
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 6, Num. 2, 2021

INVESTIGATION OF SERVERLESS ARCHITECTURE
Vladyslav Lakhai, Ruslan Bachynskyy

https://doi.org/10.23939/acps2021.__.___
Submitted on 01.05.2021
© Lakhai V., Bachynskyy R., 2021

Abstract: Serverless computing is a new and still evolving type
of cloud computing, which brings a new approach to the
development of information systems. The main idea of serverless
is to give an approach of doing computing without dealing with a
server to a user. Such approach allows to reduce the cost of the
system building and system support. It allows small companies to
concentrate on their own system designing instead of thinking
about infrastructure building and supporting. Also, a big
problem of providing the system security on high level is on
cloud’s provider engineering support service. Serverless
approach allows to start business quickly without huge initial
investment. There is an attempt to completely analyze features,
benefits and drawbacks of serverless approach, its use cases and
main patterns of Serverless architecture. What is more, different
providers have been analyzed.

Index Terms: serverless, cloud computing, architecture

patterns, information systems development, AWS

I. INTRODUCTION
High level of information technologies distribution and

stable interest in their use led to increasing difficulty for
individuals and organizations to keep their computing in-
house (on their own servers). That is the main reason of cloud
computing rapid growth.

Cloud computing refers to delivering on-demand
computing services, originally storage, and now more recently
processing power and apps, over the internet, with companies
using this on a pay-as-you-go basis. It relies on sharing of
resources to achieve coherence and economies of scale. Main
advantages include cost savings, increasing productivity,
speed, efficiency, performance and security.

Cloud computing is not a single piece of technology.
There are four traditional types (models) [1]:

IaaS (Infrastructure as a Service)
PaaS (Platform as a Service)
Serverless
SaaS (Software as a Service).
IaaS includes all basic infrastructure components for

information systems development. It gives direct access to
network resources and virtual computers. This model has the
highest level of flexibility. PaaS does not require
administration of basic infrastructure. In most cases, it
represents a platform for creation of auto-scalable

applications. IaaS and PaaS allowed not to think about any
hardware, but there were still a lot of things which clients
were administrating themselves.

Serverless is a cloud computing model in which client
can operate only with code and data. Cloud vendor is
providing and administrating all needed hardware and
software. SaaS is a model in which client can operate only
with data. Serverless and SaaS allow clients to use exactly
what they need without thinking about underlying hardware
and software.

Serverless architecture is an approach to design and
develop information systems [2] using components of
serverless and SaaS cloud computing models [3].

II. THE RATIONALE OF THE NEED FOR SERVERLESS
ARCHITECTURE

Five years ago, at the start of serverless era, most of
technology adopters were startups who were seeking for a
possibility to scale up and lower the finance entrance barrier.

Therefore, serverless architecture is extremely good in
rapid prototyping. However, are there any benefits for long-
run development? Yes, but not for every individual or
organization.

Nowadays, even big enterprises start using serverless
architecture. It is suitable to run stateless applications, such as
event-driven functionality, batch jobs or data transfer. So, the
main serverless architecture use cases are:

 High-traffic information systems. With serverless,
you can make your system high available and
scalable. As a plus, it is often much cheaper and
easier in comparison to traditional architecture.

 Storing huge amounts of data. If there is a need to
store huge amount of data and work with it in non-
blocking way – serverless is one of the best solutions.
For example, Amazon DynamoDB can handle more
than 10 trillion requests per day or 20 million per
second.

 Internet of Things (IoT). The real-time response
nature of the serverless approach works great for IoT
use cases. IoT devices generate a lot of data from

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Authors’ e-mail: vlad.luckhi@gmail.com, bac_ruslan@ukr.net

Vladyslav Lakhai, Ruslan Bachynskyy

2

their environments through sensors and there is a
necessity to process this data in scalable way.

 Prototypes. Serverless is the best approach for
making proof-of-concepts in most of fields.

III. FORMULATION OF THE PROBLEM
As serverless is relatively fresh and rapidly evolving

approach with many interesting and useful features, it is a
popular area for investigations [4]. There are a lot of new
methods and instruments. In addition, main cloud providers
positively affect development of serverless architecture.

