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To guarantee the non-negativity of the conditional variance of the GARCH process, it is
sufficient to assume the non-negativity of its parameters. This condition was empirically
violated besides rendering the GARCH model more restrictive. It was subsequently re-
laxed for some GARCH orders by necessary and sufficient constraints. In this paper, we
generalized an approach for the QML estimation of the GARCH(p, q) parameters for all
orders p > 1 and q > 1 using a constrained Kalman filter. Such an approach allows a
relaxed QML estimation of the GARCH without the need to identify and/or apply the
relaxed constraints to the parameters. The performance of our method is demonstrated
through Monte Carlo simulations and empirical applications to real data.
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1. Introduction

We are not wrong in saying that the wide use of the GARCH(p, q) [1] for p, q ∈ {1, 2} has hindered the
study of computational proposals for the estimation of higher-order GARCH parameters, including the
deal with the issue of the conditional variance non-negativity. For this last, Bollerslev [1] had imposed
the non-negativity of the GARCH model parameters as sufficient condition avoiding the conditional
variance to be negative. Bollerslev’s GARCH(p, q) specification of a discrete process εt is given by

εt = σtηt, ηt ∼ iid(0, 1),

Var (εt | εu;u < t) := σ2
t = ω +

p∑

i=1

αiε
2
t−i +

q∑

j=1

βjσ
2
t−j .

(1)

Bollerslev’s assumptions are the next

ω > 0, αi > 0, for i = 1, . . . , p and βj > 0, for j = 1, . . . , q.

However, several empirical studies have showed violations of Bollerslev’s assumptions for some
GARCH orders greater than 1, e.g., GARCH(2,1) for daily capital gains on the S&P500 from 1928 to
1984 [2] and GARCH(1,4) for exchange-rate movements in different world markets [3]. Indeed, in these
works, some estimated parameters were significantly negative which questioned the prior enforcement
of the parameter non-negativity.

Actually, the appearance of other extensions of the GARCH (EGARCH, log-GARCH, etc.) did not
prevent researchers from investigating relaxation areas of the GARCH model related to the problem
of non-negativity of the conditional variance. Nelson and Cao [4] and Tsai and Chan [5] derived
necessary and sufficient constraints relaxing those of Bollerslev for q < 2. The same works deal
briefly with q > 3 case giving sufficient conditions ensuring the almost sure non-negativity of σ2

t . He
and Terasvirta [7] studied the properties of the autocorrelation function of squared observations for
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second order GARCH processes under Nelson and Cao’s constraints and revealed a more flexibility in
the shape of the correlation. Conrad and Karanasos [6] generalize the univariate case and derive a
set of necessary and sufficient conditions for the non-negativity of the conditional variance vector of
multivariate GARCH models.

In fact, the methodology developed in Nelson and Cao [4] and Tsai and Chan [5] does not seem to be
practical from a computational viewpoint especially for q > 3 where the relaxed constraints degenerate
to an infinite number of inequalities [4]. Nelson and Cao indeed do not argue to impose them in
the estimation and advocate the use of other practical routines for higher-order GARCH models.
Furthermore, in R program, all packages, e.g., fGarch [8] and rugarch [9] estimate the GARCH model
under Bollerslev’s standard assumptions.

Settar et al. [10] outlined a set of algorithms for the QML estimation of the GARCH(1,1) param-
eters using a constrained Kalman filter to enforce the non-negativity constraint of σ2

t or any other
boundedness constraints on volatility with no need to identify or/and apply the associated relaxed
constraints. Such an estimation was used to relax the QML estimation of the CGARCH model with
GARCH(1,1) components against the relaxed non-negativity constraints [11]. In this work, we extend
this approach to all orders p > 1 and q > 1 of GARCH(p, q) models. Such an extension consists in
(i) determining the auto-covariance function of σ2

t which was not required for the GARCH(1,1) case
and (ii) randomizing the non-negativity constraint of σ2

t used in Settar et al. [10] to be more accurate.
Thus, we construct in section 2 the extended state space representation of the GARCH(p, q), using

it to compute the auto-covariance function of σ2
t . The constrained Kalman filter is implemented in

section 3 in order to estimate σ2
t with respect to a new random non-negativity constraint. Section 4

presents Monte Carlo simulations. A comparative application to real data is performed in section 5.
Conclusion is given in section 6.

