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Abstract: Ensuring the effective protection of personal and 
corporate sensitive data is topical task today. The special interest 
is taken at sensitive data leakage prevention during files 
transmission in communication systems. In most cases, these 
leakages are conducted by usage of advance adaptive 
steganographic methods. These methods are aimed at minimizing 
distortions of cover files, such as digital images, during data 
hiding that negatively impact on detection accuracy of formed 
stego images. For overcoming this shortcoming, it was proposed 
to pre-process (calibrate) analyzed images for increasing stego-
to-cover ratio. The modern paradigm of image calibration is 
based on usage of enormous set of high-pass filters. However, 
selection of filter(s) that maximizes the probability of stego 
images detection is non-trivial task, especially in case of limited a 
prior knowledge about embedding methods. For solving this task, 
we proposed to use component analysis methods for image 
calibration, namely principal components analysis. Results of 
comparative analysis of novel maxSRMd2 cover rich model and 
proposed solution showed that principal component analysis 
allows increasing detection accuracy up to 1.5% even in the most 
difficult cases (low cover image payload and absence of cover-
stego images pairs in training set).  

Index Terms: adaptive embedding methods, communication 
system security, digital images, steganalysis 

I. INTRODUCTION 
Reliable protection of public and private confidential 

data is topical task today [1]. Particular attention is paid to the 
counteraction of covert data transmission, which is able to 
overcome existing intrusion detection systems (IDS). In this 
case, unauthorized transmission of sensitive data is provided 
by negligible alteration of cover files, for example digital 
images (DI), in order to embed messages (stego data) [2, 3].  

The state-of-the-art methods for revealing of formed 
stego images are based on statistical analysis of DI with usage 
of rich models (e.g. SRM-based models [6]), convolutional 
neural networks, such as SR-Net [5] and Zhu-Net [7], deep 
autoencoders, for example ASSAF network [8]. Feature of 
these methods is pre-processing (calibration) of analyzed 
image for increasing stego-to-cover ratio. The calibration is 
aimed at suppression of cover’s content or alterations caused 
by message hiding [9]. 

Modern calibration methods are based on suppression of 
CI content by applying of various high pass filters. Such filters 
are determined manually for maximization of detection 

accuracy for predefined set of embedding methods [10]. The 
task of selection optimal filters those are applicable for wide 
range of embedding methods is currently unsolved in general 
case, while near-optimal filters are proposed for specific 
steganographic methods only.  

To overcome this limitation, we proposed to use 
component analysis methods. Such methods allow effectively 
un-mixing image’s components under some common 
assumptions about theirs statistical features, such as variance, 
mutual information etc. The paper is devoted to investigation 
of image calibration performance in case of usage principal 
component analysis to extract and suppress image’s 
components connected with message hiding. 

II. RELATED WORKS 
Message embedding into innocuous files and further 

transmission of altered (stego) files in communication network 
became one of widespread method for creating hidden 
communication channels between attackers in last years [1]. 
Negligible alterations of covers during data hiding make it 
hard to detect of formed stego files with usage of modern IDS. 

Modern methods of cover files, such as DI, steganalysis 
can be divided into three groups [3]: signature, statistical and 
structural methods. The feature of first group is usage of 
preliminary known alterations (signatures) of cover images 
(CI) that are specific for steganographic methods. This makes 
signature-based stegdetector (SD) one of the most effective 
detection methods. Nevertheless, considerable limitation of 
such SD is necessity to known in advance of signatures that is 
inappropriate for detection of previously unknown embedding 
methods. 

Methods of statistical and structural analysis share the 
same idea that stego images can be detected by abnormal 
changes of CI parameters. Still, these methods differ in 
approaches to estimate of image parameters – with usage 
methods either of statistical, or structural analyses. 

Despite wide range of proposed steganalysis method, 
they performance considerably decrease in case of processing 
of stego images formed according to novel adaptive 
embedding methods (AEM). Feature of such methods is 
minimization of CI distortions caused by message hiding that 
considerably decrease SD performance.  

