
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 6, Num. 2, 2021
SENSORS IN CYBER-PHYSICAL SYSTEMS BASED ON ANDROID

OPERATING SYSTEM
Valerii Bielik1, Yurii Morozov1, Mykola Morozov2

1Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
2Technical University of Munich, Boltzmannstr. 3, Garching b. Munich, 85748, Germany

Authors’ e-mail: valerii.bielik.mki.2020@lpnu.ua, yurii.v.morozov@lpnu.ua
https://doi.org/10.23939/acps2021.__.___
Submitted on 11.10.2021
© Bielik V., Morozov Yu., Morozov M., 2021

Abstract: The cyber-physical systems take the major part of
any system that help users to interact with environment
processes.

Cyber-physical systems are intelligent systems, which
include networks of physical and computing components that
interact on internal level. The basis for the development of
various models of cyber-physical systems are the using of
measuring instruments and their software. Measuring
instruments are necessary to control technological parameters
processes and the environment.

The purpose was to investigate the features of interaction
with sensors, to identify the most useful of them in use, to
classify types and describe their capabilities for future use in
developing of cyber-physical systems.

The relevance of the choice of this topic is that mobile and
cyber-physical systems occupy a significant place in modern
life. The systems that help the user to simplify daily tasks are
of maximum benefit. These tasks can be attributed to the tasks
of the environment as they exist and are performed in it.
Especially cyber-physical systems that interact with the
environment have the ability to solve such problems. Sensors
act as a tool of interaction, the so-called bridge between the
environment and the program. Sensors collect and provide
information for further processing and use in solving
problems.

Index Terms: Android, camera, geolocation, image
processing, Kotlin, MVVM, sensors.

INTRODUCTION

Cyber-physical systems are intelligent systems and the
goal of such intelligent systems is in use of sensors data that
signal about the environment parameters change as quickly
and accurately as possible, special algorithms that involve
the higher-level automation to perform necessary actions.
Usually cyber-physical systems cover all known aspects of
operation with information and measuring systems,
complicated by the interaction of their individual
components through networks. They unite informational
technologies: from getting data from sensors with their next
processing using built-in computing power or using cloud
technologies, to traditional operational control and
management technologies. In other words, a feature of the
cyber-physical systems is the combination of informational

and operational technologies with some imposed time and
space constraints [1].

The issue of introducing "intellectual" programs in
various fields are so relevant that NIST has developed a
cyber-physical systems classification that covers direct and
additional intellectual production, smart structures, smart
transport, smart energy, intellectual safety of life and smart
health protection. To ensure the implementation of
"intelligent" programs, it is necessary to create an
application system model and have the appropriate sensors
and software. In addition, it is necessary to achieve
compatibility between dissimilar components and systems,
so we need developments done in the field of metrology
(calibration, quality assessment of complex products,
model-based diagnostics), in the field of development of
basic and intermediate software. The software creates
adequate predicted behavior of the system - the system's
response for changes of different parameters from sensors.

There are four types of cyber-physical systems:
Cyber-physical system "Smart Production" -

multifunctional smart machines of small size,
adaptive to user needs (implemented by
assembling the required functionality on one
machine). Having received information about
changed requirements, cyber-physical system itself
adjusts the technological process. An example of
smart production is the production of metal using
exact weights.

Cyber-physical system "Smart Buildings" – intelligent
buildings (with minimal or zero resources
consumption) that require constant monitoring.
They must be connected to networks of intelligent
sensors and monitored by technics of cyber-
physical system. The main requirement in such
systems is to achieve zero energy consumption.

Intermediate software is a prerequisite for effective
work of cyber-physical system. It provides services
for software applications, except those, that are
available in the operating system, and connects
software components and enterprise applications.

Valerii Bielik, Yurii Morozov 2

Smart measuring instruments are an important
prerequisite for creating a cyber-physical system
since they are the main information provided
components and measuring subsystems. Smart
measuring instruments are divided into the
following subclasses: smart sensors, smart
converters, their networks, which can be combined
in modern wireless sensor networks.

