Weak and strong stabilization for time-delay semi-linear systems governed by constrained feedback control

Benslimane Y., Delbouh A., El Amri H.
Laboratory of Mathematics and Applications, ENS, Hassan II University, Casablanca, Morocco

(Received 23 May 2021; Accepted 7 June 2021)

Abstract

This paper is concerned with the issue of weak and strong stabilization for distributed semi-linear systems with time delay using a constrained feedback control. The results of the semi-linear systems without delay are generalized for strong and weak stabilization cases. Illustrating applications to hyperbolic and parabolic equations are considered.

Keywords: semi-linear system, feedback stabilization, polynomial decay estimate, time delay.

2010 MSC: 93C10, 93D15, 93E99
DOI: $10.23939 / m m c 2021.04 .627$

1. Introduction

This paper considers the problem of feedback stabilization of distributed semi-linear systems with time delay $r>0$ described as follows:

$$
\left\{\begin{array}{l}
\frac{d y(t)}{d t}=A y(t)+v(t) N y(t-r), \quad t \geqslant 0 \tag{1}\\
y(t)=\Phi(t), \quad t \in[-r, 0]
\end{array}\right.
$$

Here $y(t)$ is the state on a Hilbert space H endowed with the inner product $\langle\cdot, \cdot\rangle$ and its corresponding norm $\|\cdot\|$. In addition, the linear operator $A: D(A) \subset H \rightarrow H$ (generally unbounded) generates a strongly continuous semi-group of contractions $S(t)$ on H. If $y \in C([-r,+\infty[, H)$ and $t \geqslant 0$, then $y_{t} \in C_{r}$ is defined by $y_{t}(\theta)=y(t+\theta)$ for all $\theta \in[-r, 0]$, where $C_{r}=C([-r, 0], H)$ denotes the Banach space of continuous functions defined from $[-r, 0]$ into H, endowed with the supremum norm $\|\psi\|_{C_{r}}=\sup _{\theta \in[-r, 0]}\|\psi(\theta)\|$ and $\Phi \in C_{r}$ is a given initial function, while N is a nonlinear operator from H into H such that $N(0)=0$ (so that 0 is an equilibrium point), whereas $t \rightarrow v(t)$ is a scalar function which represents the control. The stabilization problem for distributed semi-linear systems without delay (i.e., for $r=0$) has been studied in many works, (see e.g. [1, 4, 6]). In [1], it has been shown that if N is weakly sequentially continuous, then the weak stabilization result has been established using the following quadratic feedback control: $v_{0}(t)=-\langle N y(t), y(t)\rangle$ provided that

$$
\begin{equation*}
\langle N S(t) \phi, S(t) \phi\rangle=0, \quad \forall t \geqslant 0 \Longrightarrow \phi=0, \quad \forall \phi \in H \tag{2}
\end{equation*}
$$

holds. In [2], it has been proved that under the following condition

$$
\begin{equation*}
\int_{0}^{T}|\langle N S(t) \phi, S(t) \phi\rangle| d t \geqslant \delta\|\phi\|^{2}, \quad \forall \phi \in H, \quad(\text { for some } T>r \text { and } \delta>0) \tag{3}
\end{equation*}
$$

the strong stabilization result was obtained using the same feedback control with the following decay estimate:

$$
\|y(t)\|=\mathrm{O}\left(\frac{1}{\sqrt{t}}\right), \quad \text { as } \quad t \rightarrow+\infty
$$

In [6], the authors had used the following feedback control to show that it guaranteed the weak and strong stabilization to the system (1) without delay:

$$
\begin{equation*}
v_{\log }(t)=\rho \log \left(1-\frac{\langle N y(t), y(t)\rangle}{1+|\langle N y(t), y(t)\rangle|}\right), \quad \forall t \geqslant 0, \quad \rho>0 . \tag{4}
\end{equation*}
$$

The main objective of this paper is to show those results for the system (1) by using the following feedback control:

$$
\begin{equation*}
v_{\log }^{r}(t)=\rho \log \left(1-\frac{\langle N y(t-r), y(t)\rangle}{1+|\langle N y(t-r), y(t)\rangle|}\right), \quad \forall t \geqslant 0, \quad \rho>0 . \tag{5}
\end{equation*}
$$

Section 2 will focus on demonstrating the existence and uniqueness of the global mild solution of the system (1). In addition, an estimate will be used to prove strong and weak stabilization of the system (1). Sections 3 and 4 are dedicated to discussing strong and weak stabilization respectively, under the conditions (3) and (2). In Sections 5 and 6 we will give some specific applications and simulations to some functional differential equations.

2. Existence and uniqueness of the global mild solution and decay estimate

Next, we will analyze the existence and uniqueness of the global mild solution of the system (1). Additionally, we will establish a useful estimate to show both strong and weak stabilization of the studied system (1).