For overcoming this limitation, it was proposed to pre-
process (calibrate) of analyzed DI for improving stego/cover 
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ratio and simplify further detection [9]. This approach was 
developed in SRM rich models that are based on utilization of 
enormous set of high pass filters [6]. SRM models allow 
considerably improving detection accuracy at the cost of 
computational complexity and adaptability to new embedding 
methods. Therefore, further step in development of effective 
calibration method was done by usage of convolutional neural 
networks [5, 7]. Such networks allow learning appropriate 
high pass filtering during training stage that simplifies image 
calibration procedure. Nevertheless, high computational 
complexity of re-tuning of pre-trained network for detection of 
stego images formed according to new method limits their 
usage in real applications. 

The task of image calibration can be reformulated as a 
search of effective method for image denoising under limited 
or even absent information about features of introduced noises 
(alterations) during message hiding. For solving this task we 
proposed to utilize component analysis methods that provide 
fast and flexible solutions for signal decomposition under 
limited information about theirs statistical features. The work 
is devoted to performance analysis of well-known Principal 
Component Analysis (PCA) for the task of calibration stego 
images formed according to novel AEM.  

III. ADAPTIVE EMBEDDING METHODS FOR DIGITAL 
IMAGES 

The state-of-the-art paradigm of DI steganography is 
based on minimization of CI alteration during message hiding 
[11]. This leads to considerable decreasing of stego images 
unmasking features (e.g. changes of statistical features) that 
decrease performance of modern stegdetectors.  

Mentioned breakthrough of novel steganography 
methods is achieved by representation of message hiding 
procedure as the optimization problem with constraints [12]: 

const
,

,
( , ) ( , ) min,i j

i j
D    MX Y X Y  (1) 

where  , 0,1, , 2 1
M Nk 

  X Y   are cover and stego 

images of size MxN pixels correspondingly; Nk   is color 
bit-depth; D(∙,∙) is empirical function for estimation of CI 
distortion during stego data hiding; ρi,j(∙,∙) is empirical 
function for estimation cover image’s statistical features 
alteration by changes of (i,j)th pixel; M is binary representation 
of m-bits stego data.  

In the general case, the function ρ(∙) in (1) allows 
estimating changes of CI statistical parameters caused by a 
single pixel alteration as well as non-linear dependencies 
between these changes by embedding series of bits [12]. The 
former alteration can be performed using common statistical 
models of DI [4, 6]. The latter one highly depends on mutual 
influence of altered pixels that requires utilization of 
computationally intensive methods for such dependency 
estimation. In most cases, mentioned dependencies may be 
estimated only for small (short) message (up to 100 bits) [12]. 
Therefore, majority of modern embedding methods includes 
“simplified” functions ρ(∙) that provide tractable estimation on 
single pixels alterations only. 

The selection of CI pixels to be used for stego bits hiding 
is usually made by analysis of statistical parameters of current 
pixels neighborhood (clique) [12]. This allows providing low 
cover image alteration during message hiding by preserving 
tractable complexity of the embedding algorithm. 

The advance adaptive embedding methods HUGO [11], 
MG [13] and MiPOD [14] were considered in the work. The 
HUGO method is based on minimizing the following 
empirical function D(∙) in (1): 
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where Y is a stego image sampled from the set of all stego 
images  ; π is probability distribution of selection of some 
stego image from the set  ; Eπ(D) is averaging operator for 
function D(∙) over distribution π; H(π) is entropy function for 
distribution π. 