There are many papers in this field, separately describing
core concepts, main services, architecture patterns or
providers’ comparison [5 ,6]. However, there is a lack of
complete analysis of this approach.

IV. ADVANTAGES AND DRAWBACKS OF
SERVERLESS ARCHITECTURE

Like any other technology, serverless computing has its
advantages and drawbacks. Some of them were inherited from
event-driven architecture (EDA), which is a basis for
serverless architecture.

Main advantages of serverless are:
 Reduced time-to-market. Developers can focus their

attention on product development. The vendor
handles components like network configuration or
the physical security of your servers. As a result,
development process was simplified which led to
reducing time-to-market.

 Lower costs. Serverless approach saves time and
resources in two ways. First, serverless is usually
about pay-as-you-go pay model. That means that you
are charging for resources, which were really used.
Idle time is not billed. Second, you are outsourcing
the responsibilities of managing servers, databases,
and some logic. Besides the actual cost, serverless
takes less computing power and human resources.

 Increased flexibility of scaling. With serverless, you
break down applications into smaller and smaller
pieces, known as decomposition. In addition, you are
using EDA, which means that parts of your system
are loose coupled and as a result independent. So, this
gives an ability to scale them automatically and
endlessly.

Main drawbacks:
 Vendor lock-in. Serverless architecture requires you

to be reliant on your provider. You do not have full
control, and changes may affect you without notice.
In addition, it is hard to change your provider. There
are many differences in services with similar
functionality from two cloud providers.

 Increased security risks. As serverless is about
decomposition and multiple independent parts of
system, it leads to a larger attack plain.

 Learning curve. Working with serverless architecture
requires some additional knowledge and skills.

V. COMPARATIVE ANALYSIS OF CLOUD
PROVIDERS

Today, there are many cloud providers. The main are the
following: Amazon Web Services (AWS), Google Cloud
Platform (GCP) and Microsoft Azure (Azure).

Comparative analysis of cloud providers includes
analysis of Gartner (global research and advisory firm) cloud
providers’ investigation report and comparison of relative
search volume.

Gartner is making investigation of cloud providers
market on regular basis. One of the main features of this
investigation is forming of “magic quadrant” - graphic
comparison of cloud providers by two criteria: completeness
of vision and ability to execute.

There are four sections in this quadrant:
 Leaders. They execute well against their current

vision and are well positioned for tomorrow.
 Visionaries. They understand where the market is

going, but do not execute well now.
 Niche Players. They are focused on a small segment

and have there some success or unfocused and do not
outperform others.

 Challengers. They execute well against their current
vision or successfully focused on a large segment, but
are bad positioned for tomorrow.

Gartner cloud providers magic quadrant is shown in Fig. 1.

Fig. 1. Gartner cloud provider’s magic quadrant

Using Gartner cloud providers “magic quadrant” from
research by 2020 (Fig. 1.), we can make next conclusions:

 Amazon Web Services is a leader in both criteria.
 Microsoft Azure takes second place.
 Google Cloud Platform takes third place.
 There are no visionaries or challengers.
 All other cloud providers are in niche players section

which means that they are successfully

Investigation of Serverless Architecture

3

focused on a small segment or unfocused and do not
outperform leaders.

Google Trends is a service by Google for search analysis.
It gives an ability to compare and analyze the popularity of
different search queries in Google Search. Google Trends
comparison is shown in Fig. 2.

Fig. 2. Google Trends comparison

Using Google Trends comparison of cloud providers
search queries popularity, we can make next conclusions:

 Amazon Web Services is a leader in search
frequency.

 Microsoft Azure takes second place.
 Google Cloud Platform takes third place and has a

big lag from AWS and Azure.
As a pioneer in field of cloud computing, AWS had

enough time to form a complete vision on evolution of cloud
technologies. Amazon had more than enough power and
resources to implement this vision. For now, it takes first place
in most of cloud providers’ comparisons and provide the
widest number of available services.

VI. COMPONENTS OF SERVERLESS ARCHITECTURE
In this paper, serverless architecture will be investigated

in conjunction with Amazon Web Services.
AWS divides its serverless services into three categories

[4]:
 Compute
 Application integration
 Data store
Compute category represents services that provide

computing resources. AWS refers Amazon Fargate to
serverless computing, but this service will not be overviewed
in paper because of its CaaS (Container as a Service) nature.