Theorem 1. Assume that A generates a semi-group of contractions $S(t)$, and let N be a non linear and locally Lipschitz operator from H into H such that $N(0)=0$. Then, the system (1) controlled by (5) possesses a unique global mild solution $y \in C([-r,+\infty[, H)$. Moreover, for each $T>r$, we have

$$
\begin{align*}
& \int_{r}^{T}|\langle N S(\sigma-r) y(t), S(\sigma) y(t)\rangle| d \sigma \\
& =\mathrm{O}\left(\int_{t}^{t+T}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{4}} \text { as } t \rightarrow+\infty, \quad \forall t \geqslant 0 . \tag{6}
\end{align*}
$$

Proof. Using the feedback control (5), the system (1) becomes

$$
\left\{\begin{array}{l}
\frac{d y(t)}{d t}=A y(t)+\rho \log \left(1-\frac{\langle N y(t-r), y(t)\rangle}{1+|\langle N y(t-r), y(t)\rangle|}\right) N y(t-r), \quad t \geqslant 0, \quad \rho>0 \tag{7}\\
y(t)=\Phi(t), \quad t \in[-r, 0]
\end{array}\right.
$$

First, let's show the existence and the uniqueness of a mild solution of the system (1) and we will first prove that the function $G: C_{r} \rightarrow H$ defined by

$$
G(\phi)=\rho \log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right) N \phi(-r), \quad \forall \phi \in C_{r}
$$

is locally Lipschitz. To do this, for any $R>0$ and $\psi, \phi \in B_{C_{r}}(0, R):=\left\{\phi \in C_{r} ;\|\phi\|_{C_{r}} \leqslant R\right\}$, we have

$$
\begin{align*}
& \|G(\psi)-G(\phi)\|=\rho\left\|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right) N \psi(-r)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle\rangle}\right) N \phi(-r)\right\|, \tag{8}\\
& \|G(\psi)-G(\phi)\|=\rho\left\|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right) N \psi(-r)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right) N \phi(-r)\right\|,
\end{align*}
$$

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 627-637 (2021)

$$
\begin{align*}
\| G(\psi)- & G(\phi) \| \\
= & \rho\left\|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle\rangle}\right) N \psi(-r)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right) N \phi(-r)\right\| \\
\leqslant & \rho\left\|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle\rangle}\right) N \psi(-r)-\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right) N \phi(-r)\right\| \\
& +\rho\left\|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right) N \phi(-r)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right) N \phi(-r)\right\| \tag{9}\\
\leqslant & \rho L_{R}\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)\right|\|\psi(-r)-\phi(-r)\| \\
& +\rho L_{R}\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right)\right|\|\phi(-r)\| .
\end{align*}
$$

Let's study each case separately, using the fact that $\log (1+x) \leqslant x, \forall x>0$.
Case1: $\langle N \psi(-r), \psi(0)\rangle>0$

$$
\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)\right|=\log (1+\langle N \psi(-r), \psi(0)\rangle) \leqslant\langle N \psi(-r), \psi(0)\rangle \leqslant R^{2} L_{R} .
$$

Case2: $\langle N \psi(-r), \psi(0)\rangle<0$

$$
\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)\right| \leqslant \frac{|\langle N \psi(-r), \psi(0)\rangle|}{1+|\langle N \psi(-r), \psi(0)\rangle|} \leqslant|\langle N \psi(-r), \psi(0)\rangle| \leqslant R^{2} L_{R} .
$$

It follows that

$$
\begin{equation*}
\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)\right| \leqslant|\langle N \psi(-r), \psi(0)\rangle| \tag{10}
\end{equation*}
$$

and from (9), we deduce

$$
\begin{aligned}
\|G(\psi)-G(\phi)\| \leqslant & \rho L_{R}^{2} R^{2}\|\psi-\phi\| \\
& \quad+\rho L_{R} R\left|\log \left(1-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right)-\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right)\right| .
\end{aligned}
$$

It remains to show that the map g defined by:

$$
g(\phi)=\log \left(1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}\right)=(\log \circ h)(\phi), \quad \forall \phi \in H,
$$

is locally Lipschitz, where $h(\phi)=1-\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle\rangle}$. Since the function \log is of C^{1} on the interval $\operatorname{Im}(h):=\left[\frac{1}{1+R^{2} L_{R}}, 1+2 R^{2} L_{R}\right]$ it suffice to show that the function h is locally Lipschitz. Indeed, $\forall R>0$ and $\forall \phi, \psi \in B_{R}(0)$ with the fact that $\forall a, b \in \mathbb{R},||a|-|b|| \leqslant|a-b|$, we deduce that

$$
|h(\psi)-h(\phi)|=\left|\frac{\langle N \phi(-r), \phi(0)\rangle}{1+|\langle N \phi(-r), \phi(0)\rangle|}-\frac{\langle N \psi(-r), \psi(0)\rangle}{1+|\langle N \psi(-r), \psi(0)\rangle|}\right|
$$