Filler et al. [11] proposed to use co-occurrence matrix 
Ck,l for solving the optimization problem (2), namely 
estimation of CI distortions caused by message hiding: 
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where  , , ,      is set of scanning directions 

during co-occurrence matrix Ck,l estimation; ωk,l>0, 
 ,k l  , is weighting coefficient;  ,

c
k lC  is co-

occurrence matrix by fixed brightness (k,l) of pixels and 
scanning direction c. For example, the matrix  ,k l

C  for 

grayscale images X and Y with size of MxN pixels by row-
wise scanning (left-to-right) may be estimated according to 
next formula [11]: 
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where  ,i j
D U  is array of pixel brightness differences for 

grayscale image U on coordinate (i,j) by image row-wise 
processing (left-to-right). Estimation of  ,

c
k lC  matrices for 

other scanning directions may be performed in similar way to 
(3) [11]. 

The feature of MG and MiPOD methods is minimization 
of both the CI distortion, and statistical stegdetector 
performance (estimated detection accuracy) during stego data 
embedding [13, 14]. This is achieved through the usage of 
Gaussian mixture models (GMM) for estimation cover 
image’s noises parameters [14].  



Detection Of Stego Images With Adaptively Embedded Data By Component Analysis Methods 3 

The cover image processing pipeline is similar for both 
MG [13] and MiPOD [14] methods. At the first stage, the CI 
is pre-processed (filtered) for suppressing the influence of 
cover image context using a filter Fdn: 

 .dnF r X X   

Then, variance 2
l  of pixels brightness for computed 

residuals r is calculated using next linear model: 
 , 1; .l l l M N   r Ga ξ  (4) 

Sedighi et al proposed to use Maximum Likelihood for 
estimation of mentioned model parameters [14]: 

2
2 , N,l F

l q
p q




 


GP r
 (5) 

where 
GP  is projection operator for residuals rl (4) on sub-

space with (p2-q) dimensionality, create from eigenvectors of 
matrix G; 

F
  is Frobenius norm. Residuals rl are computed 

within neighborhood of pxp pixels for current lth pixel. 
The presented simplified estimation of variance 2

l  (5) 
is used for MG method [13], while MiPOD method uses more 
accurate estimation: 
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At the third stage, the magnitude βl, 1≤l≤M∙N, of pixels 
brightness changes that minimizes the deflection coefficient ς2 
between cover and stego image distributions is estimated: 
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where H4(z) is ternary entropy function. The deflection 
coefficient ς2 (6) provides statistical measurement of 
divergence between cover and stego images distribution that 
reflects expected performance of statistical SD [13, 14]. 

The mentioned optimization task for coefficient ς2 (6) 
can be solved using Lagrange multipliers method [14]. Then, 
optimal values of βl and Lagrange multipliers λL can be 
calculated by numerical solving of next equations: 

 2 4 1 21 ln , 1; .
2

l
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Estimated optimal values of βl are used for calculation 
corresponding values of ρl function during embedding stegobit 
into lth pixel of CI: 

   ln 2 , 1; .l l l M N       (7) 
At the last stage, message M bits are embedding to CI 

using trellis-code using magnitudes of pixels brightness 
alteration estimated with ρl (7). 

It should be noted that the GMM used in MG and 
MiPOD methods allows accurately estimating of local 
alterations of pixels brightness during stego image formation 
[14]. This provides high robustness of formed stego images to 

known statistical steganalsis methods without involving of 
computationally intensive methods for image modeling, such 
as Random Markov Fields [15]. 

IV. METHODS OF DIGITAL IMAGE COMPONENT 
ANALYSIS 

A numerous number of tasks in the digital image 
processing domain are based on usage of data transformation 
methods, such as Fourier transform, wavelet transform to 
name a few. These transformations simplify analysis and 
extraction of signal’s components that present interest for data 
enhancement or compression tasks, for example noises and 
distortions.  

The selection of an optimal transformation for specific 
problem (e.g. signal filtering, compression) is non-trivial task 
that depends on statistical features of test signals packet. The 
common approach for solving this task is usage of Fourier 
transform mathematical apparatus for selection an appropriate 
basis function [16], like wavelets, shearlets, bandlets etc. 
Despite effectiveness of such approach in image processing 
tasks, selection of an optimal basis function that minimizes 
image’s restoration error remains open task today. The task is 
particularly solved for some practical cases, such as 
suppression of Gaussian noise, anisotropic noise etc. 

