67114 | 2.82368 | 3.81334 | —11.21930 6.23501 —6.09077 1.18158 | 1.59696
0.24000 | 0.71852 | 2.77019 | 4.00008 | —12.01930 7.90279 —8.92229 1.21544 | 1.73805
0.24100 | 0.72446 | 2.76320 | 4.02826 | —12.13670 8.14357 —9.35381 1.21980 | 1.75727
0.24200 | 0.73086 | 2.75562 | 4.06018 | —12.26860 8.41224 —9.84267 1.22449 | 1.77830
0.24300 | 0.73793 | 2.74724 | 4.09737 | —12.42040 8.71955 —10.4124 1.22964 | 1.80179
0.24400 | 0.74604 | 2.73767 | 4.14281 | —12.60320 9.0861 —11.1087 1.23546 | 1.82894
0.24500 | 0.75612 | 2.72593 | 4.20403 | —12.84440 9.5632 —12.0491 1.24249 | 1.86270
0.24600 | 0.77450 | 2.70593 | 4.33124 | —13.32470 10.4868 —14.0363 1.25413 | 1.92196
0.24601 | 0.77507 | 2.70536 | 4.33555 | —13.34070 10.5167 —14.1062 1.25445 | 1.92369
0.24602 | 0.77563 | 2.70481 | 4.33977 | —13.35610 10.5455 —14.1737 1.25477 | 1.92537
0.24603 | 0.77626 | 2.70418 | 4.34461 | —13.37360 10.5784 —14.2512 1.25512 | 1.92728
0.24604 | 0.77702 | 2.70344 | 4.35043 | —13.39470 10.6177 —14.3446 1.25554 | 1.92955
0.24605 | 0.77800 | 2.70249 | 4.35808 | —13.42230 10.669 —14.4675 1.25608 | 1.93248
0.24606 | 0.77959 | 2.70100 | 4.37053 | —13.46670 10.7512 —14.6673 1.25693 | 1.93714
0.24607 | 0.78685 | 2.69478 | 4.42985 | —13.66320 11.1084 —15.5733 1.26065 | 1.95773
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Table 4. Dependence of the model characteristics with index n = 1 on angular velocity according to represen-
tation (64) in approximation ag; = 0 and Loy = 0 at [ > 3.

L2 @ [ 6@ [ & | a@® | a® [120m9 [ Q)
0.01000 | 0.02740 | 3.14112 | 3.14230 | —8&.22626 | 0.00305293 | 1.00023 | 1.00062
0.02000 | 0.05477 | 3.13971 | 3.14443 | —8&.23103 0.0122298 1.00092 | 1.00249
0.03000 | 0.08211 | 3.13735 | 3.14798 | —&.23900 0.0275852 1.00207 | 1.00563
0.04000 | 0.10947 | 3.13404 | 3.15299 | —R&.25022 0.0492111 1.00369 | 1.01005
0.05000 | 0.13679 | 3.12979 | 3.15949 | —&.26474 0.0772383 1.0058 | 1.01580
0.06000 | 0.16406 | 3.12459 | 3.16751 | —R&.28265 0.111839 1.00839 | 1.02292
0.07000 | 0.19132 | 3.11842 | 3.17711 —8.30402 0.153229 1.01149 | 1.03147
0.08000 | 0.21851 | 3.11130 | 3.18835 —8.32899 0.201673 1.01513 | 1.04152
0.09000 | 0.24567 | 3.10320 | 3.20131 | —&.35768 0.257487 1.01931 | 1.05317
0.10000 | 0.27276 | 3.09413 | 3.21608 | —&.39027 0.32105 1.02408 | 1.06652
0.11000 | 0.29980 | 3.08407 | 3.23277 | —&.42695 0.392803 1.02945 | 1.08170
0.12000 | 0.32678 | 3.07301 | 3.25152 —8.46795 0.473268 1.03548 | 1.09886
0.13000 | 0.35369 | 3.06094 | 3.27247 | —&.51353 0.563055 1.04221 | 1.11819
0.14000 | 0.38056 | 3.04784 | 3.29583 | —&.56402 0.662877 1.04969 | 1.13989
0.15000 | 0.40737 | 3.03369 | 3.32181 —8.61978 0.773574 1.05798 | 1.16424
0.16000 | 0.43413 | 3.01847 | 3.35069 | —&.68124 0.896136 1.06716 | 1.19153
0.17000 | 0.46085 | 3.00216 | 3.38279 | —R&.74892 1.03173 1.07731 | 1.22215
0.18000 | 0.48754 | 2.98472 | 3.41852 —8.82344 1.18177 1.08855 | 1.25656
0.19000 | 0.51422 | 2.96611 | 3.45838 | —&.90554 1.34793 1.10099 | 1.29532
0.20000 | 0.54093 | 2.94628 | 3.50303 | —R&.99612 1.53227 1.1148 | 1.33915
0.21000 | 0.56770 | 2.92519 | 3.55328 | —9.09629 1.73734 1.13016 | 1.38894
0.22000 | 0.59459 | 2.90275 | 3.61026 | —9.20745 1.96635 1.14732 | 1.44585
0.23000 | 0.62169 | 2.87887 | 3.67547 | —9.33137 2.22345 1.16657 | 1.51142
0.24000 | 0.64911 | 2.85344 | 3.75110 | —9.47041 2.51415 1.18832 | 1.58773
0.25000 | 0.67706 | 2.82630 | 3.84047 | —9.62772 2.84613 1.21311 | 1.67772
0.26000 | 0.70588 | 2.79723 | 3.94905 | —9.80780 3.2307 1.24172 | 1.78576
0.27000 | 0.73624 | 2.76593 | 4.08725 | —10.01740 3.68631 1.27531 | 1.91880
0.28000 | 0.76981 | 2.73197 | 4.28026 | —10.26740 4.24909 1.31586 | 2.08937
0.29000 | 0.81612 | 2.69556 | 4.66457 | —10.56940 5.04888 1.3676 | 2.32692
0.29100 | 0.82627 | 2.69274 | 4.78049 | —10.59160 5.18552 1.37363 | 2.35676
0.29110 | 0.82808 | 2.69267 | 4.80312 | —10.59110 5.20549 1.3742 | 2.35965