thus

$$
\begin{aligned}
|h(\psi)-h(\phi)| \leqslant & |\langle N \phi(-r), \phi(0)\rangle-\langle N \psi(-r), \psi(0)\rangle| \\
& +|\langle N \phi(-r), \phi(0)\rangle|\langle N \psi(-r), \psi(0)\rangle|-\langle N \psi(-r), \psi(0)\rangle|\langle N \phi(-r), \phi(0)\rangle \| \\
\leqslant & |\langle N \phi(-r), \phi(0)-\psi(0)\rangle+\langle N \phi(-r)-N \psi(-r), \psi(0)\rangle| \\
& +|\langle N \phi(-r), \phi(0)\rangle|\langle N \psi(-r), \psi(0)\rangle|-\langle N \phi(-r), \phi(0)\rangle|\langle N \phi(-r), \phi(0)\rangle \| \\
& +|\langle N \phi(-r), \phi(0)\rangle|\langle N \phi(-r), \phi(0)\rangle|-\langle N \psi(-r), \psi(0)\rangle|\langle N \phi(-r), \phi(0)\rangle \| \\
\leqslant & 2 R L_{R}\|\psi-\phi\|+2 R^{2} L_{R}|\langle N \psi(-r), \psi(0)\rangle-\langle N \phi(-r), \phi(0)\rangle|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2 R L_{R}\|\psi-\phi\|+2 R^{2} L_{R}|\langle N \psi(-r), \psi(0)-\phi(0)\rangle+\langle N \psi(-r)-N \phi(-r), \phi(0)\rangle| \\
& \leqslant 2 R L_{R}\|\psi-\phi\|+2 R^{3} L_{R}^{2}\|\psi-\phi\| \\
& \leqslant 2 R L_{R}\left(1+2 R^{2} L_{R}\right)\|\psi-\phi\|
\end{aligned}
$$

which means that the function h is locally Lipschitz, and then g is. Consequently, G is locally Lipschitz. Then, the system (7) admits a unique mild solution defined on a maximal interval $y \in C\left(\left[-r, t_{\max }[, H)\right.\right.$ given by the variation of constants formula:

$$
y(t)=\left\{\begin{array}{l}
\Lambda(t) \Phi(0)=S(t) y(0)+\int_{0}^{t} S(t-\sigma) G\left(y_{\sigma}\right) d \sigma, \quad t \in\left[0, t_{\max }[\right. \tag{11}\\
\Phi(t), \quad t \in[-r, 0]
\end{array}\right.
$$

where $S(t)$ and $\Lambda(t)$ are the semi-groups generated by the operator A and the system (1) respectively (see [8], p. 51, Theorem 2.6).

Next we will show that this solution is globally defined. Indeed, if $y(0) \in D(A)$, the solution of the system (7) becomes a classical one (see [5]). It follows after multiplying (7) by $y(t)$ and using the fact that $S(t)$ is a semi-group of contractions that

$$
\begin{equation*}
\frac{d\|y(t)\|^{2}}{d t} \leqslant 2 \rho \log \left(1-\frac{\langle N y(t-r), y(t)\rangle}{1+|\langle N y(t-r), y(t)\rangle|}\right)\langle N y(t-r), y(t)\rangle \leqslant 0, \quad \forall t>0 \tag{12}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\|y(t)\| \leqslant\|y(0)\| . \tag{13}
\end{equation*}
$$

If $\Phi(0) \notin D(A)$, let $\tau \in\left[0, t_{\max }\left[\right.\right.$. Since $g: t \rightarrow v_{\log }^{r}(t) N y(t-r)$ is continuous in $[0, \tau]$, we deduce that there exists a sequence $\left(g_{n}\right) \subset C^{1}([0, \tau], H)$ such that $g_{n} \rightarrow g$ in $\left(C([0, \tau], H),\|\cdot\|_{\infty}\right)$ as $n \rightarrow+\infty$ (see [1]). Moreover, since A generates a semi-group of contractions (i.e, $\overline{D(A)}=H$), so, there exists a sequence $\left(\nu_{n}\right) \subset D(A)$ such that $\nu_{n} \rightarrow \Phi(0)$ in H as $n \rightarrow+\infty$. Let $\left(y_{n}\right) \subset C([0, \tau])$ such that

$$
y_{n}(t)=\left\{\begin{array}{l}
S(t) \nu_{n}+\int_{0}^{t} S(t-\sigma) g_{n}(\sigma) d \sigma, \quad t \in[0, \tau] \tag{14}\\
y_{n}(0)=\nu_{n}
\end{array}\right.
$$

is the unique classical solution of the system:

$$
\left\{\begin{array}{l}
\frac{d y_{n}(t)}{d t}=A y_{n}(t)+g_{n}(t), \quad t \in[0, \tau] \tag{15}\\
y_{n}(0)=\nu_{n}
\end{array}\right.
$$

That is $\left(y_{n}(t)\right) \subset D(A)$ and the function $t \mapsto y_{n}(t)$ is continuously differentiable in $[0, \tau]$ (see, Pazy (1983)). Now we will show that $y_{n} \rightarrow y$ as $n \rightarrow+\infty$ in $\left(C([0, \tau], H) ;\|\cdot\|_{\infty}\right)$. By using the fact that $S(t)$ is a semi-group of contractions, it yields from (11) and (14) that for each $t \in[0, \tau]$,

$$
\begin{equation*}
\left\|y_{n}(t)-y(t)\right\| \leqslant\left\|\nu_{n}-y(0)\right\|+\tau \sup _{s \in[0, \tau]}\left\|g_{n}(s)-g(s)\right\| \rightarrow 0, \quad \text { as } \quad n \rightarrow+\infty \tag{16}
\end{equation*}
$$