The described cyber-physical system in this article is
related to the third type. The intermediate software includes
web servers, application servers, content management
systems and similar tools that support application
development and delivery and enable communication and
data management in distributed applications. This is
especially related to informational technology based on:
advanced language markup, on the protocol of structured
messaging in distributed computing systems when
accessing objects (SOAP), on web services, on a modular
approach (SOA) for software development that based on the
use of distributed, weak related replacement components,
equipped with standardized interfaces for interaction on
standardized protocols, on infrastructure Web 2.0 and the
protocol for easy access to directories (LDAP) [2].

Services that can be considered as intermediate
programs include the integration of corporate applications,
data integration focused on middleware messages, object
request brokers (ORBs) and corporate service buses (ESBs).

Operational system Android can be another example
of intermediate software. The Android operating system
uses the Linux kernel and provides services that developers
use for implementing into their programs. In addition,
Android provides a level of intermediate software,
including libraries, which provide services such as data
storage, screen display, multimedia and browser.

In the article also were described sensors features of
Android devices for software developers [3], [4]. Into
account were taken motion, position and environmental
sensors [5], [6]. Best practice for GPS using was described
and analyzed with provided diagrams [7], [8]. General
camera features were described. In addition, difference
between old and new camera application programming
interfaces were presented and highlighted the pros of the
new one [9], [10].

GOAL

The main goal of the article is to investigate the
features of Android device sensors, to describe their power
in Android program developing, to show best ways of their
implementation for developers. Also the additional goal is
to develop a cyber-physical system, which will use camera,
GPS and sensors of the Android mobile device to identify
city objects. The system should be able to identify the
object in 2 seconds with the recognition percentage equal
about 90%.

ANALYSIS OF RECENT RESEARCH AND
PUBLICATIONS

Android device sensors are virtual devices that provide
data from a set of physical sensors: accelerometers,
gyroscopes, magnetometers, barometers, humidity,
pressure, light, proximity and heart rate sensors. The
camera, fingerprint sensor, microphone and touch screen are
not included in the above list of physical devices as they
have their own reporting mechanism. In addition, the
sensors provide data with lower bandwidth. If to take into
account the accelerometer, then it has a standard bandwidth
of 100 Hz x 3 channels. For the camera, the bandwidth will
be much higher - 25 Hz x 8 MP x 3 channels [3].

Android does not determine how different physical
sensors are connecting to the system on a chip (SoC). Often,
sensor chips are connected to the SoC via a touch hub,
which allows some monitoring and data processing at low
power. An inter-integrated circuit (I2C) or a serial
peripheral interface (SPI) is used as the transport
mechanism. To reduce power consumption, some
architectures are hierarchical, with minimal processing
performed in a special integrated circuit (ASIC - similar to
detecting motion on the accelerometer chip), and the rest is
done in a microcontroller (for example, detecting steps in
the sensor hub).

Also important is the fact that each Android sensor has
a "type" that indicates how the sensor behaves and what
data it provides. The official types of Android sensors are
defined in a special file that is publicly available. Sensors
can be divided into two groups: formal and informal. Only
officially approved sensors will be used to develop this
system. The types of these sensors are documented in the
Android SDK, a framework that allows you to develop
applications for Android-based devices. Also, the behavior
of sensors of this type is tested in a set of Android
compatibility tests (CTS). In addition, official sensors will
be available on Android-based mobile devices.

MOTION SENSORS IN ANDROID DEVICES

Motion sensors are needed to monitor the position of
the device in space. The possible architecture of motion
sensors depends on the type of sensor:

Sensors of gravity, linear acceleration, rotation vector,
motion, step counter and step tracking sensors are
either hardware or software.

Accelerometer and gyroscope sensors always have a
hardware basis.

Most Android devices have an accelerometer, and now
many of them include a gyroscope. The availability of
software-based sensors is more diverse, as they often rely
on one or more hardware sensors to obtain their data.
Depending on the device, these software sensors can receive
their data either from the accelerometer and magnetometer,
or from the gyroscope.