Message hiding into cover image’s noise decreases 
performance of well-known spectral transformation due to 
limited a prior information about features of embedding for 
selection of an appropriate basis functions. Recently, special 
interest is taken at component analysis methods for 
overcoming mentioned limitation [17]. The feature of 
component analysis is ability to signals decomposition by the 
criterion of their statistical characteristics. This makes 
component analysis methods attractive candidates for image 
steganalysis tasks. 

One of well-known example of component analysis 
methods is principal components analysis (PCA). The PCA 
provides fast decomposition of multidimensional signals that 
is based on theirs energy (variance of elements values). The 
method is widely used in digital image processing domain for 
effective suppression of noises and distortions under limited 
aprior information about theirs statistical features [18].  

Principle component analysis is based on signal 
decomposition into orthogonal components by the criterion of 
energy (variance of elements values) of these components: 

2
1

L min,
K

i K
i

  x  (8) 

where R N
i x , 1≤i≤K, is current vector from train set; 

L R n
K   is the best linear approximation of train vectors 

distribution;  
2
  is Euclidean norm. Let us note that any K-

dimensional linear manifold in may be represented by a set of 
linear forms of orthonormal vectors  0 , , R n

K a a : 

  0 1 1L | R, 1; .K K K i i K       a a a   

Then, the decomposition (8) may be presented in the 
form: 
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where ,   is dot product. Solution of current approximation 
task can be represented as set of nested linear manifolds 

0 1L LK  . These manifolds are fully described by set of 
orthonormal vectors (vectors of principal components) 
 1, , R n

K a a  and vector 0 R na . Each of a vector 
can be obtained by solving of approximation task for Li 
manifold with using of generalized least square: 

2R 1
arg min L .

n
i

K

i i j
j 

 
  

 


a
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This approximation task may be reduced to the equal 
task of diagonalization of covariance matrix C=(cij), 1≤i,j≤K: 

   
1

1 ,
1

K

i jij li lj
l

c x x
K 

   
  X X   

where kX  is the mean of vector Xk elements. By this 
representation, the PCA is related to spectral decomposition of 
covariance matrix C, namely to represent of train vectors 
space as sum of orthogonal eigenspaces Ci. Then, matrix C 
can be represented as linear form of orthogonal projection 
operators on these eigenspaces with weights 0,i i   . 

Let us present a train set of row-vectors as X={x1, …, 
xK}T, R n

i x , then covariance matrix may be written as 
C=1/(K–1)∙XTX and its spectral decomposition corresponds to 
singular decomposition of data matrix X: 

1
,

p
T T

l l l
l




X b a   

where σl is singular value of matrix X; R n
l a , Rm

l b are 
right and left singular vectors correspondingly. The right 
singular vectors relate to principal components vectors and 
they are eigenvectors of covariance matrix C that corresponds 
to positive eigenvalues   21 1l lm    . 

The PCA is widely used in digital image denoising tasks, 
so far as it does not require a priori data on the statistical 
features of the image. In this case, image denoising is 
performed by removing of components with the smallest 
singular values that corresponds to noises. This makes 
possible to use thresholding to isolate and suppress noise, 
whose statistical characteristics differ from image 
components. This ability makes PCA an attractive candidate 
for image calibration task in digital image steganalysis. 

V. EXPERIMENTS 
The performance analysis of PCA usage for cover and 

stego images calibration was done on a subset of 10,000 
grayscale images with size of 512x512 pixels that are 
randomly sampled from a standard data package ALASKA 
[19]. Stego images were formed according to advance 
adaptive methods HUGO, MG and MiPOD. The cover image 

payload was varied in the following range – 3%, 5%, 10%, 
20%, 30%, 40% and 50%.  