Thus, $y_{n} \rightarrow y$ as $n \rightarrow \infty$ in $\left(C([0, \tau], H) ;\|\cdot\|_{\infty}\right)$. By the dissipativity of A, we infer from (15) that

$$
\begin{equation*}
\frac{d\left\|y_{n}(t)\right\|^{2}}{d t} \leqslant 2\left\langle g_{n}(t), y_{n}(t)\right\rangle, \quad \forall t \geqslant 0 \tag{17}
\end{equation*}
$$

Integrating the last inequality from s to τ, where $s \in[0, \tau]$, we derive

$$
\begin{equation*}
\left\|y_{n}(\tau)\right\|^{2}-\left\|y_{n}(s)\right\|^{2} \leqslant 2 \int_{s}^{\tau}\left\langle g_{n}(\sigma), y_{n}(\sigma)\right\rangle d \sigma, \quad \forall \tau \in\left[0, t_{\max }[.\right. \tag{18}
\end{equation*}
$$

Using the dominated convergence theorem, one can deduce from (18) that

$$
\begin{equation*}
\|y(\tau)\|^{2}-\|y(s)\|^{2} \leqslant 2 \rho \int_{s}^{\tau} \log \left(1-\frac{\langle N y(t-r), y(t)\rangle}{1+|\langle N y(t-r), y(t)\rangle|}\right)\langle N y(t-r), y(t)\rangle \leqslant 0, \quad \forall \tau \in\left[0, t_{\max }[.\right. \tag{19}
\end{equation*}
$$

It means that $t \mapsto\|y(t)\|$ is a nonincreasing function on $\left[0, t_{\max }\right.$ [. In particular, from (19),

$$
\begin{equation*}
\|y(t)\| \leqslant\|y(0)\|, \quad \forall t \in\left[0, t_{\max }[.\right. \tag{20}
\end{equation*}
$$

Since $t \mapsto y(t)$ is continuous in $[-r, 0]$, then, there exists $C_{1}>0$, such that

$$
\begin{equation*}
\|y(t)\| \leqslant C_{1}, \quad \forall t \in[-r, 0] \tag{21}
\end{equation*}
$$

Combining (20) and (21), it comes

$$
\begin{equation*}
\|y(t)\| \leqslant C_{*}:=\max \left\{C_{1},\|y(0)\|\right\}, \quad \forall t \in\left[-r, t_{\max }[\right. \tag{22}
\end{equation*}
$$

Finally, $y(t)$ is a global solution i.e., $t_{\max }=+\infty$ (see $\mathrm{Wu}(1996)$).
Next, we will establish the estimate (6). By using the variation of constants formula (11) and taking

$$
z(t)=y(t)-S(t) y(0), \quad \forall t \geqslant 0
$$

one can get that

$$
z(t)=\rho \int_{0}^{t} S(t-\sigma) \log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right) N y(\sigma-r) d \sigma
$$

Since (10), (22) and the fact that $S(t)$ is a semi-group of contractions, it follows by Schwartz's inequality for any $T>r$, that

$$
\begin{align*}
\|z(t)\| & \leqslant \rho C_{*} L_{C_{*}} \int_{0}^{t}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\right| d \sigma \\
& \leqslant \rho C_{*} L_{C_{*}} \int_{0}^{t}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right|^{\frac{1}{2}} d \sigma \tag{23}\\
& \leqslant \rho T^{\frac{1}{2}} C_{*} L_{C_{*}}\left(\int_{0}^{t}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{2}}, \quad \forall t \in[0, T] .
\end{align*}
$$

In addition, we have

$$
\begin{aligned}
\langle N S(\sigma-r) y(0), S(\sigma) y(0)\rangle= & \langle N S(\sigma-r) y(0)-N y(\sigma-r), y(\sigma)\rangle-\langle N S(\sigma-r) y(0), z(\sigma)\rangle \\
& +\langle N y(\sigma-r), y(\sigma)\rangle \\
= & \langle N z(\sigma-r), y(\sigma)\rangle-\langle N S(\sigma-r) y(0), z(\sigma)\rangle+\langle N y(\sigma-r), y(\sigma)\rangle, \forall \sigma \geqslant r .
\end{aligned}
$$

Using (22) and since $S(t)$ is a semi-group of contractions, and that N is locally Lipschitz then we get for all $\sigma \in[r, T]$, that

$$
|\langle N S(\sigma-r) y(0), S(\sigma) y(0)\rangle| \leqslant L_{C_{*}} C_{*}\|z(\sigma-r)\|+C_{*} L_{C_{*}}\|z(\sigma)\|+|\langle N y(\sigma-r), y(\sigma)\rangle| .
$$

Employing (23) one easily gets

$$
\begin{align*}
&|\langle N S(\sigma-r) y(0), S(\sigma) y(0)\rangle| \leqslant|\langle N y(\sigma-r), y(\sigma)\rangle| \\
&+2 \rho L_{C_{*}}^{2} C_{*}^{2} T^{\frac{1}{2}}\left(\int_{0}^{T}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{2}} \tag{24}
\end{align*}
$$

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 627-637 (2021)