In Table4 was shown the results of calculation of the polytrope characteristics with n = 1 as
functions of angular velocity by taking into account coefficients Lo; (see form. (72)) in approximation
asy; = 0 at I > 3. In this approximation the maximal value of angular velocity is approximately
0.291. .., which is very close to the result of work [9], in which the numerical integration of equilibrium
equation was performed. Taking into account of coefficients Lo; significantly changes the polytrope
characteristics at n = 1. Comparison of found integration constants a2(2) and a4(2) indicate better
convergence of expansion (64) than in approximation, that do not take into account coefficients Lo;.
The constant as(€2) for modulo and a4(2) significantly decreased. In general, in both variants of
calculation the dependence of integration constants on angular velocity is significant, as can be seen
in Tables 3 and 4. Taking into account of coefficients Lo; practically does not affect the value of polar
radius, but increase equatorial radius, as well as mass (approximately on 9%) and moment of inertia
(on 20%).

Results which are shown in Table 4, concerned mode (67), which correspond to ellipsoidal structures.
The distribution of dimensionless density at maximal value of angular velocity €,,.x for several values
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of angle 6 is shown in Fig. 9. Built according to Table 4 the meridional section of the polytrope surface
at Q@ = Qax is shown in Fig. 11 (solid curve 2). Curve 1 corresponds to the surface of corresponding
auxiliary rotational ellipsoid (with the same polar and equatorial radii, as the curve 2).

R
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0 0.5 1 15 2 25 3 35 4 45 5

Fig.9. The distribution of dimensionless density at
Q = Qax for several values of angle 6 according to for-
mula (64) in approximation ag; = 0 at [ > 3. Curve 1
corresponds to # = 0°, curve 2: 6 = 45°, curve 3:

0 = 90°.
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Fig.11. The meridional section of the polytrope sur-
face with index n = 1 at Q = Qpax. Curve 1 is auxil-
iary and corresponds to formula (40), which determines
the surface of ideal rotational ellipsoid, which has two
common points with the polytrope surface. Curve 2 is
built according to formula (64). Dashed curve is the
polytrope section without rotation.
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Fig. 10. Dependence of equatorial radius &.(2) on an-
gular velocity ) for polytrope with n = 1 in different
approximations. Curve 1 is built according to results of
works [7,8], curve 2 corresponds to our results. Curve 3

is built according to results of work [13].
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Fig.12. The meridional section of the polytropes
surface with index n = 1 taking into account L, at
I, = 0. Curve 1 corresponds to formula (40), which
determines the surface of rotational ideal ellipsoid at
Q1 = 0.2. Curve 2: the same, but angular velocity
0y = 0.2911. Curve 3 is built according to formula (64)
at Qo = 0.2911. Crosses correspond to formula (64) at

Q; =0.2.