Motion sensors are useful for monitoring the
movement of the device, such as tilt, shake, rotation or

Sensors Using in Cyber-Physical System Based on Android Operating System 3

swing. The motion is usually a reflection of the user's direct
input (for example, the user driving the game or the user
controlling the ball in the game), but it can also be a
reflection of the physical environment in which the device
is located (for example, moving with the user under driving
time). In the first case, the movement relative to the
reference system of the device or the reference system of
the application is tracked; in the second case, the movement
relative to the world frame of reference is tracked.

All motion sensors return multidimensional arrays of
sensor values for each measurement. For example, during a
single sensor event, the accelerometer returns acceleration
data for three coordinate axes, and the gyroscope returns
speed data for three coordinate axes. These data values are
returned in an array of floating-point values along with
some other parameters.

Rotation vector sensors and gravity sensor are the
most commonly used sensors for motion detection and
control. For example, a vector rotation sensor is ideal if you
are developing a game, an augmented reality application, a
two-dimensional or three-dimensional compass, or an
application to stabilize the camera. In most cases, the use of
these sensors is a better choice than the use of an
accelerometer and a geomagnetic field sensor or an
orientation sensor.

The gravity sensor provides a three-dimensional vector
that indicates the direction and magnitude of gravity.
Typically, this sensor is used to determine the relative
orientation of the device in space. The units are the same as
for the acceleration sensor (m/s2). The coordinate system is
also the same as for the acceleration sensor. When the
device is at rest, the gravity sensor provides data identical to
the data collected by the accelerometer.

The linear acceleration sensor provides a three-
dimensional vector representing the acceleration along each
axis of the device, excluding the action of gravity. This
value is usually used to detect gestures. The value can also
serve as an input signal to the inertial navigation system,
which uses the method of calculating coordinates.

This sensor is usually used when it is necessary to
obtain data on acceleration without the influence of gravity.
For example, you can use this sensor to see how fast the
device is moving. The linear acceleration sensor always has
an offset that needs to be removed. The easiest way to do
this is to incorporate a calibration step into your program.
During calibration, you can ask the user to place the device
on a table and then read the offset for all three axes. It is
then necessary to subtract this offset from the direct
readings of the acceleration sensor to obtain the actual
linear acceleration. The coordinate system of the sensor is
the same as for the acceleration sensor, as well as the unit of
measurement (m/s2).

The rotation vector sensor represents the orientation of
the device as a combination of the angle and the axis at
which the device rotated at an angle θ around the axis (x, y
or z). These three elements of the rotation vector are
expressed as follows: x·sin(θ/2), y·sin(θ/2), z·sin(θ/2).

Where the magnitude of the rotation vector is equal to
sin(θ/2), and the direction of the rotation vector is equal to
the direction of the axis of rotation.

POSITION SENSORS

The Android platform offers two sensors that allow
you to determine the position of the device: a geomagnetic
field sensor and an accelerometer [4]. The Android platform
also provides a sensor that allows you to determine how
close the front of the device is to an object (known as a
proximity sensor). The geomagnetic field sensor and the
proximity sensor have a hardware basis. Most phone and
tablet manufacturers have a geomagnetic field sensor.
Similarly, manufacturers of devices that allow you to make
calls usually include a proximity sensor to determine when
the device is being held close to the user's face (for
example, during a phone call). To determine the orientation
of the device, you can use the readings of the device
accelerometer and geomagnetic field sensor.

The geomagnetic rotation vector sensor is similar to
the rotation vector sensor, but does not use a gyroscope.
The accuracy of this sensor is lower than that of a
conventional vector rotation sensor, but the power
consumption is reduced. It is better to use this sensor only if
you need to collect information about the rotation in the
background without consuming too much battery power.
This sensor is most useful when used in conjunction with
filtering and additional calculations. By calculating the
orientation of the device, it will be possible to track the
position of the device relative to the Earth's reference
system.