The following notations will be used throughout this paper. M(k,l) is the set of the matrices
of size (k, l) and 0(k,l) is its zero matrix. Ik is the identity matrix of M(k,k). The transpose of

a matrix A = (aij) is AT . Ai• and A•j stand respectively for the ith row and the jth column of A.

A×• := (AT
1• . . . A

T
k•)

T ∈ R
kl and A•× := (A•1 . . . A•l)T ∈ R

k2 . A
(s)
•l := (asl . . . akl)

T , 1 6 s 6 k. A
(s)
•× :=

(A
(s)
•1 . . . A

(s)
•k )

T ∈ R
(k−s+1)2 . ρ stands for the spectral radius of a matrix. “ iid” means independent and

identically distributed. The Kronecker product is denoted by ⊗. eTk is the first vector of the canonical
base of Rk. For any sequence of random variables (Xt)t∈Z, X t := (Xt, . . . ,Xt−r+1)

T ∈ R
r.

2. Relaxed GARCH state space representation

Throughout this work, we use the state space representation in the form proposed by Hung [12],
applying to the relaxed GARCH(p, q) model with iid Gaussian innovation ηt

1, under assumptions
(A1) and (A2) giving respectively a sufficient conditions of the second order stationary and the
existence of the fourth moment of the relaxed GARCH [10],

(A1)

r∑

i=1

|αi|+ |βi| < 1 and (A2) ρ(A
(2)
1 ) < 1,

where r = max(p, q) such that αi = 0 (resp. βj = 0) if i > p (resp. j > q) and

At =




α1η
2
t · · · αpη

2
t β1η

2
t · · · βqη

2
t

Ip−1 0(p−1,1) 0(p−1,q)

α1 · · · αp β1 · · · βq
0(q−1,p) Iq−1 0(q−1,1)


 .

1The choice of the Gaussian distribution is not restrictive since we work with the quasi-maximum likelihood for the

parameter estimation.
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Therefore, GARCH equations (1) can be rewritten in the state space form as:

{
ht = ω +Λht−1 +Φ νt−1,

ε2t = er ht + νt,
(2)

where νt ∼ iid(0, ν) which represents the linear white noise innovation of ε2t given by νt = ε2t − σ2
t .

Here, the state vector is ht = (σ2
t σ2

t−1 . . . σ
2
t−r+1)

T ∈ R
r. The transition matrices are defined by

ω =
(
ω 0(r−1,1)

)T
∈ R

r, Λ =

(
λ1 . . . λr

Ir−1 0(r−1,1)

)
∈ M(r,r), Φ =

(
α1 . . . αr

0(r−1,r−1)

)
∈ M(r,r).

2.1. Auto-covariance structure

Unlike the GARCH(1,1) case dealt by Settar et al., the application of the Kalman filter requires a
knowledge of the covariance structure of ht. For this purpose, we provide in the following a recursive
method based on the state space model (2) to compute the auto-covariance function of ht. At first, we
express via the following lemma, E(ε2t ⊗ νt) and E(νt ⊗ ε2t ) as functions of the relaxed GARCH(p, q)
parameters and ν. These quantities will be needed to provide the auto-covariance function of ht given
by the proposition 7.

Lemma 1. Let εt be a relaxed GARCH(p, q) process. For all k ∈ J2, rK, let αk−1 = (αk−1 . . . α1)
T

and Γk−1,M ∈ M(k−1,k−1) defined by:

Γk−1 =




1 −λ1 −λ2 . . −λk−1

0 1 −λ1 . . −λk−2

. . . . . .