Main model of serverless computing for many years is
FaaS (Function as a Service) and in AWS there is
implementation of this model – AWS Lambda.

AWS Lambda is a serverless computing service that
allows clients to run code with zero administration (without
provisioning or managing infrastructure). Lambda scales
automatically to each event and natively supports Java, Go,
PowerShell, Node.js, C#, Python, and Ruby code. AWS Glue
architecture icon is shown in Fig. 3.

AWS Glue is a serverless data integration tool for
creating, running and monitoring ETL (Extract, transform,
load) workflows for data engineering, analytics and machine
learning. It provides both visual and code-base interfaces.
With code, you can run Python, Spark or PySpark
environments. AWS Glue automates much of the effort
required for data engineering and supports flexible scaling.
AWS Glue architecture icon is shown in Fig. 3.

Main integration services are Amazon API Gateway,
Amazon SQS, Amazon SNS, Amazon Cognito and Amazon
CloudFront.

Amazon CloudFront is a fast content delivery network
service for delivering data, videos, applications and APIs to
customers. CloudFront provides low latency, high level of
secure and transfer speeds. It has deep integration with AWS
and more than 225 points of presence all over the world for
ultra-low latency. Amazon Cognito architecture icon is shown
in Fig. 3.

Fig. 3. AWS architecture icons (Lambda, Glue, Cognito)

Amazon API Gateway – is a service for creating,
publishing, maintaining, monitoring and securing APIs,
including RESTful. API Gateway provides these at any scale
and with low latency. 6. Amazon API Gateway architecture
icon is shown in Fig. 4.

Amazon SQS (Simple Queue Service) is a message
queuing service for publishing, storing and receiving messages
at any volume. It helps to decouple and scale serverless
applications, microservices and distributed systems. Amazon
SQS architecture icon is shown in Fig. 4.

Amazon SNS (Simple Notification Service) is a
messaging push-based many-to-many service for both A2A
(Application to application) and A2P (Application to person)
communication. Key units are topic, publisher and subscriber.
Possible subscribers: SQS, Lambda, HTTPS endpoint,
Kinesis, email, SMS, mobile push and many others. Amazon
SNS architecture icon is shown in Fig. 4.

Fig. 4. AWS architecture icons (API Gateway, SQS, SNS)

Vladyslav Lakhai, Ruslan Bachynskyy

4

Amazon Cognito is a service for users’ sign-up, sign-in
and access control to AWS resources. Service scales to
millions of users and supports sign-in with social identity
providers. Amazon Cognito architecture icon is shown in
Fig. 5.

Amazon S3 (Simple Storage Service) is a service for
storing and protecting any amount of data (objects). It
provides industry-leading security, performance and durability
level. Amazon S3 architecture icon is shown in Fig. 5.

Amazon DynamoDB – “key-value” and document
database. It provides extremely high performance, durability
and security. In addition, database can handle more than 10
trillion requests per day. DynamoDB is automatically scalable
and serverless. Amazon DynamoDB architecture icon is
shown in Fig. 5.

Amazon Aurora Serverless – auto-scaling configuration
for Amazon Aurora that enables to run database in the cloud
without managing any database capacity. Aurora is a MySQL
and PostgreSQL-compatible relational database. It is five
times faster than standard MySQL and three than PostgreSQL.
Amazon Aurora architecture icon is shown in Fig. 5.

Fig 5. AWS architecture icons (Cognito, S3, DynamoDB,
Aurora)

VII. SERVERLESS ARCHITECTURE PATTERNS
Architecture pattern is a solution, which can be reusable

for solving widespread architectural problems.
Web-application is the most popular use-case of

serverless architecture and it is the reason to overview
serverless architecture patterns for web-applications
development.

Interface is the key component of every app. Interface
objects (html, css, js files and other multimedia) can be stored
and accessed using Amazon S3. For providing low-latency it
is recommended to use Amazon CloudFront. So, simple web-
application consists of those two components. Architecture
schema of simple web-application is shown in Fig. 6.