In Fig. 10 is shown dependence of equatorial radius on angular velocity in different approximations.

Curve 1 corresponds to the Milne-Chandrasekhar approximation, curve 2 is built according to Table 4,
curve 3 are results of work [13], which differs from result [8] by numerical calculation of the constant
as (a9 (2) =0 at [ > 2). Curve 2 practically coincides with the results of work [9], so we do not cite it.

More accurate calculation of constants az; near Qy,,x(1)

Above the polytrope characteristics n = 1 obtained in the assumption, that its surface is the surface of
rotational ellipsoid, parameters of which &.(£2) and e(€2) calculated by self-consistent iterative method.
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As is shown in Fig. 12, such assumption is valid in large region angular velocity change, but near
the maximal Q,,x(1) it disturbed, and the polytrope surface deviates from the ellipsoid surface. It
follows, that in this region we should continue the iterative process, using as a starting approximation
the expression £y(¢|€2), which corresponds to the curve 3,

&o(tl) = €7 (419) — f1(119), (86)

where &(]0) (t|€2) is determined by formula (40), and f1(¢|Q2) is deviations from the ellipsoid surface.
According to definition (23)

— €2

1 2 1-1/2
Iy = I (Q) = [¢O ()]~ /0 Pgl(t)fl(t|§2){1+ - t2} dt+ ... (87)

is nonzero for all [ > 2,

1
I, = IQ(Q) = /0 Pg(t) ln{l + - i2e2 t2} dt
(88)

1/2
— 210 ()] /01P2(t)f1(t|9){1+ ¢ t2} dt+ ...

1—e2
At calculation of matrix elements Sy 97, o2 in formulae (78), (79) we have to replace {y — &o(t|€2).
The similar replacement should be performed in formula (72) at calculation L.

The results of calcula-  Table 5. Dependence of the model characteristics with index n = 1 on angular
tion of constants ag(£2),  velocity according to representation (64) in approximation ag; = 0, Lo = 0 and
as well as the associ- Iyy=0at!>3.
ated ellipse, which lim- 9 ] &0 | &) | a(@ | a(®@) [ n(n,Q) | (n,Q) |

its the top of the poly- F3505650075 94687 | 3.50320 | —8.98933 | 1.59343 | 1.11479 | 1.33906
trope surface and has 2 755560575 90573 [ 3.61084 | —9.19960 | 2.06831 | 1.1473 | 1.44578
COHfImO“ p‘;;nts Zimh Qlts 0.24000 | 2.85493 | 3.75306 | —9.46517 | 2.68564 | 1.18836 | 1.58303
lef; Ziivg%(in);;ble%( 1)3 0.26000 | 2.79905 | 3.95638 | —9.81871 | 3.53297 | 1.24214 | 1.78836

' 0.28000 | 2.73203 | 4.32440 | —10.35970 | 4.88079 | 1.3191 | 2.10863

Fig. 13 is shown depen-
ig. 13 is shown depen 0.28284 | 2.72087 | 4.42030 | —10.47160 | 5.17286 | 1.33351 | 2.17436
dence of function f(¢|€2)

on cosine of polar angle t at Q = 0.2828... (22 = 0.08). This function (at Ly # 0, I; # 0) can be
represented by such Padé approximant

f1 (t|Q) = {a(] + a2t2 + a4t4 + aﬁtﬁ}{bo + b2t2 + b4t4 + b6t6}_1, (89)
where
ag = 6.44749 - 10_6, as = 0.681324, as = 6.08271, ag = —6.76694,
by = 0.142974, by = 3.62191, by = 17.6817, b = 18.1559.

As was shown in Fig. 13, the deviation value of the polytrope surface from associated ellipsoid is the
higher, the more accurate calculated integration constants ag () are.