. . . . . −λ1

0 0 0 0 0 1




and M =




1 m
(1)
1 m

(2)
1 . . m

(k−1)
1

0 1 m
(2)
2 . . m

(k−1)
2

. . . . . .

. . . . . m
(k−1)
k−1

0 0 0 0 0 1




with m
(k−1)
i stands for the ith component of Γ−1

k−1αk−1, for all i ∈ J1, kK. Then:

E(ε2t−1 ⊗ νt−1) = M×•ν and E(νt−1 ⊗ ε2t−1) = M•×ν.

Proof. Recall that the white noise νt is the linear innovation of ε2t . Hence, for all i > k > 0:

E(ε2t−iνt−k) = 0 (3)

It follows:

E(ε2t−iνt−i) = E


ωνt−i +

r∑

j=1

λjε
2
t−i−jνt−i + ν2t−i −

q∑

j=1

βjνt−i−jνt−i


 = ν. (4)

Consider the case 0 < i < k 6 r. By taking the expectation of ε2t−iνt−k into the ARMA represen-
tation of ε2t given by:

ε2t = ω +
r∑

i=1

(αi + βi)ε
2
t−i + νt −

r∑

j=1

βjνt−j ,

one can obtain:

E(ε2t−iνt−k) =

{
αk−iν +

∑k−i−1
j=1 λjE(ε

2
t−i−jνt−k), if 0 < i < k − 1,

α1ν, if i = k − 1.
(5)
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Let’s set Xi,k = E(ε2t−iνt−k). Then, (3)–(5) become:

Xi,k =





αk−iν +
∑k−i−1

j=1 λjXi+j,k, if 0 < i < k − 1,

α1ν, if i = k − 1,
ν, if i = k,
0, if i > k.

(6)

The first two equations of the system (6) can be expressed in matrix form as:

(Xi,1 . . . Xi,k−1)
T = Γ−1

k−1αk−1ν.

This gives, by denoting m
(k−1)
i the ith component of Γ−1

k−1αk−1, that

E(ε2t−iνt−k) = Xi,k =





m
(k−1)
i ν, if 0 < i < k,

ν, if i = k,
0, if i > k.

(7)

Let X = (Xi,k)i,k=1,...,r ∈ M(r,r) which can be written as X = Mν. Hence, two expectations E(ε2t−1 ⊗
νt−1) and E(νt−1 ⊗ ε2t−1) result. �

The following proposition gives the covariance matrix of ht.

Proposition 7. Let Ω, P , Q, B and C be the matrices defined by:

– Ω ∈ M(r2,r2) is the zero matrix except at the positions ((k − 1)r + k, (k − 1)r + k) for k = 1, . . . , r
being ones;

– P = 2(Λ⊗ Φ)(M×•er2 − Ω) + Λ⊗2;
– Q =

{
(Φ⊗ Λ)(M•×er2 − Ω) + Φ⊗2

}
Ω;

– B = (Bk)k ∈ R
r2 such that Bk = ω2

(
1−

∑p
i=1 αi −

∑q
j=1 βj

)−1
for k = 1, . . . , r and 0 elsewhere;

– C = (Ck)k ∈ R
r2 such that C(l−1)r+1 = ω2

(
1−

∑p
i=1 αi −

∑q
j=1 βj

)−1
for l = 1, . . . , r and 0

elsewhere.

Assume that (Ir2 − P − 2Q) is not singular. Then, the auto-covariance matrix of ht is obtained
through the following recursive system:




E(h⊗2
t ) = (Ir2 − P − 2Q)−1 {B + (Λ⊗ Ir)C} ;

E(ht ⊗ ht−s) = B + (Λ⊗ Ir)E(ht ⊗ ht−s+1) + 2(Φ⊗ Ir)(M
(s)
•× − gk)er2ΩE(h

⊗2
t ), ∀s > 0;

Cov
(
σ2
t , σ

2
t−s

)
= er2E(ht ⊗ ht−s)− (er Eh0)

2 , ∀s > 0,

(8)

where gk ∈ R
r2 with ones at the position (s− 1 + k)(r − s+ 1) + k + 1 for k > 0 and 0 elsewhere.