Replacing $y(0)$ by $y(t)=\Lambda(t) \Phi(0), \forall t \geqslant 0$ in (24) and using the semi-group property of the solution $y(t)$ it yields

$$
\begin{aligned}
& |\langle N S(\sigma-r) y(t), S(\sigma) y(t)\rangle| \leqslant|\langle N y(\sigma+t-r), y(\sigma+t)\rangle| \\
& \quad+2 \rho L_{C_{*}}^{2} C_{*}^{2} T^{\frac{1}{2}}\left(\int_{t}^{t+T}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{2}} .
\end{aligned}
$$

Since $\log (1+x) \geqslant \frac{x}{2}$ and $|\log (1-x)| \geqslant \log (1+x), \forall 0<x<1$, it yields that

$$
\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\right| \geqslant \frac{\langle N y(\sigma-r), y(\sigma)\rangle}{2(1+|\langle N y(\sigma-r), y(\sigma)\rangle|)}
$$

Then

$$
\begin{align*}
& \langle N y(\sigma-r), y(\sigma)\rangle \leqslant 2(1+|\langle N y(\sigma-r), y(\sigma)\rangle|)\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\right| \\
& \quad\langle N y(\sigma-r), y(\sigma)\rangle \leqslant 2\left(1+L_{C_{*}} C_{*}^{2}\right)\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\right| \tag{25}
\end{align*}
$$

From (24), (25), and using Schwartz's inequalities, it follows that

$$
\begin{align*}
&|\langle N S(\sigma-r) y(0), S(\sigma) y(0)\rangle| \\
& \leqslant 2^{\frac{1}{4}} L_{C_{*}}^{\frac{1}{2}} C_{*}\left(1+L_{C_{*}} C_{*}^{2}\right)^{\frac{1}{4}}\left|\log \left(1-\frac{\langle N y(\sigma+t-r), y(\sigma+t)\rangle}{1+|\langle N y(\sigma+t-r), y(\sigma+t)\rangle|}\right)\langle N y(\sigma+t-r), y(\sigma+t)\rangle\right|^{\frac{1}{4}} \\
&+2 \rho L_{C_{*}}^{\frac{5}{2}} C_{*}^{\frac{5}{2}} T^{\frac{3}{4}}\left(\int_{t}^{t+T}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{4}} \tag{26}
\end{align*}
$$

Integrating (26) over the interval $[r, T]$, and using the Schwartz's inequality, we deduce

$$
\begin{align*}
& \int_{r}^{T}|\langle N S(\sigma-r) y(t), S(\sigma) y(t)\rangle| d \sigma \\
& \qquad \leqslant C_{* *}\left(\int_{t}^{t+T}\left|\log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle\right| d \sigma\right)^{\frac{1}{4}} \tag{27}
\end{align*}
$$

where $C_{* *}:=L_{C_{*}}^{\frac{1}{2}} C_{*}(T-r)^{\frac{3}{4}}\left(2^{\frac{1}{4}}\left(1+L_{C_{*}} C_{*}^{2}\right)^{\frac{1}{4}}+2 \rho L_{C_{*}}^{2} C_{*}^{\frac{3}{2}} T^{\frac{3}{4}}(T-r)^{\frac{1}{4}}\right)$. This achieves the proof.

3. Strong stabilization

Based on the previous results, we are able to establish the polynomial stability of the system (1), which leads us to the following theorem.

Theorem 2. Let A generate a semi-group of contractions $S(t)$ on H, and let N be a locally Lipschitz operator from H into itself. Then, under the condition

$$
\begin{equation*}
\int_{r}^{T}|\langle N S(\sigma-r) \phi, S(\sigma) \phi\rangle| d \sigma \geqslant \delta\|\phi\|^{2}, \quad \forall \phi \in H, \quad(\text { for some } T>r \text { and } \delta>0) \tag{28}
\end{equation*}
$$

the feedback control (5) strongly stabilizes the system (1) with the following decay estimate:

$$
\begin{equation*}
\|y(t)\|=\mathrm{O}\left(t^{-\frac{1}{2}}\right), \quad \text { as } \quad t \rightarrow+\infty \tag{29}
\end{equation*}
$$

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 627-637 (2021)

Proof. According to Theorem 1, the system (1) controlled by (5) possesses a unique global mild solution $y(t)$ defined on the interval $[-r,+\infty)$, and given by the variation of constants formula (11). From (19),

$$
\|y(t+T)\|^{2}-\|y(t)\|^{2} \leqslant 2 \rho \int_{s}^{\tau} \log \left(1-\frac{\langle N y(t-r), y(t)\rangle}{1+|\langle N y(t-r), y(t)\rangle|}\right)\langle N y(t-r), y(t)\rangle \leqslant 0, \quad T>r
$$

It follows from (27) and (28) that

$$
\|y(t+T)\|^{2}-\|y(t)\|^{2} \leqslant-2 \rho \frac{\delta^{2}}{C_{* *}^{2}}\|y(t)\|^{4}, \quad \forall t \geqslant 0
$$

which implies that

$$
\begin{equation*}
2 \rho \frac{\delta^{2}}{C_{* *}^{2}}\|y(t)\|^{4} \leqslant\|y(t)\|^{2}-\|y(t+T)\|^{2}, \quad \forall t \geqslant 0 \tag{30}
\end{equation*}
$$