Fig. 6. Architecture schema of simple web-application

For most of modern apps it is not enough to provide only
interface – they need communication between the client and
application business-logic. Usually, this communication is

provided by API requests and Amazon API Gateway can deal
with it. As business-logic runner, it’s better to use AWS
Lambda. We should remember that our code is stateless and
we should provide access to stored data. As database in
examples, we will use Amazon DynamoDB. So, combining
these five components, we can get nearly standard web-
application. Architecture schema of standard web-application
is shown in Fig. 7.

Fig. 7. Architecture schema of standard web-application

The last necessary for most web-application thing is
access control. Amazon Cognito can provide it. This is a
service for users’ sign-in, sign-up and control access. It
supports sign-in with social identity providers. Architecture
schema of web-application Architecture schema of web-
application is shown in Fig. 8.

Fig. 8. Architecture schema of web-application

VIII. SERVERLESS ARCHITECTURE DESIGN OF
DEMONSTRATION SYSTEM

Serverless architecture is an excellent choice for startups.
They are seeking for a possibility to scale up and lower the
finance entrance barrier and serverless approach can provide
all of it.

Therefore, it will be justified to choose startup-like
system as a demonstration system to design. It is a geolocation
system-service for family groups codenamed “Luckhi family”
[7]. Service main goal is to make people confident that
everything is ok with their relatives. It is a bit similar to
“Weasley Clock” from Harry Potter. Customers are able to see
information about their relatives’ geolocation in real time to
keep them on track.

First step of designing architecture is to perform
functional requirements analysis of service prototype (or

Investigation of Serverless Architecture

5

MVP, most viable product). To do this, we need to define
basic functional.

This service should be able to handle next actions:
 Registration of user
 Authorization of user
 Creation of family groups
 Joining already created group
 Editing family zones
 Sending geolocation from Owntracks app on users’

mobile device
 Getting geolocation of all family group members in

appropriate form
After defining basic functional, we can form functional

requirements to designed system:
 Low development cost. In most cases, start-ups are

limited with money amount they can spend on system
prototype (MVP or most valued product)
development.

 High scalability. For start-ups, it is important to have
ability to scale as fast as their customers’ amount
grow.

 High response speed. Complex customer requests
also should be handled fast. There is no need for
customers to know how complex some operations
are, but they definitely want to get result fast.

 Ability to integrate with other service. For example,
service is positioning itself as a platform that can
connect with any third-party geolocation provider. In
this demonstration system, we will use Owntracks
application as a geolocation provider mainly because
of its economic battery consumption.

Next step is creation of general architecture. In case of
cloud-native services, it consists of choosing cloud provider
and main services.

For demonstration system Amazon Web Services cloud
provider will be used. AWS is a big player at cloud providers
market and it provides the widest range of services that
support serverless approach.

According to functional requirements analysis we can
choose main services. As a compute service for running
business-logic a good variant is AWS Lambda. As a database
service – Amazon DynamoDB, automatically scalable NoSQL
database. As a service for communication by REST API
between client and “server” – Amazon API Gateway.

As there are some third-party services to integrate with, it
is not the best solution to use Amazon Cognito. As an
alternative, web-clients authentication can be handled with
JWT tokens [8]. For correct identification of requests provided
by third-party services, a good practice is to use separate user-
manageable secret token.

In previous parts of this paper, it was mentioned that
using Amazon Cloud Front and Amazon S3 for frontend
content storing and accessing is considered a best practice.
Therefore, it is justified to include this solution in our
architecture. Architecture schema of demonstration system is
shown in the Fig. 9.

All this components-services support serverless approach
complies with previously defined functional requirements.
Shema of designed general architecture:

Fig. 9. Architecture schema of demonstration system

Another possible part of architecture design is database
design. It is not popular at all, but we have high response
speed requirement. Without correct database design, there are
some difficulties to fully satisfy this requirement. We are
using NoSQL database and it is important to remember that
there is no optimal JOIN operation support in such databases.
It means that stored data should be normalized so minimally
as it is possible. According to all this conditions and service
functionality, it seems justified to have three tables:

 Users. This table is for storing full data about user,
including data required for authentication.

 Families. This table should not only store general
information about families, but also main information
of its members (name), family zones information and
updated in real time location information (location
and its update timestamp). Main idea is to make
complex in most cases getting operation as fast as
possible to raise response speed.