The stegdetector was constructed using second-order 
SPAM model [20] (686 features) and Random Forest classifier 
[21]. The SD was tested using standard cross-validation 
procedure by minimizing of total error Pe [21]: 

  1 ,
2e FA MD FAP P P P    

where PFA and PMD are probabilities of false alarm (type I 
error) and missed detection (type II error) correspondingly. 
Validation of SD was performed 10 times by pseudo random 
splitting of image dataset into train (50%) and tests (50%) 
samples. 

The SPAM model used in SD is based on the analysis of 
the degree of mutual correlation for the adjacent pixels 
brightness [20] using Markov chains. Estimation of the 
brightness correlation was performed by scanning of analyzed 
image in row and column-wise fashions. Let us consider ad 
example of the correlation estimation for the case of row-wise 
processing (left-to-right scanning) of test grayscale image U. 
The differences of adjusted pixels brightness in this case can 
be calculated as [20]: 

, , , 1.i j i j i j


 D U U   
Then, considered differences are used for parameters 

estimation of first and second order Markov chains: 

 , , 1 ,Pr | ,u v i j i ju v  
  M D D   

 , , , 2 , 1 ,Pr | , ,u v w i j i j i ju v w   
    M D D D   

where (-T)≤u,v,w≤T are values of differences between 
adjacent pixels brightness (states of Markov chain); NT   is 
threshold. If probabilities  ,Pr i j v D  or 

 , 1 ,Pr ,i j i jv w 
  D D  equal to zero, corresponding values 

of ,u v
M  and , ,u v w

M  are set zeros as well. Calculation of 
Markov chains parameters for other scanning directions may 
be performed in the same way [20]. 

Finally, parameters of SPAM models are calculated by 
averaging of estimated parameters for Markov chains [20]: 

 1
1 ,
4k

      F M M M M   

     1 2
1 .
4k k    F M M M M� � � �


  

This transformation is used the standard assumption that 
image’s statistical features is robust to D affine transformation 
(rotation, flipping). The total number of parameters of first 
order SPAM model is equal to k=(2T+1)2, while for the second 
order model is k=(2T+1)3. During performance analysis, we 
used second order SPAM model for estimation statistical 
parameters of DI due to its high accuracy by preserving a 
tractable computational complexity. 

It should be noted that image calibration during 
steganalysis leads to extending of features, which can be used 
for stego image detection. We may cluster these features into 
next groups [9, 22]: 
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1. Features of uncalibrated image – correspond to the 
case of using SPAM-features for the original 
(uncalibrated) image: 

 nc SPAMFF U .  
2. Features of the calibrated image – correspond to the 

case of calculation of DI features after applying of 
PCA: 

  .calib SPAM PCAF CF U   
3. Linearly transformed features of the calibrated image 

– correspond to the difference between the features of 
calibrated and original images: 

.DF calib nc F F F   
4. Cartesian product of the features for calibrated and 

original images: 
 ; .CC calib ncF F F   

The practical application of the Fnc features is limited 
due to insufficient accuracy of known statistical models to 
detection of weak (negligible) differences between cover and 
stego images [2]. Consequently, FCC features are widely used 
instead of Fnc in majority of SD. Also, usage of linearly 
transformed features FDF is taken special interest due to 
promising results for widespread AEM [22, 23].  

Along with type of features used for SD training, 
stegdetectors performance significantly depends on fraction Fα 
of pairs of cover-stego images features utilized by training 
stage [24]: 

    , : , ,
100%,ii train

train

i S
F

S


 

XX Y X Y
  

where Strain is set of digital images used during training of 
stegdetector; 

iXY  is stego images formed from cover Xi. The 
Fα parameter varies from 0% (absent of cover-stego images 
pairs in training set) to 100% (training set consists only from 
cover-stego images pairs). The former case corresponds to the 
real situation when steganalytics do not have access to stego 
encoder and may use only captured stego images. The latter 
one relates to the widely considered situation when 
steganalytics have full access to stego encoder for stego 
images generation, but they are limited in knowledge about 
features of embedding process. Both cases were considered 
during our analysis for more accurate estimation of image 
calibration procedure performance by PCA. 