Let we note that

$$
\begin{aligned}
\frac{1}{\|y(t+T)\|^{2}}-\frac{1}{\|y(t)\|^{2}} & =\int_{0}^{T} \frac{d}{d \theta}\left(\frac{\theta}{T}\|y(t+T)\|^{2}+\left(1-\frac{\theta}{T}\right)\|y(t)\|^{2}\right)^{-1} d \theta \\
& =\frac{1}{T}\left(\|y(t)\|^{2}-\|y(t+T)\|^{2}\right) \int_{0}^{T}\left(\frac{\theta}{T}\|y(t+T)\|^{2}+\left(1-\frac{\theta}{T}\right)\|y(t)\|^{2}\right)^{-2} d \theta
\end{aligned}
$$

It yields from (30) that

$$
\frac{1}{\|y(t+T)\|^{2}}-\frac{1}{\|y(t)\|^{2}} \geqslant 2 \rho \frac{\delta^{2}}{C_{* *}^{2}}
$$

Then, for any $n \in \mathbb{N}$, one can deduce

$$
\frac{1}{\|y((n+1) T)\|^{2}}-\frac{1}{\|y(0)\|^{2}} \geqslant C n
$$

with $C=2 \rho \frac{\delta^{2}}{C_{* *}^{2}}$, which implies that

$$
\|y((n+1) T)\|^{2} \leqslant\left(\frac{1}{\|y(0)\|^{2}}+C n\right)^{-1}
$$

by taking $t=(n+1) T$, one can deduce that

$$
\|y(t)\|^{2} \leqslant\left(\frac{1}{\|y(0)\|^{2}}-C+\frac{t}{T}\right)^{-1}
$$

which proves the climate estimate.

Remark 1. 1. Since $t \mapsto\|y(t)\|^{2}$ decreases on \mathbb{R}^{+}, then $\exists t_{*} \geqslant 0$ such that:

$$
y\left(t_{*}\right)=0 \Longleftrightarrow y(t)=0, \quad \forall t \geqslant t_{*} .
$$

2. If $r=0$, we obtain the same results retrieved as in [6] for infinite dimensional semi-linear systems.
3. Note that the control used is more performed than the control used in [7] and guarantee the same results with gain of energy.

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 627-637 (2021)

4. Weak stabilization

In the following next result, we will show that if N is sequentially continuous, then the weak stabilization of the system (1) by using the same feedback control (5) under a particular condition.
Theorem 3. Let A generate a semi-group of contractions $S(t)$. Moreover, we assume that N is a locally Lipschitz and weakly sequentially continuous operator provided that

$$
\begin{equation*}
\langle N S(t-r) y, S(t) y\rangle=0, \quad \forall t \geqslant r \Longrightarrow y=0 \tag{31}
\end{equation*}
$$

holds. Then, the system (1) is weakly stabilizable using the feedback control (5).
Proof. According to Theorem 1, the system (1) controlled by (5) possesses a unique global mild solution $y(t)$ defined on the interval $[-r,+\infty)$ and given by the variation of constants formula (11). From (19), we have

$$
\begin{equation*}
\rho \int_{0}^{t} \log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle d \sigma \leqslant\|y(0)\|^{2}, \quad \forall t \geqslant 0 . \tag{32}
\end{equation*}
$$

It yields from (32) that the integral

$$
\int_{0}^{t} \log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle d \sigma
$$

converges for all $t \geqslant 0$. Thus, we deduce from the Cauchy criterion that

$$
\begin{equation*}
\int_{t}^{t+T} \log \left(1-\frac{\langle N y(\sigma-r), y(\sigma)\rangle}{1+|\langle N y(\sigma-r), y(\sigma)\rangle|}\right)\langle N y(\sigma-r), y(\sigma)\rangle d \sigma \rightarrow 0, \quad \text { as } t \rightarrow+\infty, \quad(\text { for any } T>r) . \tag{33}
\end{equation*}
$$

To prove that $y(t) \rightharpoonup 0$, as $t \rightarrow+\infty$, let $\left(t_{n}\right)$ be a sequence of real numbers such that $t_{n} \rightarrow+\infty$, as $n \rightarrow+\infty$. From (22) and since the space H is reflexive, one can deduce that there exists a subsequence $\left(t_{\phi(n)}\right)$ of $\left(t_{n}\right)$ and $\psi \in H$ such that

$$
\begin{equation*}
y\left(t_{\phi(n)}\right) \rightharpoonup \psi, \quad \text { as } \quad n \rightarrow+\infty \tag{34}
\end{equation*}
$$

Since N is weakly sequentially continuous and $S(t)$ is continuous for all $t \geqslant 0$, we deduce that $S(t) y\left(t_{\phi(n)}\right) \rightharpoonup S(t) \psi$ and $N S(t) y\left(t_{\phi(n)}\right) \rightarrow N S(t) \psi$ as $n \rightarrow+\infty$. Thus, for all $t \geqslant r$,

$$
\lim _{n \rightarrow+\infty}\left\langle N S(t-r) y\left(t_{\phi(n)}\right), S(t) y\left(t_{\phi(n)}\right)\right\rangle=\langle N S(t-r) \psi, S(t) \psi\rangle .
$$

