Hemivariational inverse problem for contact problem with locking materials

Faiz Z. ${ }^{1}$, Baiz O. ${ }^{2}$, Benaissa H. ${ }^{3}$, El Moutawakil D. ${ }^{1}$
${ }^{1}$ Sultan Moulay Slimane University, Lab MATIC, FP of Khouribga, Morocco
${ }^{2}$ Ibn Zohr University, FP of Ouarzazate, Morocco
${ }^{3}$ Sultan Moulay Slimane University, Multidisciplinary Research and Innovation Laboratory, FP of Khouribga, Morocco

(Received 23 May 2021; Accepted 7 June 2021)

Abstract

The aim of this work is to study an inverse problem for a frictional contact model for locking material. The deformable body consists of electro-elastic-locking materials. Here, the locking character makes the solution belong to a convex set, the contact is presented in the form of multivalued normal compliance, and frictions are described with a sub-gradient of a locally Lipschitz mapping. We develop the variational formulation of the model by combining two hemivariational inequalities in a linked system. The existence and uniqueness of the solution are demonstrated utilizing recent conclusions from hemivariational inequalities theory and a fixed point argument. Finally, we provided a continuous dependence result and then we established the existence of a solution to an inverse problem for piezoelectric-locking material frictional contact problem.

Keywords: locking piezoelectric material, frictional contact problem, inverse problem, hemivariational inequality.
2010 MSC: 35J87, 47J20, 49J40, 74M10, 74M15 DOI: $10.23939 / m m c 2021.04 .665$

1. Introduction

Recently, the theory of variational and hemivariational inequalities has become more attractive in the mathematical and physics domain. This type of inequality was first introduced by Panagiotopolous in 1980 to generalize variational inequalities for non-convex and non-monotone operators see [1]. Based on the generalized gradient of Clarke [2], it is used to study engineering problems involving non-smooth, non-monotone, and multivalued functionals, e.g. in the variational formulation of mechanical problems whenever nonconvex energy functionals (non-smooth constitutive laws) are involved [3, 4]. However, more of their mathematical and applied developments can be found in [5-7] and the reference therein. In the last years, inverse problems have grown in popularity as a subject of applied mathematics with numerous practical applications [8-12]. The goal of this research is to look into the inverse problem of identifying parameters in a hemivariational inequality. On another side, the theory of locking materials was firstly discussed by Prager [13,14]. We consider elastic ideally locking materials, as defined in [15]. Then, we shall deal with piezoelectric materials for which the constitutive laws are given as follows

$$
\begin{gather*}
\sigma \in \mathcal{E}(l, \varepsilon(u))-\mathcal{B}^{T}(l, E(\varphi))+\partial I_{B}(l, \varepsilon(u)) \quad \text { in } \quad \Omega, \tag{1}\\
D \in \mathcal{B}(l, \varepsilon(u))+\beta(l, E(\varphi))+\partial I_{C}(l, E(\varphi)) \quad \text { in } \quad \Omega, \tag{2}
\end{gather*}
$$

where $\partial I_{B}: \mathcal{L} \times \mathbb{S}^{d} \longrightarrow 2^{\mathbb{S}^{d}}$ and $\partial I_{C}: \mathcal{L} \times L^{2}(\Omega) \longrightarrow 2^{L^{2}(\Omega)}$ stands for the subdifferential, respectively, of the indicators functions of sets B and C, given by

$$
I_{\mathcal{B}}(l, \varepsilon)=\left\{\begin{array}{lll}
0 & \text { if } & \varepsilon \in B, \\
+\infty & \text { if } & \varepsilon \notin B,
\end{array} \quad I_{C}(l, \psi)=\left\{\begin{array}{lll}
0 & \text { if } & \psi \in C, \\
+\infty & \text { if } & \psi \notin C .
\end{array}\right.\right.
$$

The physics point of view of locking materials can be found in [16]. The sets $B \subset \mathbb{S}^{d}$ and $C \subset L^{2}(\Omega)$ design the locking constraints and define the properties of the materials. Moreover, these sets have many forms, see [16]. In this paper, we discuss the perfectly locking materials forms, for which the sets B and C are given by

$$
\begin{equation*}
B=\left\{\varepsilon \in \mathbb{S}^{d}: Q_{1}(\varepsilon) \leqslant 0\right\}, \quad C=\left\{\psi \in L^{2}(\Omega): Q_{2}(\psi) \leqslant 0\right\} \tag{3}
\end{equation*}
$$

where the locking functions $Q_{1}: \mathbb{S}^{d} \longrightarrow \mathbb{R}$ and $Q_{2}: L^{2}(\Omega) \longrightarrow \mathbb{R}$ are convexes continuous functions verifying the condition $Q_{i}(0) \leqslant 0$ for $i=1,2$. To study these problems, we consider the following abstract variational-hemivariational inequality, which has been discussed in [17].
Problem (P). Given $l \in L$, find $u=u(l) \in K$ such that

$$
\begin{equation*}
\langle A(l, u)-f(l), v-u\rangle_{X}+j^{0}(l, u, u ; v-u) \geqslant 0, \quad \forall v \in K \tag{4}
\end{equation*}
$$

where $A: L \times X \rightarrow X^{*}$ is an operator from a Banach space X to its dual $X^{*}, f: L \rightarrow X^{*}$ and $J: L \times X \times X \rightarrow \mathbb{R}$ are two real valued functions, K is a subset of X and $\langle\cdot, \cdot\rangle$ denotes the duality pairing of X and X^{*}. For $z \in X$ fixed, the notation $J^{0}(l, z, u ; v)$ represents the generalized directional derivative of the function $J(l, z, \cdot)$ at $u \in X$ in the direction $v \in X$. For existence and uniqueness of a solution to inverse problems (P) have been studied by [18]. To apply the obtained result on Problem (P), the contact problem with piezoelectric locking materials is considered. The novelty of this paper is study of the existence and uniqueness solution of a static frictional contact problem electro-elasticlocking materials and also proof of Lipschitz continuous dependence of this solution. Furthermore, we study an inverse problem for the frictional electro-elastic contact problem and show that it possesses a solution.

The paper is structured as follows. In Section 2, we introduce the mathematical model of frictional contact for locking materials, for example, we consider a static electroelastic-locking materials contact problem in which the frictional contact with a conductive foundation. There are described the equations and boundary conditions, list the data assumption on the data and derive formulation variational is in a form of a coupled system of two hemi-variational inequalities. Section 3 is devoted to study of the existence and unique solution of this problem. Moreover, we proved Lipschitz continuous dependence of solution of this model and used this dependence result to study the solvability of the inverse problem for piezoelectric-locking material frictional contact problem.

2. Contact problem for piezoelectric-locking material

In this section, there is discussed a static contact problem for a nonlinear electro-elastic and locking material body which is described by unilateral constraints with multi-valued normal compliance function, and non-monotone multi-valued friction condition with slip dependent coefficient. We describe the physical setting of the problem and we provide its classical variational-hemivariational formulation, which is a system of coupled hemi-variational inequalities.

There is considered a piezoelectric-locking material body that occupies the domain $\Omega \subset \mathbb{R}^{d}, d \in$ $\{2,3\}$ with Lipschitz boundary $\Gamma=\partial \Omega$ and a unit outward normal ν at Γ. Body forces f_{0} and volume free electric charges q_{0} act on the body. It is also constrained mechanically and electrically on Γ : to describe these constraints, let consider three open and measurable parts Γ_{1}, Γ_{2} and Γ_{3} such that $\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2} \cup \bar{\Gamma}_{3}=\Gamma$ and meas $\left(\Gamma_{1}\right)>0$, on the one hand, and a partition of $\Gamma_{1} \cup \Gamma_{2}$ into two measurable parts Γ_{a} and Γ_{b} such that meas $\left(\Gamma_{a}\right)>0$, on the other hand.

The space of second order symmetric tensors on \mathbb{R}^{d} is denoted by \mathbb{S}^{d}, while \cdot and $\|\cdot\|$ represent the inner product and the associated Euclidean norm on \mathbb{R}^{d} and \mathbb{S}^{d} given for all $u, v \in \mathbb{R}^{d}$ and $\sigma, \tau \in \mathbb{S}^{d}$ by

$$
u \cdot v=u_{i} v_{i}, \quad\|v\|=(v \cdot v)^{1 / 2} \quad \text { and } \quad \sigma \cdot \tau=\sigma_{i j} \tau_{i j}, \quad\|\tau\|=(\tau \cdot \tau)^{1 / 2}
$$

The normal and tangential components of the displacement vector $v \in \mathbb{R}^{d}$ and the stress tensor $\sigma \in \mathbb{S}^{d}$ on the boundary Γ are given by

$$
v_{\nu}=v \cdot \nu, \quad v_{\tau}=v-v_{\nu} \nu \quad \text { and } \quad \sigma_{\nu}=(\sigma \nu) \cdot \nu, \quad \sigma_{\tau}=\sigma \nu-\sigma_{\nu} \nu
$$