To solve this problem, the system must calculate the
orientation angles using the geomagnetic field sensor of the
device in combination with the accelerometer of the device.
Using these two hardware sensors, the system provides data
for the following three orientation angles:

Azimuth (degrees of rotation around the z axis). This is
the angle between the current compass direction of
the device and north. If the upper edge of the
device faces north, the azimuth is 0 degrees; if the
upper edge faces south, the azimuth is 180 degrees.
Similarly, if the upper edge faces east, the azimuth
is 90 degrees, and if the upper edge faces west, the
azimuth is 270 degrees.

Tilt (degrees of rotation around the x-axis). This is the
angle between the plane parallel to the device
screen and the plane parallel to the ground. If you
hold the device parallel to the ground with the
lowest edge closest to the user and tilt the top edge
of the device to the ground, the tilt angle becomes
positive. Tilting in the opposite direction - moving
the upper edge of the device off the ground -
causes the tilt angle to become negative. Value
range from -180 to 180 degrees.

Rotation (degrees of rotation around the y-axis). This is
the angle between the plane perpendicular to the

Valerii Bielik, Yurii Morozov 4

screen of the device and the plane perpendicular to
the ground. If you hold the device parallel to the
ground with the lowest edge closest to the user and
tilt the left edge of the device to the ground, the tilt
angle becomes positive. Tilting in the opposite
direction - moving the right edge of the device to
the ground - causes a negative tilt angle. Values
range from -90 degrees to 90 degrees.

It is also important to note that these angles work with
a different coordinate system than the one used in aviation.

The geomagnetic field sensor allows you to track
changes in the Earth's magnetic field. This sensor provides
initial data on the field strength (in μT) for each of the three
coordinate axes. Normally, you do not need to use this
sensor directly. Instead, you can use a vector rotation sensor
to detect raw rotational motion, or, alternatively, use an
accelerometer and a geomagnetic field sensor together with
the getRotationMatrix() method to obtain a rotation matrix
and a tilt matrix. Then use these matrices with the
getOrientation() and getInclination() methods to obtain
azimuth and geomagnetic data [5].

An uncalibrated magnetometer is similar to a
geomagnetic field sensor, except that no solid iron
calibration is applied to the magnetic field. Factory
calibration and temperature compensation are still applied
to the magnetic field. An uncalibrated magnetometer is
useful for handling poor geomagnetic field sensor ratings.
Uncalibrated sensors give more raw results and may include
some biases, but their measurements contain fewer jumps
from the corrections applied by calibration. Some programs
may prefer these calibrated results because they are
smoother and more reliable.

ENVIRONMENTAL SENSORS

The Android platform offers four sensors that allow to
monitor various properties of the environment. These
sensors can be used to monitor relative humidity, light,
ambient pressure, and ambient temperature near an Android
device. All four environmental sensors are hardware-based
and only available if the device manufacturer has built them
into the device. With the exception of the light sensor,
which most device manufacturers use to monitor screen
brightness, environmental sensors are not always available
on devices. With this in mind, it is especially important to
check at runtime for an environment sensor before
attempting to retrieve data from it [6].

GEOLOCATION

Proper use of location information can be beneficial
for users. For example, if a program helps a user navigate
while walking or driving, or if it tracks the location of
objects, they need to get the location of the device regularly
[7]. In addition to the geographical location (latitude and
longitude), it is possible to provide the user with additional
information, such as landmark (horizontal direction of
movement), height or speed of the device. This information

and more is available in the Location object, which the
application can obtain from the device location provider. In
response, the API periodically provides the program with
the best available location based on existing location
providers, such as WiFi and GPS (Global Positioning
System). The providers, the location permissions that have
been set and the parameters that are set directly in the
location request determine location accuracy [8].

Android devices have several hardware sensors that
developer can use to calculate the location of the device.

The GPS module is a special location module that uses
satellite signals to determine location, so it can
only be used outdoors. It is very accurate, but also
consumes a lot of energy.

WiFi module - developers can use the WiFi-RTT API,
which is available in Android 9 and above, to
measure the distance to the nearest WiFi access
points. Then it is possible to use these distances to
determine the location of the device with an
accuracy of 1-2 meters. It does not consume too
much power as the GPS module does.