Performance analysis of image calibration procedure 
with PCA was done by variation of both types of features, and 
Fα parameters used during SD training procedure. At the first 
stage, the case of comparative analysis of state-of-the-art 
maxSRMd2 [6] and solely SPAM (without image calibration) 
models was considered. The feature of maxSRMd2 is 
utilization of extensive set of high-pass filters during image 
calibration stage for effectively suppression of CI content. 
This leads to enormous set of 12,753 features for such model, 
which complicates fast reconfiguration of SD for new 
embedding methods detection. 

The dependencies of Pe error on the cover image payload 
by usage of maxSRMd2 and SPAM models and proposed 

approach for the adaptive steganographic methods HUGO, 
MG and MiPOD by Fα=100%  are shown in Fig. 1. 

a)  

b)  

c)  

Fig. 1.  Dependencies of Pe error on the cover image payload 
by usage of maxSRMd2 and SPAM models and proposed 

approach for the adaptive steganographic methods HUGO 
(a), MG (b) and MiPOD (c) by Fα=100%. 

Usage of maxSRMd2 model allows considerably 
improving detection accuracy in comparison with proposed 
image calibration method (Fig. 1) – the reduction of Pe error 
varies from 9.5% for low (Δp≤10%) to 19% for high (Δp≥50%) 
cover image payload. Revealed detection accuracy 
improvement significantly depends on used embedding 
method – the biggest improvement is achieved for MG (Fig. 
1b, up to 9.5%) and HUGO (Fig. 1a, up to 4.8%) methods, 
while much smaller for MiPOD method (Fig. 1c, up to 3.2%). 
Thus, the obtained results confirm the general trend in the 
steganalysis domain – usage of rich models with extensive set 
of image filters allows significantly increases SD 
performance. 

For comparison, the dependencies of Pe error on the 
cover image payload by usage of maxSRMd2 and SPAM 
models and proposed approach for the adaptive 
steganographic methods HUGO, MG and MiPOD by Fα=0%  
are shown in Fig. 2. 

The absence of cover-stego pairs in the training set 
(Fα=0%, Fig. 2) leads to a significant reduction in the 
efficiency of both approaches: 

 For the SPAM model, the reduction is 6.1% for the 
HUGO method and 5.8% for other methods; 
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 For the maxSRMd2 model, the reduction is 15.1% for 
the MiPOD method and 17.5% for other methods. 
 

a)  

b)  

c)  

Fig. 2.  Dependencies of Pe error on the cover image payload 
by usage of maxSRMd2 and SPAM models and proposed 

approach for the adaptive steganographic methods HUGO 
(a), MG (b) and MiPOD (c) by Fα=0%. 

It should be noted that usage of the maxSRMd2 model in 
this case leads to a significant deterioration in the detection 
accuracy in comparison with much simpler SPAM model (Fig. 
2). The biggest decrease of detection accuracy was revealed 
for low cover image payload (Δp≤10%, up to 12.5% reducing). 
Both models perform almost the same for the medium cover 
image payload (10%<Δp<50%). 

Rich model maxSRMd2 allows reducing Pe error in 
comparison with SPAM model only for high cover image 
payload (Δp ≥50%). Nevertheless, obtained “gain” of detection 
accuracy in this case (Fig. 2) is much smaller than for the 
previous one (Fig. 1) – up to 12.3% for the MG method, and 
up to 5.6% for other methods. 