Then, the classical formulation of the frictional electro-elastic-locking material contact problem is as follows.
Problem (P). Given $l \in \mathcal{L}$, find a displacement $u=u(l): \Omega \longrightarrow \mathbb{R}^{d}$, an electric potential $\varphi=$ $\varphi(l): \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
\sigma \in \mathcal{E}(l, \varepsilon(u))-\mathcal{B}^{T}(l, E(\varphi))+\partial I_{B}(l, \varepsilon(u)) & \text { in } \Omega, \\
D \in \mathcal{B}(l, \varepsilon(u))+\beta(l, E(\varphi))+\partial I_{C}(l, E(\varphi)) & \text { in } \Omega, \\
\operatorname{Div} \sigma+f_{0}(l)=0 & \text { in } \Omega, \\
\operatorname{div} D-q_{0}(l)=0 & \text { in } \Omega, \\
u=0 & \text { on } \Gamma_{1}, \\
\sigma \nu=f_{2}(l) & \text { on } \Gamma_{2}, \\
\varphi=0 & \text { on } \Gamma_{a}, \\
D \cdot \nu=q_{b}(l) & \text { on } \Gamma_{b}, \\
\left\{\begin{array}{l}
u_{\nu} \leqslant g_{0}, \sigma_{\nu}+\gamma \leqslant 0,\left(\sigma_{\nu}+\gamma\right)\left(u_{\nu}-g_{0}\right)=0, \\
\gamma \in w_{\nu}\left(l, \varphi-\varphi_{0}\right) \partial j_{\nu}\left(l, u_{\nu}-g_{0}\right), \\
-\sigma_{\tau} \in w_{\tau}\left(l, \varphi-\varphi_{0}, u_{\nu}-g_{0}\right) \mu\left(\left\|u_{\tau}\right\|\right) \partial j_{\tau}\left(l, u_{\tau}\right) \\
D \cdot \nu \in w_{e}\left(l, u_{\nu}-g_{0}\right) \partial j_{e}\left(l, \varphi-\varphi_{0}\right)
\end{array}\right. & \text { on } \Gamma_{3}, \\
\text { on } \Gamma_{3} .
\end{array}
$$

Here, (5), (6) represent the electro-elastic-locking materials constitutive law of the material see [19, 20] for more details, where $\mathcal{E}=\left(\mathcal{E}_{i j k l}\right)$ is the elastic tensor, $\mathcal{B}=\left(\mathcal{B}_{i j k}\right)$ and $\beta=\left(\beta_{i j}\right)$ are the piezoelectric and the electric permittivity tensors. In addition, $\varepsilon(u)=\left(\nabla u+(\nabla u)^{T}\right) / 2$ is the linearized strain tensor, $E(\varphi)=-\nabla \varphi$ is the electric field and $\mathcal{B}^{T}=\left(\mathcal{B}_{k i j}\right)$ is the transpose tensor of \mathcal{B}. Equations (7), (8) represent the equilibrium equations for the stress and the electric displacement fields. Moreover, (9)(12) are the mechanical and electrical boundary conditions, the relation (13) represents the multivalued normal compliance contact condition with unilateral constraints of Signorini type coupled with the electric potential through the stiffness coefficient w_{ν} which depends on the difference between the electric potential on the body and the electrically conductive foundation and g_{0} represents the gap function between the body and the foundation on the contact surface. Condition (14) represents the friction law, the function w_{τ} models the influence of the electric potential and normal displacement on the frictional contact, and μ denotes a positive function called the coefficient of friction. Finally, relation (15) represents a regularized condition for the electrical contact on Γ_{3} in which φ_{0} represents the electric potential of the foundation and w_{e}, j_{e} are given functions.

We explore the following spaces in order to obtain the variational formulation of Problem (P)

$$
H=L^{2}(\Omega)^{d}, \quad H_{1}=H^{1}(\Omega)^{d}, \quad \mathcal{H}=\left\{\tau=\left(\tau_{i j}\right) ; \tau_{i j}=\tau_{j i} \in L^{2}(\Omega)\right\}
$$

which are real Hilbert spaces for the following inner products and their associated norms

$$
(u, v)_{H}=\int_{\Omega} u_{i} v_{i} d x, \quad(u, v)_{H_{1}}=(u, v)_{H}+(\varepsilon(u), \varepsilon(v))_{\mathcal{H}}, \quad(\sigma, \tau)_{\mathcal{H}}=\int_{\Omega} \sigma_{i j} \tau_{i j} d x
$$

Let introduce the following variational subspaces

$$
\begin{aligned}
V & =\left\{v \in H_{1}, v=0 \text { on } \Gamma_{1}\right\} \\
W & =\left\{\psi \in H^{1}(\Omega), \psi=0 \text { on } \Gamma_{a}\right\} \\
K_{1} & =\left\{v \in V, v_{\nu} \leqslant g_{0} \text { on } \Gamma_{3}\right\}
\end{aligned}
$$

Over V and W, we look at the inner products and Euclidean norms that go along with them

$$
\begin{align*}
(u, v)_{V} & =(\varepsilon(u), \varepsilon(v))_{\mathcal{H}}, \quad\|u\|_{V}=(u, u)_{V}^{1 / 2} \tag{16}\\
(\varphi, \psi)_{W} & =(\nabla \varphi, \nabla \psi)_{H}, \quad\|\varphi\|_{W}=(\varphi, \varphi)_{W}^{1 / 2} \tag{17}
\end{align*}
$$

and sets with locking constraints

$$
\begin{align*}
& V_{1}=\{v \in V, \varepsilon(v(x)) \in B \text { a.e. } x \in \Omega\} \tag{18}\\
& V_{2}=\{\xi \in W, E(\xi(x)) \in C \text { a.e. } x \in \Omega\} . \tag{19}
\end{align*}
$$

Since V is a closed subspace of H_{1} and meas $\left(\Gamma_{1}\right)>0$, the Korn's inequality holds and there exists a constant $c_{k}>0$ depending on Ω and Γ_{1} such that

$$
\begin{equation*}
\|v\|_{H_{1}} \leqslant c_{k}\|\varepsilon(v)\|_{\mathcal{H}}, \quad \forall v \in V \tag{20}
\end{equation*}
$$

Hence, the norms $\|\cdot\|_{H_{1}}$ and $\|\cdot\|_{V}$ are equivalent on V and then $\left(V,\|\cdot\|_{V}\right)$ is a real Hilbert space. Furthermore, by Sobolev trace theorem, there exists a constant $c_{0}>0$ depending on Ω, Γ_{3} and Γ_{1} such that

$$
\begin{equation*}
\|v\|_{L^{2}(\Gamma)^{d}} \leqslant c_{0}\|v\|_{V}, \quad \forall v \in V \tag{21}
\end{equation*}
$$

Since meas $\left(\Gamma_{a}\right)>0$, the Friedrichs-Poincaré inequality holds and thus

$$
\begin{equation*}
\|\psi\|_{H^{1}(\Omega)} \leqslant c_{F}\|\nabla \psi\|_{H}, \quad \forall \psi \in W \tag{22}
\end{equation*}
$$

where a constant $c_{F}>0$ depends only on Ω and Γ_{a}. It follows from (17) and (22) that the norms $\|\cdot\|_{W}$ and $\|\cdot\|_{H^{1}(\Omega)}$ are equivalent on W, and so $\left(W,\|\cdot\|_{W}\right)$ is a real Hilbert space. In addition, the Sobolev trace theorem implies that there exists $c_{1}>0$ depending on Ω, Γ_{a} and Γ_{3} such that

$$
\begin{equation*}
\|\xi\|_{L^{2}\left(\Gamma_{3}\right)} \leqslant c_{1}\|\xi\|_{W}, \quad \forall \xi \in W \tag{23}
\end{equation*}
$$

From the first constitutive law (5) of locking piezoelectric materials, one can obtain

$$
\sigma=\mathcal{E}(l, \varepsilon(u))-\mathcal{B}^{T}(l, E(\varphi))+\zeta(l, u) \quad \text { where } \quad \zeta(l, u) \in \partial I_{B}(l, \varepsilon(u)) \text { in } \Omega
$$

Hence, for all $u, v \in V_{1}$, we get $\langle\zeta(l, u),(\varepsilon(v)-\varepsilon(u))\rangle \leqslant I_{B}(l, \varepsilon(v))-I_{B}(l, \varepsilon(u)) \leqslant 0$, and then

$$
\begin{equation*}
(\sigma, \varepsilon(v)-\varepsilon(u))_{\mathcal{H}} \leqslant\left(\mathcal{E}(l, \varepsilon(u))-\mathcal{B}^{T}(l, E(\phi)), \varepsilon(v)-\varepsilon(u)_{\mathcal{H}} .\right. \tag{24}
\end{equation*}
$$

Also, from the second constitutive law (6) of locking piezoelectric materials, it follows

$$
D=\mathcal{B}(l, \varepsilon(u))+\beta(l, E(\varphi))+p(l, \varphi) \quad \text { where } \quad p(l, \varphi) \in \partial I_{C}(l, E(\varphi)) \text { in } \Omega
$$

Then, for all $\varphi, \phi \in V_{2}$, we have $\langle p(l, \varphi), E(\phi)-E(\varphi)\rangle \leqslant I_{C}(l, E(\phi))-I_{C}(l, E(\varphi)) \leqslant 0$, and thus

$$
\begin{equation*}
(D, \nabla \varphi-\nabla \phi)_{L^{2}(\Omega)} \leqslant(\mathcal{B}(l, \varepsilon(u))+\beta(l, E(\phi)), \nabla \varphi-\nabla \phi)_{L^{2}(\Omega)} \tag{25}
\end{equation*}
$$