Proof. Applying the elementary properties of the Kronecker product to the state equation of the
representation (2), we obtain

h⊗2
t = ω ⊗ ht + Λht−1 ⊗

(
ω + Λ ht−1 +Φ νt−1

)
+Φ νt−1 ⊗

(
ω + Λ ht−1 +Φ νt−1

)
.

Let set

T1 = Λht−1 ⊗
(
ω + Λht−1 +Φ νt−1

)
,

T2 = Φ νt−1 ⊗
(
ω + Λht−1 +Φ νt−1

)
.

Then, on the one hand

T1 = (Λ⊗ Ir) (ht−1 ⊗ ω) + Λ⊗2h⊗2
t−1 + (Λ⊗ Φ)

(
ht−1 ⊗ νt−1

)

= (Λ⊗ Ir) (ht−1 ⊗ ω) + Λ⊗2h⊗2
t−1 + (Λ⊗ Φ)

(
ε2t−1 ⊗ νt−1

)
− (Λ⊗ Φ) ν⊗2

t−1.
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Since
ν = Eν2t = E(ε2t − σ2

t )
2 = E(η2t σ

2
t − σ2

t )
2 = E(η2t − 1)2Eσ4

t = 2er2E(h
⊗2
t ) (9)

and Eν⊗2
t = 2ΩE(h⊗2

t ).

It follows

E(T1) = (Λ⊗ Ir)E (ht−1 ⊗ ω) +
{
2 (Λ⊗ Φ) (M×•er2 − Ir2) Ω + Λ⊗2

}
E
(
h⊗2
t

)

= (Λ⊗ Ir)C + PE
(
h⊗2
t

)
.

On the other hand

T2 = (Φ⊗ Ir)
(
νt−1 ⊗ ω

)
+ (Φ⊗ Λ)

(
νt−1 ⊗ ht−1

)
+Φ⊗2ν⊗2

t−1

= (Φ⊗ Ir)
(
νt−1 ⊗ ω

)
+ (Φ⊗ Λ)

(
νt−1 ⊗ ε2t−1

)
−
{
(Φ⊗ Λ)−Φ⊗2

}
ν⊗2
t−1.

Then

E(T2) = 2 (Φ⊗ Λ)M•×er2ΩE
(
h⊗2
t

)
+ 2

(
Φ⊗2 − Φ⊗ Λ

)
ΩE
(
h⊗2
t

)

= 2
{
(Φ⊗ Λ) (M•×er2 − Ir2) + Φ⊗2

}
ΩE
(
h⊗2
t

)

= QE
(
h⊗2
t

)
.

Hence

E
(
h⊗2
t

)
= E (ω ⊗ ht) + (Λ⊗ Ir)C + PE

(
h⊗2
t

)
+QE

(
h⊗2
t

)

= B + (Λ⊗ Ir)C + PE
(
h⊗2
t

)
+QE

(
h⊗2
t

)
.

Which implies
(Ir2 − P −Q)E

(
h⊗2
t

)
= B + (Λ⊗ Ir)C.

Since (Ir2 − P −Q) is not singular, then E(h⊗2
t ) follows.

As for E(ht ⊗ ht−s), it is directly deducted by multiplying the state equation in (2) by ht−s and

noting that E(νt−1 ⊗ ε2t−s) = M
(s)
•×ν and that E(νt−1 ⊗ νt−s) = gkν. �

3. Conditional variance estimation

In this section, we start by estimating σ2
t without any non-negativity constraint (Prediction step).

Afterwards, the obtained predicted estimates are truncated so that the non-negativity constraint is
enforced (Robustification step).