The obtained results are consistent with the previously 
obtained estimates for adaptive steganographic methods 
HUGO and S-UNIWARD [24] and it confirms the limited 
effectiveness of rich models by working under limited a prior 
information about used embedding methods (namely 
impossibility to obtain stego image for arbitrary cover one). 
Therefore, we consider only this situation (Fα=0%) during 
investigation as the closest one to the real cases of image 
steganalysis in the wild. 

At the second stage, the case of image calibration with 
proposed PCA method was considered. The image denoising 

was performed by suppression a fraction ΔC of image’s 
components with the smallest singular values and, 
correspondingly, energies. Then, SPAM model was applied 
for feature extraction from denoised images. 

The relative detection accuracy indicator PΔ was used for 
estimating difference of Pe error for initial (processing of non-
calibrated images) and considered (image calibration with 
PCA) cases: 

.SPAM PCA
e eP P P     

Positive values of the PΔ index correspond to the case, 
when applying of proposed approach (PCA-based image 
denoising) allows improving stegdetector accuracy. The 
negative ones coincide with the case of decreasing SD 
performance by usage of PCA-based denoising in comparison 
with initial (non-calibrated) case. 

Including of features for calibrated images allows 
improving detection accuracy [9]. As an example, we may 
mention maxSRMd2 model [6] where Cartesian calibrated 
features FCC are used. Therefore, it takes an interest to 
estimate the gain in detection accuracy by utilization of 
linearly transformed FDF and Cartesian calibrated features FCC 
in comparison with calibrated Fcalib ones. 

The dependencies of PΔ index on the CI payload and 
fraction ΔC of used image’s components during PCA by usage 
of SPAM models and adaptive embedding methods HUGO for 
calibrated Fcalib, linearly transformed FDF and Cartesian 
calibrated FCC features by Fα=0% are shown in Fig. 3. 

Applying of PCA for image calibration allows reducing 
the value of PΔ index on 1.5% in the most difficult case – the 
low (Δp≤10%, Fig. 3) cover image payload. Mentioned 
decreasing was revealed for Fcalib (Fig.3a) and FDF (Fig.3b) 
features for all considered range of cover image payload 
values. At the same time, usage of Cartesian calibrated 
features FCC (Fig.3c) does not allow improving detection 
accuracy. This can be explained by limited ability to reveal 
weak changes of cover image parameters during message 
hiding by analysis of doubled feature vector (features of initial 
and calibrated images). 

It should be noted that usage of FDF features (Fig.3b) 
leads to decreasing of classification accuracy by taking only 
fraction of image components (ΔC≤97%), while suppression of 
the components with minimum singular values (ΔC≤99%) lead 
to opposite effect (increasing detection accuracy). This may be 
explained by “spreading” of CI distortions during message 
hiding according to HUGO methods over several components. 
Consequently, removing of components with minimal singular 
values does not allow completely removing these distortions 
that leads to increasing of classification accuracy. 

For comparison, the dependencies of PΔ index on the 
cover image payload and fraction ΔC of used image’s 
components during PCA by usage of SPAM models and 
adaptive steganographic methods MG for calibrated Fcalib, 
linearly transformed FDF and Cartesian calibrated FCC features 
by Fα=0% are shown in Fig. 4. 

The obtained results for the MG method (Fig. 4) confirm 
the previously obtained results for the HUGO method (Fig. 3) 
– usage Fcalib and FDF features allow increasing detection 
accuracy up to 1% in the whole range of cover image payload. 
On the other hand, obtained “gain” of detection accuracy by 
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usage of Fcalib features for MG method is smaller (up to 1%, 
Fig. 4a) in comparison with HUGO method (up to 1.5%, Fig. 
3a). Similar situation is obtained for FDF features as well – 
increasing detection accuracy up to 0.5% for MG method (Fig. 
4b) in contrast to 1% for HUGO method (Fig. 3b). The FCC 
features allows increasing detection accuracy only for high CI 
payload (Δp ≥50%) for both embedding methods (Fig.3-4). 