The study of Problem (P) requires the following hypotheses.
$\left(\mathcal{A}_{1}\right)$ The tensor $\mathcal{E}: \Omega \times \mathcal{L} \times \mathbb{S}^{d} \longrightarrow \mathbb{S}^{d}$ is such that
(i) $\mathcal{E}(\cdot, l, \xi)$ is measurable on Ω for all $l \in \mathcal{L}$ and all $\xi \in \mathbb{S}^{d}$,
(ii) $\mathcal{E}(y, l, \cdot)$ is continuous on \mathbb{S}^{d} for all $l \in \mathcal{L}$ and all $y \in \Omega$,
(3i) there exist $L_{\mathcal{E}}>0$ such that for all $l_{1}, l_{2} \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{S}^{d}$ and $y \in \Omega$,

$$
\begin{equation*}
\left\|\mathcal{E}\left(y, l_{1}, \xi_{1}\right)-\mathcal{E}\left(y, l_{2}, \xi_{2}\right)\right\| \leqslant L_{\mathcal{E}}\left(\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}+\left\|\xi_{1}-\xi_{2}\right\|\right) \tag{26}
\end{equation*}
$$

(4i) there exist $\alpha_{\mathcal{E}}>0$ such that for all $l \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{S}^{d}$ and $y \in \Omega$,

$$
\begin{equation*}
\left(\mathcal{E}\left(y, l, \varepsilon_{1}\right)-\mathcal{E}\left(y, l, \varepsilon_{2}\right)\right) \cdot\left(\xi_{1}-\xi_{2}\right) \geqslant \alpha_{\mathcal{E}}\left\|\xi_{1}-\xi_{2}\right\|^{2} \tag{27}
\end{equation*}
$$

(5i) $\mathcal{E}(y, l, 0)=0$ for all $l \in \mathcal{L}$ and $y \in \Omega$.
$\left(\mathcal{A}_{2}\right)$ The tensor of piezoelectric $\mathcal{B}=\left(\mathcal{B}_{i j k}\right): \Omega \times \mathcal{L} \times \mathbb{S}^{d} \longrightarrow \mathbb{R}^{d}$ is such that
(i) $\mathcal{B}_{i j k} \in L^{\infty}(\Omega)$,
(ii) there exist $L_{\mathcal{B}}>0$ such that for all $l_{1}, l_{2} \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{S}^{d}$ and $y \in \Omega$,

$$
\begin{equation*}
\left\|\mathcal{B}\left(y, l_{1}, \xi_{1}\right)-\mathcal{B}\left(y, l_{2}, \xi_{2}\right)\right\| \leqslant L_{\mathcal{B}}\left(\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}+\left\|\xi_{1}-\xi_{2}\right\|\right) \tag{28}
\end{equation*}
$$

$\left(\mathcal{A}_{3}\right)$ The permittivity tensor $\beta=\left(\beta_{i j k}\right): \Omega \times \mathcal{L} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$ is such that
(i) $\beta(\cdot, l, \xi)$ is measurable on Ω for all $l \in \mathcal{L}, \xi \in \mathbb{R}^{d}$,
(ii) $\beta(y, l, \cdot)$ is continuous on \mathbb{R}^{d} for all $l \in \mathcal{L}, y \in \Omega$,
(3i) there exist $L_{\beta}>0$ such that for all $l_{1}, l_{2} \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{R}^{d}$ and $y \in \Omega$,

$$
\begin{equation*}
\left\|\beta\left(y, l_{1}, \xi_{1}\right)-\beta\left(y, l_{2}, \xi_{2}\right)\right\| \leqslant L_{\beta}\left(\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}+\left\|\xi_{1}-\xi_{2}\right\|\right) \tag{29}
\end{equation*}
$$

(4i) there exist $\alpha_{\beta}>0$ such that for all $l \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{R}^{d}$ and $y \in \Omega$,

$$
\begin{equation*}
\left(\beta\left(y, l, \xi_{1}\right)-\beta\left(y, l, \xi_{2}\right)\right) \cdot\left(\xi_{1}-\xi_{2}\right) \geqslant \alpha_{\beta}\left\|\xi_{1}-\xi_{2}\right\|^{2} \tag{30}
\end{equation*}
$$

(5i) $\beta(y, l, 0)=0$ for all $l \in \mathcal{L}$ and $y \in \Omega$.
$\left(\mathcal{A}_{4}\right)$ The functions $j_{\nu}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R} \rightarrow \mathbb{R}, j_{\tau}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $j_{e}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy
(i) (a) $j_{\nu}(\cdot, l, s)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $s \in \mathbb{R}$,
(b) $j_{\nu}(y, l, \cdot)$ is locally Lipschitz on \mathbb{R} for all $l \in \mathcal{L}$ and $y \in \Gamma_{3}$,
(c) there exist $c_{0 \nu}, c_{1 \nu}, c_{2 \nu} \geqslant 0$ such that for all $l \in \mathcal{L}, s \in \mathbb{R}$ and $y \in \Gamma_{3}$,

$$
\begin{equation*}
\left\|\partial j_{\nu}(y, l, s)\right\| \leqslant c_{0 \nu}+c_{1 \nu}|s|+c_{2 \nu}\|l\|_{\mathcal{L}} \tag{31}
\end{equation*}
$$

(d) there exist positive constants $\alpha_{j \nu}$ and $\beta_{j \nu}$ such that

$$
\begin{equation*}
j_{\nu}^{0}\left(y, l_{1}, s_{1} ; s_{2}-s_{1}\right)+j_{\nu}^{0}\left(y, l_{2}, s_{2} ; s_{1}-s_{2}\right) \leqslant \alpha_{j \nu}\left|s_{1}-s_{2}\right|^{2}+\beta_{j \nu}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left|s_{1}-s_{2}\right| \tag{32}
\end{equation*}
$$

for all $l_{1}, l_{2} \in \mathcal{L}, s_{1}, s_{2} \in \mathbb{R}$ and $y \in \Gamma_{3}$.
$(i i)(a) j_{\tau}(\cdot, l, \xi)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $\xi \in \mathbb{R}^{d}$,
(b) $j_{\tau}(y, l, \cdot)$ is locally Lipschitz on \mathbb{R}^{d} for all $l \in \mathcal{L}$ and $y \in \Gamma_{3}$,
(c) there exist $c_{0 \tau}, c_{1 \tau}, c_{2 \tau} \geqslant 0$ such that for all $l \in \mathcal{L}, \xi \in \mathbb{R}^{d}$ and $y \in \Gamma_{3}$,

$$
\begin{equation*}
\left\|\partial j_{\tau}(y, l, \xi)\right\| \leqslant c_{0 \tau}+c_{1 \tau}\|\xi\|_{\mathbb{R}^{d}}+c_{2 \tau}\|l\|_{\mathcal{L}} \tag{33}
\end{equation*}
$$

(d) there exist positive constants $\alpha_{j \tau}$ and $\beta_{j \tau}$ such that

$$
\begin{equation*}
j_{\tau}^{0}\left(y, l_{1}, \xi_{1} ; \xi_{2}-\xi_{1}\right)+j_{\tau}^{0}\left(y, l_{2}, \xi_{2} ; \xi_{1}-\xi_{2}\right) \leqslant \alpha_{j \tau}\left\|\xi_{1}-\xi_{2}\right\|_{\mathbb{R}^{d}}^{2}+\beta_{j \tau}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|\xi_{1}-\xi_{2}\right\|_{\mathbb{R}^{d}} \tag{34}
\end{equation*}
$$

for all $l_{1}, l_{2} \in \mathcal{L}, \xi_{1}, \xi_{2} \in \mathbb{R}^{d}$ and $y \in \Gamma_{3}$.
$(3 i)(a) j_{e}(\cdot, l, s)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $s \in \mathbb{R}$,
(b) $j_{e}(y, l,$.$) is locally Lipschitz on \mathbb{R}$ for all $l \in \mathcal{L}$ and $y \in \Gamma_{3}$,
(c) there exist $c_{0 e}, c_{1 e}, c_{2 e} \geqslant 0$ such that for all $l \in \mathcal{L}, s \in \mathbb{R}$ and $y \in \Gamma_{3}$, we have

$$
\begin{equation*}
\left\|\partial j_{e}(y, l, s)\right\| \leqslant c_{0 e}+c_{1 e}|s|+c_{2 e}\|l\|_{\mathcal{L}} \tag{35}
\end{equation*}
$$

(d) there exist positive constants $\alpha_{j e}$ and $\beta_{j e}$ such that

$$
\begin{equation*}
j_{e}^{0}\left(y, l_{1}, s_{1} ; s_{2}-s_{1}\right)+j_{e}^{0}\left(y, l_{2}, s_{2} ; s_{1}-s_{2}\right) \leqslant \alpha_{j e}\left|s_{1}-s_{2}\right|^{2}+\beta_{j e}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left|s_{1}-s_{2}\right| \tag{36}
\end{equation*}
$$

for all $l_{1}, l_{2} \in \mathcal{L}, s_{1}, s_{2} \in \mathbb{R}$ and $y \in \Gamma_{3}$.
$\left(\mathcal{A}_{5}\right)$ The function $w_{\nu}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R} \rightarrow \mathbb{R}, w_{\tau}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, w_{e}: \Gamma_{3} \times \mathcal{L} \times \mathbb{R} \rightarrow \mathbb{R}$ and $\mu: \Gamma_{3} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfy
(i) (a) $w_{\nu}(\cdot, l, s)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $s \in \mathbb{R}$,
(b) $w_{\nu}(y, l, \cdot)$ is continuous on \mathbb{R} for all $l \in \mathcal{L}$ and $y \in \Gamma_{3}$,
(c) there exists $\bar{w}_{\nu}>0$ such that for all $l \in \mathcal{L}, s \in \mathbb{R}$ and $y \in \Gamma_{3}$, we have

$$
\begin{equation*}
0 \leqslant w_{\nu}(y, l, s) \leqslant \bar{w}_{\nu}, \tag{37}
\end{equation*}
$$