6. Conclusions

The solutions of differential equilibrium equation for the polytrope model with axial rotation usu-
ally are represented in the form of expansions for the Legendre polynomials, then the prob-
lem of calculation of integration constants arises (1 constant in works [7,8], ..., 4 constants in
work [11]). For this purpose traditionally one has used the condition of continuity of gravitational
potential on the stellar surface. At this, the gravitational potential outside the star is written
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0.2 in the form
f1(t1Q)

0.18 - 2
0.16 -
0.14 - 1

0.12

> Bu& ' Py(t), (90)

=0

but calculation of coefficients By, are not ex-
01 1 pected. Although equation (25) is relation be-

008 - tween the solution Y,,(§, ) and created by it grav-
0.06 - itational potential in each point (and on its sur-
0.04 - face), this relation is self-consistent. Our ap-
0.02 1 proach yields an opportunity for detailed consider-
0 ‘ ‘ ‘ ‘ t ation of density distribution also in the vicinity of

0 02 04 0.6 08 1 the surface at calculation of integration constants.

Fig. 13. Dependence of function f;(¢|€2) on cosine of
polar angle ¢t at €2 = 0.2828. .. in different approxima-
tions. Curve 1 corresponds to approximation Ls # 0
at I, = 0 (according to Table4), curve 2: approxima-
tion Lyg # 0 at I # 0 (according to Table5).

In the case of models n = 0 and n = 1, the
equilibrium equation is linear, which allows us to
combine analytical calculations with numerical.
Model n = 0 corresponds to the object with con-
stant density and the problem reduces to study

0?1.2 ) 5 the p?)lytrope surface, which determines integral

equation (25). We have approved that the poly-
0.16 1 trope surface with n = 0 is the surface of rota-
014 1 ! tional ellipsoid. Obtained by us the values of po-
0.12 1 . lar and equatorial radii as functions of angular

0.1 | velocity are very close to results of work [13].

0.08 | 3 For the polytrope n = 1 we obtained the sys-
0.06 1 tem of linear algebraic inhomogeneous equations
0.04 1 for calculation of integration constants with con-
0.02 - sistent consideration of multicomponent terms,

0 ‘ ‘ ‘ ‘ t which are proportional to Py(t) at [ > 1 as in
0 02 04 0.6 08 1 expression (64), and in equations (77). Numeri-
Fig. 14. Dependence of function f1(¢[(2) on cosine of  cal calculation were performed in approximation
pola'r angle t at € = 0.2828... in different approxi- Py (t) = 0 for I > 3. The polytrope characteristics
mations. Curves 1, 21 arefour f{esilllts’ curves 3, d are .o functions of angular velocity 2 were calculated.
results of work [11]. It was shown that the polytrope surface at arbi-
trary € can be represented as the function of the surface of the associated rotational ellipsoid (which
has common with the polytrope surface the polar and equatorial radii) and some correction fi(¢|€2),
which depends on the cosine of polar angle ¢ and angular velocity 2. In works [8,9,11,12] are given only
dependences of polar and equatorial radii calculated in different approximations, and the polytrope
is considered as an inhomogeneous rotational ellipsoid. In works [19,20] are performed calculation of
star « Eri in the frame of polytropic model n = 1 numerically at the value of angular velocity, which
is close to observed. As can be seen in the figures given there, the polytrope surface in the vicinity of
the equator has behavior, which is similar to obtained by us at large values 2.

In this regard, it is
worth noting work [11].
Following the work [10],
the solution of the me-

Table 6. Dependence of polar and equatorial radii of polytrope n = 1 on square
angular velocity Q? in different approximations.

[ 92 ] &) [ &) [&@) 9] &) [9] [ &) [11] [ &(@) [11] |

0.02 | 3.04597 | 3.29936 | 3.04590 | 3.29940 | 3.04589 3.29834 chanical equilibrium equa.
0.04 | 2.94687 | 3.50320 | 2.94610 | 3.50320 | 2.94615 3.49750 Jameated med

tion in work [11] is rep-
0.06 | 2.84175 | 3.79676 | 2.83970 | 3.79480 | 2.83952 3.77439 .

resented in form (64),
0.08 | 2.72087 | 4.42030 | 2.71940 | 4.37970 2.71751 4.27332 . .