Sensors - most modern Android phones are equipped
with sensors that monitor the movement of the
device, and they also fill the gap, which will be
described below.

Let use the diagram to illustrate how these hardware
modules and sensors assess the location of the device.

The x-axis shows the time, and the y-axis shows the
accuracy of the location. In this example, the user is first in
the open air, enters the indoor environment, and then goes
outside again. If only the GPS module is used to estimate
the location, then Fig. 1. shows the diagram we get.

Fig. 1. The scheme of accuracy measurement of a location
by means of the GPS module.

In an outdoor environment, GPS works perfectly
because the device is capable of receiving satellite signals.
But when it comes to the indoor environment, the satellite
signal is lost and the GPS module is unable to provide the
data needed to determine the location.

Fig. 2. shows what will happen if the WiFi module is
used.

Sensors Using in Cyber-Physical System Based on Android Operating System 5

Fig. 2. The scheme of accuracy measurement of a location
by means of the WIFI module.

This is the exact opposite of what was obtained on the
chart only from GPS. In a room where WiFi access points
are available, we get great accuracy for location
determining. When users are outdoors and WiFi module is
used, but where no WiFi access points then no signals are
received, so it is not possible to determine the location in
this case. So the charts show that GPS works great
outdoors, and WiFi works great indoors.

By combining signals from the GPS module and the
WiFi module, it is possible to get a fairly good location
estimate, which covers the scenarios of the user's location
inside and outside.

However, there are two visible gaps in this diagram.
Especially when the device goes from external to internal
environment, or vice versa. GPS and WiFi signals are not
available during these times.

The combination of gyroscope, accelerometer, and
magnetometer signals can help fill in the gaps using a
Bayesian synthesis algorithm. As a result, we obtain the
scheme shown in Fig. 3.

Fig. 3. Diagram of combining the results of location
measurement accuracy using GPS modules, WiFi and

sensors.

Summing up all together:
The GPS module is used to determine the location

outdoors.
The WiFi module is used to determine the location in

the room.

Sensors are used to fill in the gaps between transitions
between the use of different modules.

So we have a good location estimate that covers all
scenarios. But does the system need to use an API to
directly collect data from these sensors? There are
LocationManager and SensorManager to help interact with
the GPS module and other sensors, and there is a WiFi
location API that can help to get WiFi-RTT. But applying
the Bayesian Fusion algorithm to combine these signals is a
challenge.

To do this, there is an API Fused Location Provider,
which is part of the Google Library. It cleverly combines
different signals to calculate the location information your
application needs. It provides a powerful, high-level
structure by automating location provider selection and
power management. It uses FusedLocationProviderApi to
automatically select a base provider based on accuracy,
battery usage, and more. Before requesting a location
update, the system must connect to location services and
send a location request.

If compare the API described above with what
Android sdk offers, then both of these approaches are good
to use when getting location results. But in the official
Android documentation, it is strongly recommended to use
Google location services, rather than the standard Android
sdk API, due to the fact that it automates the choice of
location provider and power management.

Google's location services offer significant advantages
over the Android Framework Location API. This gives
faster results because the results are obtained from a
system-wide service that constantly updates it. There is also
more stability during use and lower battery consumption. It
is also possible to use advanced features such as geozoning.

The only disadvantage is that Google location services
require Google Play services to be installed on the device to
use location provider.

CAMERA

The Android framework includes support for various
cameras and camera features available on devices, allowing
you to take photos and videos of the developers. Android
sdk provides two libraries for interacting with the camera:
Camera and CameraX. The first is outdated, so it is
impractical to use. CameraX, in turn, provides a wider
range of opportunities for developers [9].

The developers use CameraX to interact with the
device's camera using an abstraction called a use case. The
following usage options are currently available:

Preview: Creates a surface for displaying a preview,
such as PreviewView.

Image Analysis: Provides processor buffers for
analysis, such as machine learning.

Image capture: Captures and saves a photo.
Usage scenarios can be combined and activated at the

same time. For example, the app can allow a user to view an
image seen by the camera using a preview option, have an

Valerii Bielik, Yurii Morozov 6

image analysis usage scenario that determines if people are
smiling in the photo, and include a script to use the image to
take pictures when they are.