(ii)(a) $w_{\tau}\left(\cdot, l, s_{1}, s_{2}\right)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $s_{1}, s_{2} \in \mathbb{R}$,
(b) $w_{\tau}(y, l, \cdot, \cdot)$ is continuous on $\mathbb{R} \times \mathbb{R}$ for all $l \in \mathcal{L}, y \in \Gamma_{3}$,
(c) there exists $\bar{w}_{\tau}>0$ such that for all $l \in \mathcal{L}, s_{1}, s_{2} \in \mathbb{R}$ and $y \in \Gamma_{3}$, we have

$$
\begin{equation*}
0 \leqslant w_{\tau}\left(y, l, s_{1}, s_{2}\right) \leqslant \bar{w}_{\tau}, \tag{38}
\end{equation*}
$$

(3i)(a) $w_{e}(., l, s)$ is measurable on Γ_{3} for all $l \in \mathcal{L}$ and $s \in \mathbb{R}$,
(b) $w_{e}(y, l,$.$) is continuous on \mathbb{R}$ for all $l \in \mathcal{L}, y \in \Gamma_{3}$,
(c) there exists $\bar{w}_{e}>0$ for all $l \in \mathcal{L}, s \in \mathbb{R}$ and $y \in \Gamma_{3}$,

$$
\begin{equation*}
0 \leqslant w_{e}(y, l, s) \leqslant \bar{w}_{e}, \tag{39}
\end{equation*}
$$

(4i)(a) $\mu(\cdot, s)$ is measurable on Γ_{3} for all $s \in \mathbb{R}_{+}$,
(b) there exists $L_{\mu}>0$ such that for all $s_{1}, s_{2} \in \mathbb{R}_{+}$and $y \in \Gamma_{3}$, we have

$$
\begin{equation*}
\left\|\mu\left(y, s_{1}\right)-\mu\left(y, s_{2}\right)\right\| \leqslant L_{\mu}\left|s_{1}-s_{2}\right|, \tag{40}
\end{equation*}
$$

(c) there exists $\mu_{0}>0$ such that for all $s \in \mathbb{R}_{+}$and $y \in \Gamma_{3}$,

$$
\begin{equation*}
\mu(y, s) \leqslant \mu_{0} . \tag{41}
\end{equation*}
$$

$\left(\mathcal{A}_{6}\right)$ The forces, tractions, volume and surface charge densities, gap and foundation's potential satisfy
(i) for all $l \in \mathcal{L}$, the following regularity conditions are true

$$
f_{0}(l) \in L^{2}(\Omega)^{d}, \quad f_{2}(l) \in L^{2}\left(\Gamma_{2}\right)^{d}, \quad q_{0}(l) \in L^{2}(\Omega), \quad q_{b}(l) \in L^{2}\left(\Gamma_{b}\right),
$$

(ii) there exists $L_{f_{0}}, L_{f_{2}}, L_{q_{0}}, L_{q_{b}}>0$ such that for all $l_{1}, l_{2} \in \mathcal{L}$, we have

$$
\begin{align*}
& \left\|f_{0}\left(l_{1}\right)-f_{0}\left(l_{2}\right)\right\|_{L^{2}(\Omega)^{d}} \leqslant L_{f_{0}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}, \\
& \left\|f_{2}\left(l_{1}\right)-f_{2}\left(l_{2}\right)\right\|_{L^{2}\left(\Gamma_{2}\right)^{d}} \leqslant L_{f_{2}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}, \\
& \left\|q_{0}\left(l_{1}\right)-q_{0}\left(l_{2}\right)\right\|_{L^{2}(\Omega)} \leqslant L_{q_{0}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}, \tag{42}\\
& \left\|q_{b}\left(l_{1}\right)-q_{b}\left(l_{2}\right)\right\|_{L^{2}\left(\Gamma_{b}\right)} \leqslant L_{q_{b}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}},
\end{align*}
$$

(3i) the functions g_{0} and φ_{0} are such that $g_{0} \geqslant 0 \in L^{2}\left(\Gamma_{3}\right)$ and $\varphi_{0} \in L^{2}\left(\Gamma_{3}\right)$.
$\left(\mathcal{A}_{7}\right) B$ and C are nonempty closed convex subset, resp. of \mathbb{S}^{d} and $L^{2}(\Omega)$ with

$$
0_{\mathbb{S}^{d}} \in B, \quad 0_{L^{2}(\Omega)} \in C .
$$

Next, let $l \in \mathcal{L}$, consider two elements $f(l) \in V$ and $\mathbf{q}(l) \in W$ defined by

$$
\begin{align*}
& (f(l), v)=\left(f_{0}(l), v\right)+\left(f_{2}(l), v\right) \quad \text { for all } \quad v \in V, \tag{43}\\
& (\mathbf{q}(l), \psi)=\left(q_{0}(l), \psi\right)-\left(q_{b}(l), \psi\right) \quad \text { for all } \quad \psi \in W . \tag{44}
\end{align*}
$$

Using standard techniques, one can get the following variational formulation of Problem (P).
Problem (PV). Given $l \in \mathcal{L}$, find a displacement field $u \in K_{1} \cap V_{1}$ and an electric potential field $\varphi \in V_{2}$ such that

$$
\begin{align*}
& \left(\mathcal{E}(l, \varepsilon(u))+\mathcal{B}^{T}(l, \nabla \varphi), \varepsilon(v)-\varepsilon(u)\right)_{\mathcal{H}}+\int_{\Gamma_{3}} w_{\nu}\left(l, \varphi-\varphi_{0}\right) j_{\nu}^{0}\left(l, u_{\nu}-g_{0} ; v_{\nu}-u_{\nu}\right) d a \\
& \quad+\int_{\Gamma_{3}} w_{\tau}\left(l, \varphi-\varphi_{0}, u_{\nu}-g_{0}\right) \mu\left(\left\|u_{\tau}\right\|\right) j_{\tau}^{0}\left(l, u_{\tau} ; v_{\tau}-u_{\tau}\right) d a \geqslant(f(l), v-u)_{V}, \quad \forall v \in K_{1} \cap V_{1}, \tag{45}\\
& (\beta(l, \nabla \varphi)-\mathcal{B}(l, \varepsilon(u)), \nabla(\psi-\varphi))_{H}+\int_{\Gamma_{3}} w_{e}\left(l, u_{\nu}-g_{0}\right) j_{e}^{0}\left(l, \varphi-\varphi_{0} ; \psi-\varphi\right) d a \\
& \geqslant(\mathbf{q}(l), \psi-\varphi)_{W}, \quad \forall \psi \in V_{2} \tag{46}
\end{align*}
$$

The previous Problem can be reformulated as follows.
Problem (PV). Given $l \in \mathcal{L}$, find $(u, \varphi) \in\left(K_{1} \cap V_{1}\right) \times V_{2}$

$$
\begin{align*}
& \left(\mathcal{E}(l, \varepsilon(u))+\mathcal{B}^{T}(l, \nabla \varphi), \varepsilon(v)-\varepsilon(u)\right)_{\mathcal{H}}+(\beta(l, \nabla \varphi)-\mathcal{B}(l, \varepsilon(u)), \nabla(\psi-\varphi))_{H} \\
& +\int_{\Gamma_{3}}\left[w_{\nu}\left(l, \varphi-\varphi_{0}\right) j_{\nu}^{0}\left(l, u_{\nu}-g_{0} ; v_{\nu}-u_{\nu}\right)+w_{e}\left(l, u_{\nu}-g_{0}\right) j_{e}^{0}\left(l, \varphi-\varphi_{0} ; \psi-\varphi\right)\right] d a \\
& +\int_{\Gamma_{3}} w_{\tau}\left(l, \varphi-\varphi_{0}, u_{\nu}-g_{0}\right) \mu\left(\left\|u_{\tau}\right\|\right) j_{\tau}^{0}\left(l, u_{\tau} ; v_{\tau}-u_{\tau}\right) d a \tag{47}\\
& \geqslant(f(l), v-u)_{V}+(\mathbf{q}(l), \psi-\varphi)_{W}, \quad \forall(v, \psi) \in\left(K_{1} \cap V_{1}\right) \times V_{2} .
\end{align*}
$$

Now, consider the real Hilbert product space $Y=V \times W$ endowed by the usual inner product

$$
\begin{equation*}
(y, k)_{Y}=(u, v)_{V}+(\varphi, \psi)_{W} \text { for all } y=(u, \varphi), k=(v, \psi) \in Y \tag{48}
\end{equation*}
$$

Consider a nonempty closed convex $U=\left(K_{1} \cap V_{1}\right) \times V_{2}$ of Y and the operator A: $\mathcal{L} \times Y \longrightarrow Y^{*}$ defined by

$$
\begin{equation*}
\langle\mathrm{A}(l, y), k\rangle_{Y}=\left(\mathcal{E}(l, \varepsilon(u))+\mathcal{B}^{T}(l, \nabla \varphi), \varepsilon(v)\right)_{\mathcal{H}}+(\beta(l, \nabla \varphi)-\mathcal{B}(l, \varepsilon(u)), \nabla \psi)_{H}, \tag{49}
\end{equation*}
$$

for all $y=(u, \varphi), k=(v, \psi) \in Y$ and $l \in \mathcal{L}$, the functional $\mathrm{J}: \mathcal{L} \times U \times Y \longrightarrow \mathbb{R}$ given by

$$
\begin{align*}
\mathrm{J}(l, k, y)= & \int_{\Gamma_{3}} w_{\nu}\left(l, \varphi-\varphi_{0}\right) j_{\nu}\left(l, u_{\nu}-g_{0}\right) d a+\int_{\Gamma_{3}} w_{e}\left(l, u_{\nu}-g_{0}\right) j_{e}\left(l, \varphi-\varphi_{0}\right) d a \tag{50}\\
& +\int_{\Gamma_{3}} w_{\tau}\left(l, \varphi-\varphi_{0}, v_{\nu}-g_{0}\right) \mu\left(\left\|v_{\tau}\right\|\right) j_{\tau}\left(l, u_{\tau}\right) d a
\end{align*}
$$

for all $y=(u, \varphi), k=(v, \psi) \in Y$ and $l \in \mathcal{L}$, and the element $f_{q}(l) \in Y^{*}$ given by

$$
\begin{equation*}
\left\langle f_{q}(l), k\right\rangle_{Y}=(f(l), v)_{V}+(\mathbf{q}(l), \psi)_{W}, \quad \forall k=(v, \psi) \in Y, l \in \mathcal{L} . \tag{51}
\end{equation*}
$$

Let state the following problem using the preceding notations.