It follows by the dominated convergence theorem that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{r}^{T}\left\langle N S(\sigma-r) y\left(t_{\phi(n)}\right), S(\sigma) y\left(t_{\phi(n)}\right)\right\rangle d \sigma=\int_{r}^{T}|\langle N S(\sigma-r) \psi, S(\sigma) \psi\rangle| d \sigma . \tag{35}
\end{equation*}
$$

Using (6) and (33), we deduce from (35) that $\int_{r}^{T}|\langle N S(\sigma-r) \psi, S(\sigma) \psi\rangle| d \sigma=0$. Since the map $\tau \rightarrow S(\tau) \psi$ is continuous on $[0,+\infty)$, we deduce that $\langle N S(t-r) \psi, S(t) \psi\rangle=0, \forall t \geqslant r$. From (31), we get $\psi=0$. Moreover, from (34), one can prove that

$$
\begin{equation*}
y\left(t_{\phi(n)}\right) \rightharpoonup 0, \quad \text { as } \quad n \rightarrow+\infty . \tag{36}
\end{equation*}
$$

Additionally, noticing that (36) holds for each subsequence $\left(t_{\phi(n)}\right)$ of $\left(t_{n}\right)$ such that $y\left(t_{\phi(n)}\right)$ is weakly convergent in H. It yields that $\forall \zeta \in H$,

$$
\left\langle y\left(t_{n}\right), \zeta\right\rangle \rightarrow 0, \quad \text { as } \quad n \rightarrow+\infty
$$

and hence,

$$
y(t) \rightharpoonup 0, \quad \text { as } \quad t \rightarrow+\infty
$$

This achieves the proof of Theorem 3.

Remark 2. 1. Note that the sequential continuity notion coincides with the compactness condition, when the operator is linear.
2. If we replace the sequential continuous condition of N by the compactness condition of $S(t)$, we retrieve the same result of the Theorem 3.

5. Applications

The main goal of this section is to present some applications to illustrate the previous results.

5.1. Strong stabilization

Example 1. Applications to Liénard's equations.

Let's consider the following system:

$$
\left\{\begin{array}{l}
\ddot{y}(t)=-y(t)+p(t) f\left(y\left(t-\frac{\pi}{2}\right)\right) \dot{y}\left(t-\frac{\pi}{2}\right), \quad t \geqslant 0 \tag{37}\\
y(t)=\sin (2 \pi t), \quad t \in\left[0 ; \frac{\pi}{2}\right]
\end{array}\right.
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz function such that $f(0)=0$. Here the space $H=\mathbb{R}^{2}$. The inner product is defined by:

$$
\langle y, z\rangle=y_{1} z_{1}+y_{2} z_{2}, \quad \forall y=\left(y_{1}, y_{2}\right), \quad z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2} .
$$

If we set $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right), \mathbf{N}\binom{y_{1}}{y_{2}}=\binom{0}{y_{2} f\left(y_{1}\right)}, \forall\left(y_{1}, y_{2}\right) \in H$, one can easy deduce that the system (37) has the same form as (1). The operator A is skew adjoint and $e^{t A}=\left(\begin{array}{ll}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right)$ (see [3]). Moreover,

$$
\begin{align*}
& \left\langle N e^{\left(t-\frac{\pi}{2} A\right)}\binom{a}{b}, e^{t A}\binom{a}{b}\right\rangle \\
& \quad=(b \cos (t)-a \sin (t))\left(b \cos \left(t-\frac{\pi}{2}\right)-a \sin \left(t-\frac{\pi}{2}\right)\right) f\left(a \cos \left(t-\frac{\pi}{2}\right)+b \sin \left(t-\frac{\pi}{2}\right)\right) . \tag{38}
\end{align*}
$$

Then (31) holds, as well as (28) since $\operatorname{dim}(H)<+\infty$. We deduce by Theorem 2 that the solution of the system (37) satisfies

$$
y^{2}(t)+\dot{y}^{2}(t)=\mathrm{O}\left(\frac{1}{t}\right), \quad \text { as } \quad t \rightarrow+\infty
$$

if $(y(t), \dot{y}(t)) \neq(0,0)$ using the feedback control defined by:

$$
p(t)=\left\{\begin{array}{l}
\rho \log \left(1-\frac{\dot{y}\left(t-\frac{\pi}{2}\right) \dot{y}(t) f\left(y\left(t-\frac{\pi}{2}\right)\right)}{1+\left|\dot{y}\left(t-\frac{\pi}{2}\right) \dot{y}(t) f\left(y\left(t-\frac{\pi}{2}\right)\right)\right|}\right), \quad(y(t), \dot{y}(t)) \neq(0,0), \quad \rho>0, \tag{39}\\
0, \quad(y(t), \dot{y}(t))=(0,0)
\end{array}\right.
$$

5.2. Weak stabilization

Example 2. Heat equation.