 Locations. Separate table for storing only location
information (user, location, timestamp). In contrast to
table Families, which have only “present” location
data, table Locations stores it in a historical way. It
will be useful for future functionality like data
analytics, processing or even applying machine
learning algorithms [9 ,10].

Shema of database design is shown in Fig. 10.

Vladyslav Lakhai, Ruslan Bachynskyy

6

Fig. 10. Schema of database design

IX. CONCLUSIONS
Provided analysis showed that serverless approach is

changing all we know about information systems architecture.
For now, in most cases there is no need to provide and
maintain infrastructure by ourselves. We can fully outsource it
to cloud providers and focus on important and valuable things
like developing business-logic. Serverless architecture
resembles Lego constructor – to get a result you should just
combine components-services, your business-logic and data.

To be honest, there are some limitations of this approach.
Some of them, for example as inability of serverless services
to perform well at long compute-intensive tasks, were
successfully overcome with approach evolution (AWS Glue
serverless ETL service).

It is a relatively fresh field of cloud computing and there is
definitely some space for improvements. This approach is
widely used both in startups and enterprises. It helps to save
costs, simplify development process and forget about
problems with scalability. For sure, it is not a silver bullet and
it is unjustified to use this approach literally in all cases, but it
will definitely be a part of our future.

References
[1] https://aws.amazon.com/types-of-cloud-computing/
[2] https://aws.amazon.com/serverless/
[3] Li, L., Ge, R., Zhou, S. and Valerdi, R. (2012). Guest Editorial

Integrated Healthcare Information Systems. In IEEE
Transactions on Information Technology in Biomedicine, vol.
16, no. 4, pp. 515-517. DOI: 10.1109/TITB.2012.2198317.

[4] Shen, J., Zhou, T., He, D., Zhang, Y., Sun, X. and Xiang, Y.
(2019). Block Design-Based Key Agreement for Group Data
Sharing. In Cloud Computing in IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 6, pp. 996-
1010. DOI: 10.1109/TDSC.2017.2725953.

[5] Ramasubramaniam, K. S., Annamalai, G. and Krishna, A.
(2015). System architecture patterns a domain-based
proposition. International Symposium on ConsumerElectronics
(ISCE), pp. 1-2. Available at: https://ur.booksc.eu.

[6] Wang, Q., Ma, H., Ke, Q., Wang, C. and Wang, X. (2009).
Spatial Analysis of Regional Sustainable Development Based
on Geographic Information System and Relative Carrying
Capacity of Resources. International Conference on

Environmental Science and Information Application
Technology, pp. 437-440. Available at:
https://doi.org/10.3390/su12093923.

[7] Sudharsan, D., Adinarayana, J. and Tripathy, A. K. (2009).
Geo-information Services to Rural Extension Community for
Rural Development Planning – A Framewor. International
Conference on Advanced Geographic Information Systems &
Web Services, pp. 54-59. DOI 10.1109/GEOWS.2009.9.

[8] Wang, Q. Z. and Liu, J. (2006). Project Uncertainty,
Management Practice and Project Performance: An Empirical
Analysis on Customized Information Systems Development
Projects. International Engineering Management Conference,
pp. 341-345. DOI: 10.1109/IEMC.2006.4279882.

[9] Satyanarayana, G., Bhuvana, J. and Balamurugan, M. (2020).
Sentimental Analysis on voice using AWS Comprehend,
International Conference on Computer Communication and
Informatics (ICCCI), pp. 1-4.
DOI: 10.1109/ICCCI48352.2020.9104105

[10] Massa, D. and Evans, N. R. (2008). The angular separation of
the components of the Cepheid AW Per. In Monthly Notices of
the Royal Astronomical Society, vol. 383, no. 1, pp. 139-149.
Available at: https://doi.org/10.1111/j.1365-2966.2007.12520.x

Ruslan Bachynskyy
obtained his Ph.D. degree in
Computer systems and
components at Lviv
Polytechnic National
University in 2008. He is
interested in Embedded
systems, Digital Signal
Processing, FPGA-based
designing.

Vladyslav Lakhai is a
fourth-year computer
engineering student of Lviv
Polytechnic National
University. He has
production experience in the
following fields: Clouds,
Serverless and Data
Engineering. Interested in
IoT and Data Sciences.