Problem $(\mathcal{Q} V)$. Given $l \in \mathcal{L}$, find $y \in U$ such that

$$
\begin{equation*}
\left\langle\mathrm{A}(l, y)-f_{q}(l), k-y\right\rangle_{Y}+\mathrm{J}^{0}(l, y, y ; k-y) \geqslant 0, \quad \forall k \in U \tag{52}
\end{equation*}
$$

As result, the solution of Problem $(\mathcal{Q V})$ is a solution of Problem $(P V)$.
The analysis of Problem $(\mathcal{Q} V)$, including its unique solvability is based on the abstract result on hemi-variational inequality which has been discussed in [17]. Then we study the inverse problem for the contact problem and deliver a result and its solvability.

3. Analysis of Problem (PV)

Moreover, for the problem $(P V)$, we obtain the existence and uniqueness result.
Theorem 1. Assume hypotheses $\left(\mathcal{A}_{1}\right)-\left(\mathcal{A}_{7}\right)$ and the following smallness condition are satisfied

$$
\begin{equation*}
\max \left\{\bar{w}_{\nu} \alpha_{j \nu} c_{0}^{2}+\bar{w}_{\tau} \mu_{0} \alpha_{j \tau} c_{0}^{2}, \bar{w}_{e} \alpha_{j e} c_{1}^{2}\right\} \leqslant \min \left(\alpha_{\mathcal{E}}, \alpha_{\beta}\right) \tag{53}
\end{equation*}
$$

Then, for all $l \in \mathcal{L}$, the problem $(P V)$ has a unique solution $y(l)=(u(l), \varphi(l)) \in U$. Moreover, for all $l_{1}, l_{2} \in \mathcal{L}$, there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|u\left(l_{1}\right)-u\left(l_{2}\right)\right\|_{V}+\left\|\varphi\left(l_{1}\right)-\varphi\left(l_{2}\right)\right\|_{W} \leqslant c\left\|l_{1}-l_{2}\right\|_{\mathcal{L}} \tag{54}
\end{equation*}
$$

where $\left(u\left(l_{i}\right), \varphi\left(l_{i}\right)\right)$ is the unique solution of Problem $(P V)$ corresponding to $l_{i} \in \mathcal{L}$ with $i=1,2$.
Proof. The proof is based on the Banach fixed point arguments and some results for hemi-variational inequality. By the definition of U it is clear that U is a nonempty, closed and convex subset of Y. Moreover, from the definitions (43), (44) and (51) of f, \mathbf{q} we get $f_{q}(l) \in Y^{*}$ for all $l \in \mathcal{L}$.
Lemma 1. Under the assumptions $\left(\mathcal{A}_{1}\right)-\left(\mathcal{A}_{3}\right)$. The operator A defined by (49) satisfies the properties
(i) for all $l \in \mathcal{L}$, the mapping $\mathrm{A}(l, \cdot)$ is a pseudo-monotonous one,
(ii) there exist $\alpha_{\mathrm{A}}>0$ such that for all $l \in \mathcal{L}$ and $u_{1}, u_{2} \in Y$, it yields

$$
\begin{equation*}
\left\langle A\left(l, u_{1}\right)-A\left(l, u_{2}\right), u_{1}-u_{2}\right\rangle_{X} \geqslant \alpha_{A}\left\|u_{1}-u_{2}\right\|_{Y}^{2} \tag{55}
\end{equation*}
$$

Proof. First, it follows from $\left(\mathcal{A}_{1}\right)(3 i),\left(\mathcal{A}_{1}\right)(5 i),\left(\mathcal{A}_{2}\right)(i i),\left(\mathcal{A}_{3}\right)(3 i)$ and $\left(\mathcal{A}_{3}\right)(5 i)$ that for all $l \in \mathcal{L}$, the operator $\mathrm{A}(l, \cdot)$ is bounded one. Hence, for all $k_{1}=\left(v_{1}, \varphi_{1}\right), k_{2}=\left(v_{2}, \varphi_{2}\right) \in Y$,

$$
\begin{aligned}
\left\langle\mathrm{A}\left(l, k_{1}\right)-\right. & \left.\mathrm{A}\left(l, k_{2}\right), k_{1}-k_{2}\right\rangle_{Y}=\left\langle\mathrm{A}\left(l, k_{1}\right), k_{1}-k_{2}\right\rangle_{Y}-\left\langle\mathrm{A}\left(l, k_{2}\right), k_{1}-k_{2}\right\rangle_{Y} \\
= & \left(\mathcal{E}\left(l, \varepsilon\left(v_{1}\right)\right)+\mathcal{B}^{T}\left(l, \nabla \varphi_{1}\right), \varepsilon\left(v_{1}\right)-\left(v_{2}\right)\right)_{\mathcal{H}}+\left(\beta\left(l, \nabla \varphi_{1}\right)-\mathcal{B}\left(l, \varepsilon\left(v_{1}\right)\right), \nabla \varphi_{1}-\nabla \varphi_{2}\right)_{H} \\
& -\left(\mathcal{E}\left(l, \varepsilon\left(v_{2}\right)\right)-\mathcal{B}^{T}\left(l, \nabla \varphi_{2}\right), \varepsilon\left(v_{1}\right)-\left(v_{2}\right)\right)_{\mathcal{H}}-\left(\beta\left(l, \nabla \varphi_{2}\right)+\mathcal{B}\left(l, \varepsilon\left(v_{2}\right)\right), \nabla \varphi_{1}-\nabla \varphi_{2}\right)_{H} \\
= & \left(\mathcal{E}\left(l, \varepsilon\left(v_{1}\right)\right)-\mathcal{E}\left(l, \varepsilon\left(v_{2}\right)\right), \varepsilon\left(v_{1}\right)-\left(v_{2}\right)\right)_{\mathcal{H}}+\left(\beta\left(l, \nabla \varphi_{1}\right)-\beta\left(l, \nabla \varphi_{2}\right), \nabla \varphi_{1}-\nabla \varphi_{2}\right)_{H}
\end{aligned}
$$

Thus by assumptions $\left(\mathcal{A}_{1}\right)(4 i)$ and $\left(\mathcal{A}_{3}\right)(4 i)$,

$$
\begin{equation*}
\left\langle\mathrm{A}\left(l, k_{1}\right)-\mathrm{A}\left(l, k_{2}\right), k_{1}-k_{2}\right\rangle_{Y} \geqslant \alpha_{\mathcal{E}}\left\|k_{1}-k_{2}\right\|_{V}^{2}+\alpha_{\beta}\left\|\varphi_{1}-\varphi_{2}\right\|_{W}^{2} \tag{56}
\end{equation*}
$$

which implies the inequality (5) with $\alpha_{\mathrm{A}}=\min \left(\alpha_{\mathcal{E}}, \alpha_{\beta}\right)$. In addition, since $\mathrm{A}(l, \cdot)$ is bounded, monotonous and hemi-continuous operator, for all $l \in \mathcal{L}$, it is also pseudo-monotonous one.
Lemma 2. Under the assumptions \mathcal{A}_{4} and \mathcal{A}_{5}, the function J defined by (50) satisfies the properties
(i) for all $l \in \mathcal{L}, z \in Y$, the function $\mathrm{J}(l, z, \cdot)$ is a locally Lipschitz on Y,
(ii) there exist positive constants a_{0}, a_{1}, a_{2} and a_{3} such that for all $l \in \mathcal{L}$, one has

$$
\begin{equation*}
\|\partial \mathrm{J}(l, z, u)\|_{Y^{*}} \leqslant a_{0}+a_{1}\|z\|_{Y}+a_{2}\|u\|_{Y}+a_{3}\|l\|_{\mathcal{L}}, \quad \text { for all } \quad u, z \in Y \tag{57}
\end{equation*}
$$

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 665-677 (2021)
(iii) there exist $\alpha_{\mathrm{J}}>0, \beta_{\mathrm{J}} \geqslant 0$ and $\gamma_{\mathrm{J}} \geqslant 0$ such that for all $l_{1}, l_{2} \in \mathcal{L}$, one has

$$
\begin{align*}
& \mathrm{J}^{0}\left(l_{1}, z_{1}, u_{1} ; u_{2}-u_{1}\right)+\mathrm{J}^{0}\left(l_{2}, z_{2}, u_{2} ; u_{1}-u_{2}\right) \leqslant \alpha_{\mathrm{J}}\left\|u_{1}-u_{2}\right\|_{Y}^{2}+\beta_{\mathrm{J}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|u_{1}-u_{2}\right\|_{Y} \tag{58}\\
& \quad+\gamma_{\mathrm{J}}\left\|z_{1}-z_{2}\right\|_{Y}\left\|u_{1}-u_{2}\right\|_{Y}, \quad \text { for all } \quad u_{1}, u_{2}, z_{1}, z_{2} \in Y
\end{align*}
$$