 

a)  

b)  

c)  

Fig. 3.  Dependence of PΔ index on the cover image payload 
and fraction ΔC of used image’s components during PCA by 

usage of SPAM models and adaptive steganographic methods 
HUGO for calibrated Fcalib (a), linearly transformed FDF (b) 

and Cartesian calibrated FCC (c) features by Fα=0%. 

Given the results, performance analysis of PCA applying 
for stego images formed by advanced MiPOD method is of 
special interest. Dependencies of PΔ index on the CI payload 
and fraction ΔC of used image’s components during PCA by 
usage of SPAM models and MiPOD method for calibrated 
Fcalib, linearly transformed FDF and Cartesian calibrated FCC 
features by Fα=0% are shown in Fig. 5. 

The results for MiPOD method (Fig. 5) correspond to the 
previously obtained results for HUGO (Fig. 3) and MG (Fig. 
4) methods – usage of Fcalib and FDF features allow increasing 
detection accuracy in comparison with widely used FCC 
features. Nevertheless, obtained “gain” of detection accuracy 
for MiPOD method (Fig. 5) is smaller than considered HUGO 
and MG methods – up to 1.0% for Fcalib and near 0% for FDF 
features. Utilization of FCC features (Fig. 5c) does not allow 
improving detection accuracy at all in comparison with the 
case of usage the SPAM model alone. 

a)  

b)  

c)  

Fig. 4.  Dependence of PΔ index on the cover image payload 
and fraction ΔC of used image’s components during PCA by 

usage of SPAM models and adaptive steganographic methods 
MG for calibrated Fcalib (a), linearly transformed FDF (b) and 

Cartesian calibrated FCC (c) features by Fα=0%. 

VI. DISCUSSIONS 
Obtained results of detection accuracy for stego images 

formed according to state-of-the-art adaptive embedding 
methods proved effectiveness of PCA usage for DI calibration. 
The comparison of detection accuracy changes by usage of 
considered models and embedding methods are given in 
Table. 1. 

 Usage of principal components analysis allows 
considerably reducing the classification error Pe in comparison 
with novel maxSRMd2 model (Table 1). The PCA allows 
reducing the Pe error for the most difficult cases (low cover 
image payload and absence of cover-stego images pairs in 
training set) in comparison with advanced maxSRMd2 model.  

Also, the revealed “gain” of detection accuracy by usage 
of PCA is preserved even by comparison with SPAM model 
(up to 1.5% increasing of detection accuracy) even for low CI 
payload. 

VII. CONCLUSION 
Based on the performed analysis results, limitations of 

well-known approach to stego image calibration with 
extensive set of high pass filters was revealed. The 
comparative analysis of standard SPAM model and novel 



Dmytro Progonov 8 

maxSRMd2 model showed considerable decreasing of 
detection accuracy in cases of real images steganalysis 
(absence of cover-stego images pairs in training set). 
Decreasing of detection accuracy for maxSRMd2 model 
achieved up to 12.5% for modern HUGO, MG and MiPOD 
methods that makes this model inappropriate for applications. 

 

a)  

b)  

c)  

Fig. 5.  Dependence of PΔ index on the cover image payload 
and fraction ΔC of used image’s components during PCA by 

usage of SPAM models and adaptive steganographic methods 
MiPOD for calibrated Fcalib (a), linearly transformed FDF (b) 

and Cartesian calibrated FCC (c) features by Fα=0%. 

For overcoming mentioned limitations, we proposed to 
provide image calibration with component analysis methods, 
namely Principal Component Analysis. Feature of such 
methods is ability to signal decomposition under limited a 
prior information about statistical features of its components, 
namely noises, that makes it an attractive candidate for 
steganalysis. 

Obtained results shown that proposed approach allows 
improving detection accuracy up to 1.5% in comparison with 
known statistical models. It should be noted that revealed 
“gain” of detection accuracy is preserved even in the most 
difficult cases (low cover image payload and absence of 
cover-stego images pairs in training set).  
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