To work with the library it is necessary to specify the
following:

Preferred use with configuration parameters.
What to do with the source data.
Predict a scenario, such as when to turn on cameras and

when to store data, by linking usage options to
Android lifecycle lifestyles.

You must configure usage options using the set()
methods and complete them with the build() method. Each
usage script object provides a set of APIs for specific uses.
For example, an image capture script provides a call to the
takePicture() method.

Instead of the system placing specific start and stop
method calls in onResume() and onPause(), the program
specifies the life cycle to which the camera should be
connected using cameraProvider.bindToLifecycle(). This
life cycle then notifies CameraX when the camera capture
session needs to be configured, and provides a
corresponding change in the state of the camera according
to the transitions in the life cycle. CameraX tracks the life
cycle to determine when to open the camera, when to create
a shooting session, and when to stop and shut down. Usage
script APIs provide method calls and callbacks to monitor
progress. It is possible to link different usage scenarios to a
single life cycle. If the system needs to support usage
scenarios that cannot be combined, you must do one of the
following:

Group compatible use cases together into more than
one snippet, and then switch between snippets.

Create your own lifecycle component and use it to
manually control the camera lifecycle.

In the cases described above, it is nessesary to make
sure that not all usage scripts are associated with CameraX
using ProcessCameraProvider.unbindAll() or by
disconnecting each usage script separately. In addition,
when these usage scenarios are tied to the lifecycle, it is
possible to allow CameraX to control the opening and
closing of the shooting session and the management of the
system lifecycle [10].

SYSTEM OVERVIEW

This research was done to determine the developing
process of the cyber-physical system for city objects
identification with confirmation. This system requires use
of camera, for getting camera preview video stream capture.
Then, the video stream should be divided into frames and
each frame should be processed with necessary logic. This
logic should help to remove noises from the frame, to
facilitate the image content of the frame and to transform it
to the monochrome image. After the frames are processed,
the system should be able to read the number of the
building, captured by the camera. For this, it is necessary to
use optical symbol recognition library. The library should

also provide some trained data to achieve good results in
symbols recognition. In parallel, in background, the system
should capture the devices geolocation and data from
sensors, such as accelerometer with geomagnetic sensor to
determine the position of devise for the confirmation. Also
the device position can be fetched to explore the city object
features with the help of the google services.

The scheme, shown on Fig. 4. represents the work of
the system from Android operating-based system
perspective. All the time-consumption logic is executing in
the background, with the purpose not to load the main
execution thread. Data updates from sensors are collecting
in an asynchronous way, with the specified time delay, with
the purpose to retrieve the latest and the most precious data.
Also all results are collected and proceeded in background,
but they are moved to foreground to be displayed to the
user.

The system was tested on the Android device with the
camera characteristics: 48MP+8MP+2MP, aperture f/1.79,
resolution 3840x2160 pixels, sensor size 5.06 mm x 3.79
mm, focal length 3.81 mm. The testing showed that 3
seconds delay for collecting data, provided by sensors, is
enough to get precise results of user device location
calculation.

Fig. 4. The scheme of the cyber-physical system for city

objects identification with confirmation.

Sensors Using in Cyber-Physical System Based on Android Operating System 7

CONCLUSION

Features of using sensors of devices with Android
operating system are considered and described. Motion,
position and environmental sensors of Android operating-
based system were analyzed. Their capabilities were
described and possible scenarios for their use were
provided. These scenarios were compared and the best
solutions were suggested. Fused Location Provider API was
considered as the best solution for geolocation services
using in Android operating-based systems. Also the
diagrams were provided to display the advantages of this
geolocation service. Different modern frameworks for
various camera use cases were described. CameraX
framework was considered as the best solution for solving
camera-related tasks on Android operating-based systems.