Proof. Consider the following functions

$$
\begin{array}{ll}
j_{1}: \mathcal{L} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, & j_{1}\left(l, s_{1}, s_{2}\right)=w_{\nu}\left(l, s_{1}\right) j_{\nu}\left(l, s_{2}\right), \\
j_{2}: \mathcal{L} \times \mathbb{R}^{3} \times \mathbb{R}^{d} \rightarrow \mathbb{R}, & j_{2}\left(l, s_{1}, s_{2}, s_{3}, \xi\right)=w_{\tau}\left(l, s_{1}, s_{2}\right) \mu\left(\left\|s_{3}\right\|\right) j_{\tau}(l, \xi), \\
j_{3}: \mathcal{L} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, & j_{3}\left(l, s_{1}, s_{2}\right)=w_{e}\left(l, s_{1}\right) j_{e}\left(l, s_{2}\right)
\end{array}
$$

Then, let represent $J=J_{1}+J_{2}+J_{3}$ such that

$$
\begin{align*}
& \mathrm{J}_{1}(l, z, y)=\int_{\Gamma_{3}} j_{1}\left(l, \psi-\varphi_{0}, u_{\nu}-g_{0}\right) d a \tag{62}\\
& \mathrm{~J}_{2}(l, z, y)=\int_{\Gamma_{3}} j_{2}\left(l, \psi-\varphi_{0}, v_{\nu}-g_{0}, v_{\tau}, u_{\tau}\right) d a \tag{63}\\
& \mathrm{~J}_{3}(l, z, y)=\int_{\Gamma_{3}} j_{3}\left(l, v_{\nu}-g_{0}, \varphi-\varphi_{0}\right) d a \tag{64}
\end{align*}
$$

for all $l \in \mathcal{L}$ and $z=(v, \psi), y=(u, \varphi) \in Y$. First, it is clear that J is well defined and $\mathrm{J}(l, z, \cdot)$ is locally Lipschitz on Y for all $l \in \mathcal{L}$ and $z \in U$. Next, we use $\left(\mathcal{B}_{4}\right)(i)(c)$ and $\left(\mathcal{B}_{5}\right)(i)(c)$ to obtain

$$
\begin{align*}
& \left\|\partial \mathrm{J}_{1}(l, z, y)\right\|_{Y} \leqslant \int_{\Gamma_{3}} \bar{w}_{\nu}\left(c_{0 \nu}+c_{1 \nu}\left\|u_{\nu}-g_{0}\right\|+c_{2 \nu}\|l\|_{\mathcal{L}}\right) d a \tag{65}\\
& \leqslant \bar{w}_{\nu}\left\{c_{0 \nu} \operatorname{meas}\left(\Gamma_{3}\right)+c_{1 \nu} c_{0}\left\|u_{\nu}\right\|_{V} \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)}+c_{1 \nu}\left\|g_{0}\right\|_{L^{2}\left(\Gamma_{3}\right)} \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)}+c_{2 \nu}\|l\|_{\mathcal{L}} \operatorname{meas}\left(\Gamma_{3}\right)\right\}
\end{align*}
$$

In a similar way, the assumptions $\left(\mathcal{A}_{4}\right)(i i)(c),\left(\mathcal{A}_{5}\right)(i i)(c)$ and $\left(\mathcal{A}_{5}\right)(4 i)(c)$ imply

$$
\begin{equation*}
\left\|\partial \mathrm{J}_{2}(l, z, y)\right\|_{Y} \leqslant \bar{w}_{\tau} \mu_{0}\left\{c_{0 \tau} \operatorname{meas}\left(\Gamma_{3}\right)+c_{1 \tau} c_{0}\|u\|_{V} \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)}+c_{2 \tau} \operatorname{meas}\left(\Gamma_{3}\right)\|l\|_{\mathcal{L}}\right\} \tag{66}
\end{equation*}
$$

and the assumptions $\left(\mathcal{A}_{4}\right)(3 i)(c)$ and $\left(\mathcal{A}_{5}\right)(3 i)(c)$ imply

$$
\begin{align*}
\left\|\partial J_{3}(l, z, y)\right\|_{Y} \leqslant & \bar{w}_{e}\left\{c_{0 e} \operatorname{meas}\left(\Gamma_{3}\right)+c_{1 e} c_{2}\|\varphi\|_{W} \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)}\right. \tag{67}\\
& +\left\|\varphi_{0}\right\|_{L^{2}\left(\Gamma_{3}\right)} \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)}+c_{2 e}\|l\|_{\left.\mathcal{L}^{2} \operatorname{meas}\left(\Gamma_{3}\right)\right\}}
\end{align*}
$$

From the previous estimations (65)-(67), One can deduce

$$
\begin{equation*}
\|\partial \mathrm{J}(l, z, y)\| \leqslant C_{0}+C_{1}\|z\|_{Y}+C_{2}\|y\|_{Y}+C_{3}\|l\|_{\mathcal{L}} \quad \text { for all } \quad l \in \mathcal{L} \quad \text { and } \quad(z, y) \in U \times Y \tag{68}
\end{equation*}
$$

where the constants C_{0}, C_{1}, C_{2} and C_{3} are given by

$$
\begin{align*}
& C_{0}=\left(\bar{w}_{\nu} c_{0 \nu}+\bar{w}_{\tau} \mu_{0} c_{0 \tau}+\bar{w}_{e} c_{0 e}\right) \operatorname{meas}\left(\Gamma_{3}\right)+\left(\bar{w}_{\nu} c_{1 \nu}\left\|g_{0}\right\|_{L^{2}\left(\Gamma_{3}\right)}+\bar{w}_{e}\left\|\varphi_{0}\right\|_{L^{2}\left(\Gamma_{3}\right)}\right) \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)} \tag{69}\\
& C_{1}=0 \tag{70}\\
& C_{2}=\left(\bar{w}_{\nu} c_{1 \nu} c_{0}+\bar{w}_{\tau} \mu_{0} c_{1 \tau} c_{0}+\bar{w}_{e} c_{1 e} c_{2}\right) \sqrt{\operatorname{meas}\left(\Gamma_{3}\right)} \tag{71}\\
& C_{3}=\left(\bar{w}_{\nu} c_{2 \nu}+\bar{w}_{\tau} \mu_{0} c_{2 \tau}+\bar{w}_{e} c_{2 e}\right) \operatorname{meas}\left(\Gamma_{3}\right) \tag{72}
\end{align*}
$$

Next, using Corollary 4.15 in [21], we get for $l \in \mathcal{L}$ and $z=(v, \psi), y=(u, \varphi), \bar{y}=(\bar{u}, \bar{\varphi}) \in Y$ that

$$
\begin{equation*}
\mathrm{J}_{1}^{0}(l, z, y, \bar{y}) \leqslant \int_{\Gamma_{3}} w_{\nu}\left(l, \psi-\varphi_{0}\right) j_{\nu}^{0}\left(l, u_{\nu}-g_{0} ; \bar{u}_{\nu}\right) d a \tag{73}
\end{equation*}
$$

$$
\begin{align*}
& J_{2}^{0}(l, z, y, \bar{y}) \leqslant \int_{\Gamma_{3}} w_{\tau}\left(l, \psi-\varphi_{0}, v_{\nu}-g_{0}\right) \mu\left(\left\|v_{\tau}\right\|\right) j_{\tau}^{0}\left(l, u_{\tau} ; \bar{u}_{\tau}\right) d a, \tag{74}\\
& J_{3}^{0}(l, z, y, \bar{y}) \leqslant \int_{\Gamma_{3}} w_{e}\left(l, v_{\nu}-g_{0}\right) j_{e}^{0}\left(l, \varphi-\varphi_{0} ; \bar{\varphi}\right) d a . \tag{75}
\end{align*}
$$

For the functional J_{1}^{0}, we use $\left(\mathcal{A}_{4}\right)(i)(d)$ and $\left(\mathcal{A}_{5}\right)(i)(c)$ to find

$$
\begin{align*}
J_{1}^{0}\left(l_{1}, z_{1}, y_{1} ; y_{2}-y_{1}\right) & +J_{1}^{0}\left(l_{2}, z_{2}, y_{2} ; y_{1}-y_{2}\right) \\
& \leqslant \int_{\Gamma_{3}} \bar{w}_{\nu}\left|j_{\nu}^{0}\left(l_{1}, u_{1 \nu}-g_{0} ; u_{2 \nu}-u_{1 \nu}\right)+j_{\nu}^{0}\left(l_{2}, u_{2 \nu}-g_{0} ; u_{1 \nu}-u_{2 \nu}\right)\right| d a \tag{76}\\
& \leqslant \bar{w}_{\nu} \alpha_{j \nu} c_{0}^{2}\left\|u_{1}-u_{2}\right\|_{V}^{2}+\bar{w}_{\nu} \beta_{j \nu} c_{0} \operatorname{meas}\left(\Gamma_{3}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|u_{1}-u_{2}\right\|_{V} .
\end{align*}
$$