and in practical calcula-

tions taking into account terms with accuracy to Pgs(t) including. Although for calculation of integration
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constants in this work the author used traditional idea about continuity of gravitational potential on
the polytrope surface, author also calculated constants Bg; in expansion (90), considering it suitable
for the polytrope surface, although it is known that such expansion coincides absolutely only outside
sphere with &, (see [25]). Author calculated values &,(Q2), £.(£2) for the same values of squared dimen-
sionless angular velocity, as in work [9]: Q2 = 0.02, 0.04, 0.06, 0.08. Obtained results are very close to
ones of work [9]: at Q2 = 0.08 the deviation is 2.43% (see Table6). However, the author of work [11]
did not study the surface shape n = 1. Using obtained by him values of integration constants, we
calculated function fi(|Q) of polytrope n = 1 at Q = 0.2828... (22 = 0.08), as is shown in Fig. 14.
Here, the curve 3 is built in approximation ag; = 0 for [ > 3, and the curve 4 is built in approximation
ag; = 0 for [ > 5. Although the deviation of the polytrope surface flw (t|©2) on the surface of associated
ellipsoid according to work [11] is slightly less than in our calculations, we observe similar regularity:
function f{V(¢|2) is the higher, the more accurate the solution of the equilibrium equation is. The
maximal value fi%(Q) = 0.5a,02.

Our analysis allows us to say, that the polytrope of rotational ellipsoid n = 1 deviates from the
surface of the associated ellipsoid. The reliability of this conclusion is ensured by the use of two dif-
ferent methods of calculation of integration constants, which determine the solution of the equilibrium
equation. Moreover, this explains the deviation of the curves 1, 2 and 3, 4: integration constant a4(€2)
in work [11] at Q2 = 0.08 are almost 2 times less than in Table 5.
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MeTO,D, IHTerpaJlbHuMX pIBHSIHb Yy l'IOfIITpOI'IHII/I Teopll 3lp 3 OCbOBMM

obeptaHHam. |.Monitponu n=0in=1

Baspyx M. B., /Izikoscbkuit 1. B.

JIveiecorutl nayionarvrull yrwisepcumem iment leana Pparxa,
eyn. Kupuaa i Mepodia, 8, 79005, Jlveis, Ykpaina

Pospaxynku xapakTepucTuK 3ip 3 OCbOBHM ODEpPTAHHIM Yy paMKaxX MOJJITPOIHOI MOJesi
IPYHTYIOTHCS Ha PO3B’s13Ky DIBHSHHS PIBHOBAru — IuepeHIiaJbHOrO PIBHSIHHS JIPYTOro
MIOPSAJIKY B YACTUHHUX MOXimHUX. Pi3Hi BapiaHTn HAOIMKEHOTO BU3HAYEHHS CTAJIUX 1HTE-
rpyBaHHS 3aCHOBaHI Ha TPAJIUIIIHOMY B TeOpil 30pSHOI MOBEpXHI HAOIMKEHHI, & came:
YMOBIi HeIlepepBHOCTI IpaBiTAIifTHOrO OTEHITIaIy B OKOJIi moBepxHi. HaMu 3ampononoBaHo
HOBHH MiXif, B SIKOMY OJIHOYACHO BUKOPUCTOBYIOTHCS JAudepeHItiaabHa Ta iHTerpajbHa
dopmu piBHaHHS piBHOBaru. Il 3aMKHYTa cuCTEMa JO3BOJISIE CAMOY3TO/I2KEHO BUSHAYUTH
craJji iHTerpyBaHHsi, (GOpMY HOBEPXHI HOJIITPOIN Ta PO3IMOALIT PEIOBUHE 3a 00’€MOM 30Di.
Ha npuknazi nomitporin n = 0 i » = 1 BCTaHOBJIEHO iCHYBaHHS JIBOX PEXKUMIB 0O€pTaHHS
(3 MaJIIMU Ta BEJUKUMU €KCIEHTPUCUTETaMu). Y BUNAAKY 7 = 0 JO0BEJEHO, IO MOBEPXHsI
TIOJIITPOIIH € TTOBEPXHEIO OJTHOPIIHOTO ejtincoina obepTanms. PozpaxoBano xapakKTepUCTHKI
nosiiTpont n = 1 y pizHUX HAOIMKEHHAX AK (PYHKII KyTOBOI mBHUAKOCTI. Briepire po3pa-
XOBAHO BIJIXMJIEHHSI TIOBEPXHI MOJITPONU MPU 33]aHOMY 3HAUEHHI KYTOBOI IMIBUIKOCTI Bif
MTOBEPXHI aCOIIIOBAHOTO eJIicoina 0bepTaHHs.

Knto4oBi cnosa: 3opi-noaimponu, meodnopioni eaincoiou, ocvbose obepmaris, PIieHAHHA
METAHIWHOT PIBHOBA2U, CNADIALHICTIL 31D.
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