3.1. Prediction

We extend the Kalman filter algorithm proposed in Settar et al. [10] for the GARCH(1,1) to the
GARCH(p, q) where the error covariance matrices are computed through the recursive equations (8).

Let ĥt|t, ĥt|t−1, Pt|t and Pt|t−1 be respectively the filtered and predicted estimates of ht and their
error covariance matrices. Note that the initial state of ht is given by its mean:

Eh0 =
ω

1−
∑p

i=1 αi −
∑q

j=1 βj
(1 . . . 1)T ∈ R

r

and its covariance matrix P0|0 = E
{
(h0 − Eh0)(h0 − Eh0)

T
}

determined by the recursive equations (8).
Then, one derives the Kalman filter equations for t = 1, . . . , n as follows,

ĥt|t−1 = ω + Λĥt−1|t−1,
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Pt|t−1 = ΛPt−1|t−1Λ
T + νΦΦT ,

Kt = Pt|t−1e
T
r

(
erPt|t−1e

T
r + ν

)−1
,

ĥt|t = ĥt|t−1 +Kt

(
ε2t − erĥt|t−1

)
,

Pt|t = Pt|t−1

(
Ir − eTr K

T
t

)
.

Thus, the predicted conditional variance is extracted for t = 1, . . . , n as

σ̂2
t|t−1 = er ĥt|t−1. (10)

3.2. Robustification

This step consists in enforcing the non-negativity constraint of σ̂2
t without regard to the relaxed con-

straints on the model parameters. Settar et al. [10] used the probability density function truncation
method [13] to truncate the density function of

{
σ̂2
t|t−1

}
t=1,...,n

(assumed Gaussian), with respect to

the non-negativity constraint 1
N

6 σ2
t 6 N , for t = 1, . . . , n and some upper bound N empirically set.

However, because of the deterministic shape of such a constraint, the empirical choice of N related
to the non-negativity of σ2

t remains arbitrary or even fallacious in the absence of a priori information
on volatility boundedness. In order to control such a choice, we explore a random non-negativity
constraint through a bound N1−τ such that for a fixed confidence level 1 − τ and for all t = 1, . . . , n,
we set

1− τ = P

{
1

N1−τ

6 σ2
t 6 N1−τ

}
. (11)

Which implies
N1−τ =

√
pt|t−1 z1−τ + σ̂2

t|t−1,

where z1−τ stands for (1− τ)th quantile of the standard Gaussian distribution.
The conditional variance estimate after enforcement of constraint (11):

σ̃2
t|t−1 =

√
pt|t−1 µ+ σ̂2

t|t−1, (12)

pt|t−1 is the first diagonal element of Pt|t−1 and µ is the mean of the truncated Gaussian density be-

tween lt =
1−N1−τ σ̂

2

t|t−1

N1−τ

√
pt|t−1

and ut =
N1−τ−σ̂2

t|t−1√
pt|t−1

.

Now, the quasi-log likelihood is well defined for all θ ∈ Θ as follows

Ln(θ; ε1, ε2, . . . , εn) = −
n

2
log(2π)−

n

2

(
1

n

n∑

t=1

ε2t
σ̃2
t|t−1 (θ)

+ log(σ̃2
t|t−1 (θ))

)
, (13)

where θ = (ω,α1, . . . , αp, β1, . . . , βq)
T is the parameter vector and Θ is a subset of R∗+×R

p+q satisfying
assumptions (A1)–(A2). Thus, maximizing (13) with respect to θ ∈ Θ is equivalent to minimizing
the following criterion:

l̂n(θ; ε1, ε2, . . . , εn) =
1

n

n∑

t=1

ε2t
σ̃2
t|t−1 (θ)

+ log
(
σ̃2
t|t−1(θ)

)
. (14)

Remark 1. The conditional variance extraction as given by (10) allows returning to the univariate
dimension of σ2

t . Then, the constrained Kalman filter is applied with a single non-negativity constraint,
that is (11) for all p > 1 and q > 1.