Similarly, for functionals J_{2}^{0} and J_{3}^{0}, we conclude

$$
\begin{align*}
\mathrm{J}_{2}^{0}\left(l_{1}, z_{1}, y_{1} ; y_{2}-y_{1}\right)+ & \mathrm{J}_{2}^{0}\left(l_{2}, z_{2}, y_{2} ; y_{1}-y_{2}\right) \\
& \leqslant \bar{w}_{\tau} \mu_{0} \alpha_{j \tau} c_{0}^{2}\left\|u_{1}-u_{2}\right\|_{V}^{2}+\bar{w}_{\tau} \beta_{j \tau} c_{0} \operatorname{meas}\left(\Gamma_{3}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|_{u_{1}}-u_{2}\right\|_{V} \tag{77}\\
\mathrm{~J}_{3}^{0}\left(l_{1}, z_{1}, y_{1} ; y_{2}-y_{1}\right)+ & \mathrm{J}_{3}^{0}\left(l_{2}, z_{2}, y_{2} ; y_{1}-y_{2}\right) \\
& \leqslant \bar{w}_{e} \alpha_{j e} c_{1}^{2}\left\|\varphi_{1}-\varphi_{2}\right\|_{W}^{2}+\bar{w}_{e} \beta_{j e} c_{1} \operatorname{meas}\left(\Gamma_{3}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|\varphi_{1}-\varphi_{2}\right\|_{W} \tag{78}
\end{align*}
$$

Consequently from the inequalities (76)-(78) one can obtain

$$
\begin{equation*}
\mathrm{J}^{0}\left(l_{1}, z_{1}, y_{1} ; y_{2}-y_{1}\right)+\mathrm{J}^{0}\left(l_{2}, z_{2}, y_{2} ; y_{1}-y_{2}\right) \leqslant \alpha_{J}\left\|y_{1}-y_{2}\right\|_{Y}^{2}+\beta_{J}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left\|y_{1}-y_{2}\right\|_{Y}, \tag{79}
\end{equation*}
$$

where the constants α_{J} and β_{J} are given by

$$
\begin{aligned}
& \alpha_{J}=\max \left\{\bar{w}_{\nu} \alpha_{j \nu} c_{0}^{2}+\bar{w}_{\tau} \mu_{0} \alpha_{j \tau} c_{0}^{2}, \bar{w}_{e} \alpha_{j e} c_{1}^{2}\right\} \\
& \beta_{J}=\max \left\{\bar{w}_{\tau} \beta_{j \tau} c_{0} \text { meas }\left(\Gamma_{3}\right)+\bar{w}_{\tau} \beta_{j \tau} c_{0} \operatorname{meas}\left(\Gamma_{3}\right), \bar{w}_{e} \beta_{j e} c_{1} \operatorname{meas}\left(\Gamma_{3}\right)\right\}
\end{aligned}
$$

Then, assumption (3.6) holds with the previous constants $\alpha_{\mathrm{J}}, \beta_{\mathrm{J}}$ and $\gamma_{\mathrm{J}}=0$.
Then, from Theorem 10 in [17] and the smallness conditions (53), one can conclude that for all $l \in \mathcal{L}$, the Problem $(P V)$ has a unique solution $y(l)=(u(l), \varphi(l)) \in U$.

Now, we derive a second continuous dependence result of the weak solution of problem (P) with respect to the constraints.
Theorem 2. Assume that the assumptions of theorem 1 then we have

$$
\begin{equation*}
\left\|y\left(l_{1}\right)-y\left(l_{2}\right)\right\| \leqslant \frac{L_{\mathcal{E}}+2 L_{\mathcal{B}}+L_{\beta}+\beta_{J}+L_{f_{0}} c_{k}+L_{f_{2}} c_{1}+L_{q_{0}} c_{F}+L_{q_{b}} c_{2}}{\alpha_{A}-\alpha_{J}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}} \tag{80}
\end{equation*}
$$

where $y\left(l_{1}\right)=\left(u\left(l_{1}\right), \varphi\left(l_{1}\right)\right)$ and $y\left(l_{2}\right)=\left(u\left(l_{2}\right), \varphi\left(l_{2}\right)\right)$ are the unique solution of Problem (P) corresponding to l_{1}, l_{2}, respectively.

Proof. Let $y\left(l_{1}\right), y\left(l_{2}\right) \in K$ be the solution of Problem $(Q V)$ corresponding to $l_{1}, l_{2} \in \mathcal{L}$, then

$$
\begin{align*}
& \left\langle\mathrm{A}\left(l_{1}, u\left(l_{1}\right)\right)-f_{q}\left(l_{1}\right), z-u\left(l_{1}\right)\right\rangle_{Y}+\mathrm{J}^{0}\left(l_{1}, u\left(l_{1}\right), u\left(l_{1}\right) ; z-u\left(l_{1}\right)\right) \geqslant 0, \quad \text { for all } z \in U, \tag{81}\\
& \left\langle\mathrm{~A}\left(l_{2}, u\left(l_{2}\right)\right)-f_{q}\left(l_{2}\right), z-u\left(l_{2}\right)\right\rangle_{Y}+\mathrm{J}^{0}\left(l_{1}, u\left(l_{2}\right), u\left(l_{2}\right) ; z-u\left(l_{2}\right)\right) \geqslant 0, \quad \text { for all } z \in U, \tag{82}
\end{align*}
$$

Taking $z=y\left(l_{2}\right)$ in (81) and $z=y\left(l_{1}\right)$ in (82), then we add the obtained inequalities to find

$$
\begin{align*}
& \left\langle\mathrm{A}\left(l_{1}, u\left(l_{1}\right)\right)-\mathrm{A}\left(l_{2}, y\left(l_{2}\right)\right), y\left(l_{1}\right)-y\left(l_{2}\right)\right\rangle_{Y} \\
& \leqslant\left\langle f_{q}\left(l_{2}\right)-f_{q}\left(l_{1}\right), y\left(l_{2}\right)-y\left(l_{1}\right)\right\rangle_{Y}+\mathrm{J}^{0}\left(l_{1}, u\left(l_{1}\right), u\left(l_{1}\right) ; u\left(l_{2}\right)-u\left(l_{1}\right)\right) \tag{83}\\
& \quad+\mathrm{J}^{0}\left(l_{2}, y\left(l_{2}\right), y\left(l_{2}\right) ; y\left(l_{1}\right)-y\left(l_{2}\right)\right) .
\end{align*}
$$

As a result, the previous inequality can be stated like this

$$
\begin{align*}
\left\langle\mathrm{A}\left(l_{2}, y\left(l_{1}\right)\right)-\right. & \left.\mathrm{A}\left(l_{2}, y\left(l_{2}\right)\right), y\left(l_{1}\right)-y\left(l_{2}\right)\right\rangle_{Y} \\
\leqslant & \left\langle f_{q}\left(l_{2}\right)-f_{q}\left(l_{1}\right), y\left(l_{2}\right)-y\left(l_{1}\right)\right\rangle_{Y}+\left\langle\mathrm{A}\left(l_{2}, y\left(l_{1}\right)\right)-\mathrm{A}\left(l_{1}, y\left(l_{1}\right)\right), y\left(l_{1}\right)-y\left(l_{2}\right)\right\rangle_{Y} \tag{84}\\
& +\mathrm{J}^{0}\left(l_{1}, y\left(l_{1}\right), y\left(l_{1}\right) ; y\left(l_{2}\right)-y\left(l_{1}\right)\right)+\mathrm{J}^{0}\left(l_{2}, y\left(l_{2}\right), y\left(l_{2}\right) ; y\left(l_{1}\right)-y\left(l_{2}\right)\right) .
\end{align*}
$$

By $\left(\mathcal{A}_{1}\right)(3 i),\left(\mathcal{A}_{2}\right)(i i)$ and $\left(\mathcal{A}_{3}\right)(3 i)$, we find, for all $l_{1}, l_{2} \in \mathcal{L}$ and $y=(u, \varphi), z=(v, \psi) \in Y$, that

$$
\begin{align*}
\left\langle\mathrm{A}\left(l_{1}, y\right)-\right. & \left.\mathrm{A}\left(l_{2}, y\right), z\right\rangle_{Y}=\left\langle\mathrm{A}\left(l_{1}, y\right), z\right\rangle_{Y}-\left\langle\mathrm{A}\left(l_{2}, y\right), z\right\rangle_{Y} \\
= & \left(\mathcal{E}\left(l_{1}, \varepsilon(u)\right)+\mathcal{B}^{T}\left(l_{1}, \nabla \varphi\right), \varepsilon(v)\right)_{\mathcal{H}}+\left(\beta \nabla\left(l_{1}, \varphi\right)-\mathcal{B}\left(l_{1}, \varepsilon(u)\right), \nabla \psi\right)_{H} \\
& -\left(\mathcal{E}\left(l_{2}, \varepsilon(u)\right)+\mathcal{B}^{T}\left(l_{2}, \nabla \varphi\right), \varepsilon(v)\right)_{\mathcal{H}}-\left(\beta\left(l_{2}, \nabla \varphi\right)-\mathcal{B}\left(l_{2}, \varepsilon(u)\right), \nabla \psi\right)_{H} \\
= & \left(\mathcal{E}\left(l_{1}, \varepsilon(u)\right)-\mathcal{E}\left(l_{2}, \varepsilon(u)\right), \varepsilon(v)\right)_{\mathcal{H}}+\left(\beta\left(l_{1}, \nabla \varphi\right)-\beta\left(l_{2}, \nabla \varphi\right), \nabla \psi\right)_{H} \tag{85}\\
& +\left(\mathcal{B}^{T}\left(l_{1}, \nabla \varphi\right)-\mathcal{B}^{T}\left(l_{2}, \nabla \varphi\right), \varepsilon(v)\right)_{\mathcal{H}}-\left(\mathcal{B}\left(l_{1}, \varepsilon(u)\right)-\mathcal{B}\left(l_{2}, \varepsilon(u)\right), \nabla \psi\right)_{H} \\
\leqslant & L_{\mathcal{A}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\|v\|_{V}+L_{\beta}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\|\psi\|_{W}+L_{\mathcal{B}}\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\left[\|v\|_{V}+\|\psi\|_{W}\right] \\
\leqslant & \left(L_{\mathcal{E}}+2 L_{\mathcal{B}}+L_{\beta}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}}\|z\|_{Y},
\end{align*}
$$