The developed system was tested on device with such
camera default characteristics: 48MP+8MP+2MP, aperture
f/1.79, resolution 3840x2160 pixels, sensor size 5.06 mm x
3.79 mm, focal length 3.81 mm. Also, accelerometer,
geomagnetic field sensor and gps were used in the system.
The sensors parameters data of Android device are hidden
by manufacture. Accelerometers’ standard bandwidth is 100
Hz x 3 channels. For the camera, the bandwidth is much
higher - 25 Hz x 8 MP x 3 channels The sensors data was
collected every 3 seconds with the purpose not to overload
the system and at the same time receive precise results.

References
[1] Pasternak I. and Morozov Y., (2014). Computational

Problems of Electrical Engineering. Modular network
interface for distributed information navigation systems.
Lviv, pp. 15–25. Available at:
http://ena.lp.edu.ua:8080/handle/ntb/33711 (Accessed:
9 October 2021)

[2] Gotra Z., Goliaka R., Morozov Y. and Halavka A., (1995).
Bulletin of the Lviv Polytechnic State University. Standby
mode of operation of bipolar sensor ICs of multichannel
information and measuring systems. Lviv, pp. 131–136.

[3] Kyoung-Dae Kim and Kumar P. R., (2012). Wireless Sensor
Networks. Cyber–Physical Systems: A Perspective at the
Centennial Proceedings of the IEEE. Italy: IEEE. pp. 1287–
1308. DOI: 10.1109/JPROC.2012.2189792

[4] Jiafu W., Hehua Y., Hui S. and Fang L., (2011). KSII
Transactions on Internet and Information Systems. Advances
in Cyber-Physical Systems Research. China. pp. 1891–1908.
DOI:10.3837/tiis.2011.11.001

[5] Castano F., Strzelczak S., Villalonga A., Rodolfo E. Haber
and Kossakowska J., (2019). Reliability of Sensors in Cyber-
Physicals Systems. A Brief State-of-the-Art Review. Sensor
Reliability in Cyber-Physical Systems Using Internet-of-
Things Data: A Review and Case Study, Spain, pp. 3–12.
DOI:10.3390/rs11192252

[6] Pradeepkumar Ashok, Ganesh Krishnamoorthy and Delbert
Tesar., (2011). Cyber physical systems. Guidelines for
Managing Sensors in Cyber Physical Systems with Multiple
Sensors. USA: Journal of Sensors. pp. 72–84.
DOI:10.1155/2011/321709

[7] Meike G. and Schiefer L., (2021). Advantages and tradeoffs
using Android in smart IoT devices. Inside the Android OS:
Building, Customizing, Managing and Operating Android

System Services (Android Deep Dive). USA. pp. 160–272.
ISBN-13: 9780134096346

[8] Yaghmour K., (2013). Android’s non-recursive build system.
Embedded Android Porting, Extending, and Customizing.
USA. pp. 45–56. ISBN: 9781449308292

[9] Haseman C., (2008). How location-based services are
becoming more and more important in the mobile world.
Android Essentials. USA. pp. 75–87.
ISBN-13: 9781430210634

[10] Gargenta M., (2011). Overview of the Android platform and
discover how it fits into the mobile ecosystem. Learning
Android. USA. pp. 76–90. ISBN: 9781449390501

 Valerii Bielk is a sixth-year
computer engineering student of Lviv
Polytechnic National University. Since
2019, he has been working in Pecode.

His research interests include data
processing, Android developing, data-
oriented programming, artificial
intelligence systems, cyber-physical

systems.
Yurii Morozov is a candidate of

Technical Sciences, associate professor of
the department of electronic computing
machines, Institute of computer
technology, automation and metrology,
Lviv Polytechnic National University.

His research interests: creation of
systems of complex information protection
(design of virtual communication networks
(VPN), instruments for information

codding, systems of delimitation of access to information,
instruments of the analysis of stability of networks, mechanisms of

detection of attacks).
Mykola Morozov was born in 2000

in Lviv, Ukraine. He received the B.S.
degree in software department at Lviv
Polytechnic National University in 2021.
He has been doing scientific and research
work since 2017. Currently, he is a
Postgraduate student of Informatics
Department at Technical University of

Munich. His research interests include architecture in cyber-
physical systems and pathfinding algorithms.