Consider the following semi-linear system:

$$
\left\{\begin{array}{l}
\frac{\partial y}{\partial t}(x, t)=\frac{\partial^{2} y(x, t)}{\partial x^{2}}+p(t) N y(x, t), \quad(x, t) \in(0,1) \times(0,+\infty) \tag{40}\\
\frac{\partial y(0, t)}{\partial x}=\frac{\partial y(1, t)}{\partial x}=0, \quad t \in[-r,+\infty) \\
y(x, t)=t \sin t, \quad t \in[-r, 0], \quad x \in(0,1)
\end{array}\right.
$$

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 627-637 (2021)
where $y(t)$ is the temperature profile at time $t . v(t)$ is the flow rate of a liquid that controlled the system. The state space $H=L^{2}(0,1)$ and the operator A is defined by $A y=\frac{\partial^{2} y}{\partial x^{2}}$, with $D(A)=$ $\left\{y \in H^{2}(0,1) ; \frac{\partial y(0, t)}{\partial x}=\frac{\partial y(1, t)}{\partial x}=0\right\}$.

The spectrum of A is given by the simple eigenvalues $\lambda_{j}=-\pi^{2}(j-1)^{2}, j \in \mathbb{N}^{*}$ with its corresponding eigenfunctions $\phi_{1}(x)=1$ and $\phi_{j}(x)=\sqrt{2} \cos ((j-1) \pi x), j \geqslant 2$. Moreover, the operator N defined by $N y=\sum_{j=1}^{+\infty} \frac{1}{j^{2}}\left\langle y, \phi_{j}\right\rangle \phi_{j}$ is compact and satisfies

$$
\langle N S(t-r) y, S(t) y\rangle=\sum_{j=1}^{+\infty} \frac{e^{\lambda_{j}(2 t-r)}}{j^{2}}\left|\left\langle y, \phi_{j}\right\rangle\right|^{2} \geqslant 0
$$

In addition, it is easy to check that (30) holds. According to the Theorem 3, we deduce that the system (40) is weakly stabilizable using the following feedback control

$$
p(t)= \begin{cases}-\log \left(1+\sum_{j=1}^{+\infty} \frac{e^{\lambda_{j}(2 t-r)}}{j^{2}}\left|\left\langle y, \phi_{j}\right\rangle\right|^{2}\right), & \text { if } y(\cdot, t) \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

6. Numerical simulation

Consider the system (37). Take $\rho=1$ and $f(y)=y$. Then, we get the results shown in the Figs. $1-5$. Figs. 1 and 2 show the evolution and norm of the free state $(v(t)=0)$. Use feedback control (39), we obtain Fig. 3 and Fig. 4 which show the evolution and the norm of the stabilized state. Fig. 5 shows the evolution of the stabilizing control.

Fig. 1. Evolution of the free state.

Fig. 2. Norm of the free state.

Fig. 3. Evolution of the stabilized state.

Fig. 4. Norm of the stabilized state.

Fig. 5. Evolution of the stabilizing control.

7. Conclusion

Under the exact observability inequality (30) we have established the polynomial stabilization for infinite dimensional semi-linear systems with time delay with a new constrained multiplicative feedback control. The rate of polynomial convergence is explicitly expressed. We also have considered the question of weak stabilization by the same feedback control. Furthermore, some applications are given to illustrates our main results.
[1] Ball J., Slemrod M. Feedback stabilization of distributed semilinear control systems. Applied Mathematics and Optimization. 5, 169-179 (1979).
[2] Berrahmoune L. Stabilization and decay estimate for distributed bilinear systems. Systems \& Control Letters. 36 (3), 167-171 (1999).
[3] Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York, Springer (2000).
[4] Ouzahra M. Strong stabilization with decay estimate of semilinear systems. Systems \& Control Letters. 57 (10), 813-815 (2008).
[5] Pazy A. Semi-groups of linear operators and applications to partial differential equations. New York, Springer Verlag (1983).
[6] Tsouli A., Benslimane Y. Stabilization for distributed semilinear systems governed by optimal feedback control. International Journal of Dynamics and Control. 7, 510-524 (2019).
[7] Tsouli A., El Houch A., Benslimane Y., Attioui A. Feedback stabilisation and polynomial decay estimate for time delay bilinear systems. International Journal of Control. 1-7 (2019).
[8] Wu J. Theory and Applications of Partial Functional Differential Equations. Berlin, Springer Verlag (1996).

Слабка та сильна стабілізація напівлінійних систем із запізнюванням, керованих обмеженим зворотним зв'язком

Бенсліман Й., Дельбоу А., Ель Амрі Г.
Лабораторія математики та застосунків, ENS, Університет Хасана II, Касабланка, Марокко

Abstract

У цій роботі розглядається питання слабкої та сильної стабілізації розподілених напівлінійних систем із часовою затримкою з використанням керування з обмеженим зворотним зв'язком. Результати для напівлінійних систем без запізнювання узагальнені для випадків сильної та слабкої стабілізації. Розглянуто ілюстративні приклади застосування методу до гіперболічних та параболічних рівнянь.

Ключові слова: напівлінійна система, стабілізачія зі зворотним зв'язком, оиінка розпаду полінома, запізнювання.