Next, by definitions (43), (44) and (51) of f, q and f_{q}, and assumption $\left(\mathcal{A}_{6}\right)(i i)$ to have

$$
\begin{gathered}
\left\langle f_{q}\left(l_{1}\right)-f_{q}\left(l_{2}\right), z\right\rangle_{Y}=\left(f\left(l_{1}\right), v\right)_{V}+\left(q\left(l_{1}\right), \psi\right)_{W}-\left(f\left(l_{2}\right), v\right)_{V}-\left(q\left(l_{2}\right), \psi\right)_{W} \\
=\left(f_{0}\left(l_{1}\right)-f_{0}\left(l_{2}\right), v\right)_{L^{2}(\Omega)^{d}}+\left(f_{2}\left(l_{1}\right)-f_{2}\left(l_{2}\right), v\right)_{L^{2}\left(\Gamma_{2}\right)^{d}} \\
\quad+\left(q_{0}\left(l_{1}\right)-q_{0}\left(l_{2}\right), \psi\right)_{L^{2}(\Omega)}-\left(q_{b}\left(l_{1}\right)-q_{b}\left(l_{2}\right), \psi\right)_{L^{2}\left(\Gamma_{2}\right)}
\end{gathered}
$$

Then, we deduce that

$$
\begin{align*}
\left\langle f_{q}\left(l_{1}\right)-f_{q}\left(l_{2}\right), z\right\rangle_{Y} \leqslant & \left\|f_{0}\left(l_{1}\right)-f_{0}\left(l_{2}\right)\right\|_{L^{2}(\Omega)^{d}}\|v\|_{L^{2}(\Omega)^{d}}+\left\|f_{2}\left(l_{1}\right)-f_{2}\left(l_{2}\right)\right\|_{L^{2}\left(\Gamma_{2}\right)^{d}}\|v\|_{L^{2}\left(\Gamma_{2}\right)^{d}} \\
& +\left\|q_{0}\left(l_{1}\right)-q_{0}\left(l_{2}\right)\right\|_{L^{2}(\Omega)}\|\psi\|_{L^{2}(\Omega)}-\left\|q_{b}\left(l_{1}\right)-q_{b}\left(l_{1}\right)\right\|_{L^{2}\left(\Gamma_{b}\right)}\|\psi\|_{L^{2}\left(\Gamma_{b}\right)} \tag{86}\\
\leqslant & \left(L_{f_{0}} c_{k}\|v\|_{V}+L_{f_{2}} c_{1}\|v\|_{V}+L_{q_{0}} c_{F}\|\psi\|_{W}+L_{q_{b}} c_{2}\|\psi\|_{W}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}} .
\end{align*}
$$

Remembering $\|v\|_{V} \leqslant\|z\|_{Y}$ and $\|\psi\|_{W} \leqslant\|z\|_{Y}$,

$$
\begin{equation*}
\left\|f_{q}\left(l_{1}\right)-f_{q}\left(l_{2}\right)\right\|_{Y^{*}} \leqslant\left(L_{f_{0}} c_{k}+L_{f_{2}} c_{1}+L_{q_{0}} c_{F}+L_{q_{b}} c_{2}\right)\left\|l_{1}-l_{2}\right\|_{\mathcal{L}} . \tag{87}
\end{equation*}
$$

Therefore, it follows from (55), (58) and (84)-(86) with the fact that $\alpha_{A}-\alpha_{J}-\gamma_{J}>0$ then Theorem 2 holds.

It also demonstrates that the contact Problem (P) has a weak solution depending continuously on data. Theorem 2 can be applied to several optimization situations involving inequality (52). Now, we consider an inverse problem for the frictional electro-elastic-locking materials contact Problem (P). Let $\mathcal{L}_{a d} \subset \mathcal{L}$ be an admissible subset of parameters and $F: \mathcal{L} \times K_{1} \cap V_{1} \times V_{2} \longrightarrow \mathbb{R}$ be a cost function. Consider the following minimization problem

$$
\begin{equation*}
\text { Find } l^{*} \in \mathcal{L}_{a d} \text { such that } F\left(l^{*}, u\left(l^{*}\right), \varphi\left(l^{*}\right)\right)=\min _{l \in \mathcal{L}_{a d}} F(l, u(l), \varphi(l)) \text {, } \tag{88}
\end{equation*}
$$

where $y(l)=(u(l), \varphi(l)) \in K \times W$ is the unique solution of Problem $(P V)$ corresponding to a parameter l, we have the following corollary. In the study of this problem we assume that

$$
\begin{align*}
& \mathcal{L}_{a d} \text { is a compact of } \mathcal{L} . \tag{89}\\
& F: \mathcal{L} \times K_{1} \cap V_{1} \times V_{2} \longrightarrow \mathbb{R} \text { is a lower semi-continuous function. } \tag{90}
\end{align*}
$$

Corollary 1. Assume the hypothesis of Theorem 1, (89) and (90) hold. Then, Problem (88) has at least one solution.

Various examples and interpretations of cost functionals F that satisfy the previous corollary's hypothesis can be found in [18,22].
[1] Denkowski Z., Migórski S., Papageorgiou N. S. An introduction to nonlinear analysis: theory. Kluwer Academic/Plenum Publishers, New York (2003).
[2] Barabasz B., Migórski S., Schaefer R. Multi deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering. 19 (1), 3-16 (2011).
[3] Panagiotopoulos P. D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica. 48 (3-4), 111-130 (1983).
[4] Naniewicz Z., Panagiotopoulos P. D. Mathematical theory of hemivariational inequalities and applications. Marcel Dekker Inc., New York (1995).
[5] Sofonea M., Migórski S. Variational-hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton-London (2018).
[6] Migórski S., Zeng S. Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98 (8), 1503-1520 (2018).
[7] Afraites L., Hadri A., Laghrib A., Nachaoui M. A high order PDE-constrained optimization for the image denoising problem. Inverse Problems in Science and Engineering. 1-43 (2020).
[8] Khan A., Migórski S., Sama M. Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data. Optimization. 68 (10), 1897-1931 (2019).
[9] Gockenbach M. S., Khan A. A. An abstract framework for elliptic inverse problems. In output least-squares approach. Mathematics and Mechanics of Solids. 12 (3), 259-276 (2007).
[10] Hasanov A. Inverse coefficient problems for monotone potential operators. Inverse Problems. 13 (5), 1265-1278 (1997).
[11] Migórski S., Khan A., Shengda Z. Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Problems. 36 (2), 024006 (2020).
[12] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019).
[13] Prager W. On elastic, perfectly locking materials. In: Görtler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966).
[14] Prager W. On ideal-locking materials. Transactions of the Society of Rheology. 1, 169-175 (1975).
[15] Migórski S., Ogorzaly J. A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Mathematica Scientia. 37 (6), 1639-1652 (2017).
[16] Essoufi E.-H., Zafrar A. Dual methods for frictional contact problem with electroelastic-locking materials. Optimization. 70 (7), 1581-1608 (2020).
[17] Gamorsk P., Migórski S. Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Mathematics and Mechanics of Solids. 23 (3), 329-347 (2017).
[18] Zeng B., Migórski S. Variational-hemivariational inverse problems for unilateral frictional contact. Applicable Analysis. 99 (2), 293-312 (2020).
[19] Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Acta Mathematica Scientia. 37 (4), 1048-1060 (2017).
[20] Nowacki W. Foundations of linear piezoelectricity. In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979).
[21] Migórski S, Ochal A., Sofonea M. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, New York, Springer (2013).
[22] Sofonea M. History-Dependent Inequalities for Contact Problems with Locking Materials. Journal of Elasticity. 134, 127-148 (2019).

Геміваріаційна обернена задача для контактної задачі зі запірними матеріалами

Фаіз Е. ${ }^{1}$, Баіз О. ${ }^{2}$, Бенаісса X. ${ }^{3}$, Ель Мутавакіль Д. ${ }^{1}$
${ }^{1}$ Університет Султана Мулея Слімана, Лабораторія МАТІС, ФП з Хурібги, Марокко
${ }^{2}$ Університет Ібн Зора, ФП Уарзазату, Марокко
${ }^{3}$ Університет Султана Мулея Слімана, Мультидисциплінарна дослідницька та інноваційна лабораторія, ФП Хорібга, Марокко

Метою цієї роботи є дослідження оберненої задачі для моделі фрикційного контакту запірного матеріалу. Деформівне тіло складається з електроеластичних запірних матеріалів. Характер запирання робить розв'язок належним до опуклої множини, контакт подається у вигляді багатозначної нормальної відповідності, а тертя описуються субградієнтом локального відображення Ліпшица. Розроблено варіаційне формулювання моделі, поєднуючи дві геміваріаційні нерівності у пов'язану систему. Існування та єдиність розв'язку демонструються на основі нещодавніх висновків теорії геміваріаційних нерівностей та аргументу з фіксованою точкою. Далі подано результат неперервної залежності, а потім встановено існування розв'язку оберненої задачі для задачі тертя контакту з п'єзоелектричним запірним матеріалом.

Ключові слова: запірний n'езоелектричний матеріал, задача про фрикиійний контакт, обернена задача, геміваріаційні нерівності.