4. Monte Carlo experiment

In this section, we conduct two Monte Carlo simulations to assess the performance of our QML es-
timation based on the minimization of (14) compared to the standard QML estimation, in terms of
estimating the relaxed GARCH parameters.
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For each sample size n ∈ {500, 1000, 5000}, splitted into 1000 replications, we simulated two pro-
cesses GARCH(3,1) and GARCH(2,3) respectively with parameter vectors (0.01, 0.1, 0.2, 0.1, 0.4)T and
(0.01, 0.1, 0.2, 0.1, 0.4, 0.1)T . The generated data is afterword estimated by our method with τ = 0.005
and by standard QML. Note that both GARCH processes have highly persistent volatility, of 0.8 for
the GARCH(3,1) and 0.9 for the GARCH(2,3). The mean squared error (MSE) is used for comparison
purposes. Further, we minimize the l̂n criterion using the optim. command in R [14].

Tables 1 and 2 show that all parameters are better estimated by our method based on the relaxed
GARCH, compared to the standard QML estimation since it leads to a decrease in the MSE. Note
also that the low values of the standard deviations (SE) of θ̃ compared to those of θ̂ indicate that
the estimates over all replications are less dispersed around the former. In other words, the proposed
algorithm is more stable around θ̃. Moreover, it is clear that for all samples, our method captured
the high persistence of the volatility that characterizes the simulated GARCH processes, by recording
values

∑p
i=1 α̃i +

∑q
j=1 β̃j that are close to the true persistence values set during the simulations

compared to the values resulting from the standard QML estimation.

Table 1. Finite sample properties of the r-GARCH(3.1) and GARCH(3.1) parameter estimates.
Estimated standard deviations are shown in brackets. Smallest MSEs are marked by (∗).

n parameters values θ̃ (SE) MSE θ̂ (SE) MSE

500 ω 0.01 0.0102 (0.0223) 0.0005∗ 0.0964 (0.4935) 0.2511
α1 0.1 0.0995 (0.0574) 0.0033∗ 0.1823 (0.2245) 0.0572
α2 0.2 0.1953 (0.0753) 0.0057∗ 0.1330 (0.2757) 0.0805
α3 0.1 0.0963 (0.0478) 0.0023∗ 0.0413 (0.1332) 0.0212
β1 0.4 0.4002 (0.0888) 0.0079∗ 0.5678 (0.3222) 0.1320

1000 ω 0.01 0.0097 (0.0932) 0.0087∗ 0.0478 (0.2589) 0.0685
α1 0.1 0.0968 (0.1009) 0.0102∗ 0.1034 (0.1956) 0.0383
α2 0.2 0.1950 (0.0942) 0.0089∗ 0.1955 (0.2887) 0.0834
α3 0.1 0.0921 (0.1026) 0.0106∗ 0.1416 (0.1251) 0.0174
β1 0.4 0.3974 (0.0989) 0.0098∗ 0.2654 (0.2865) 0.1002

5000 ω 0.01 0.0092 (0.0830) 0.0069∗ 0.0172 (0.1573) 0.0248
α1 0.1 0.1013 (0.0888) 0.0079∗ 0.0829 (0.1323) 0.0178
α2 0.2 0.1926 (0.0945) 0.0090∗ 0.2123 (0.2935) 0.0863
α3 0.1 0.0960 (0.0853) 0.0073∗ 0.1222 (0.1170) 0.0142
β1 0.4 0.3981 (0.0830) 0.0069∗ 0.3599 (0.2935) 0.0878

Table 2. Finite sample properties of the r-GARCH(2,3) and GARCH(2,3) parameter estimates.
Estimated standard deviations are shown in brackets. Smallest MSEs are marked by (∗).

n parameters values θ̃ (SE) MSE θ̂ (SE) MSE

500 ω 0.01 0.0106 (0.0727) 0.0053∗ 0.0062 (0.0859) 0.0074
α1 0.1 0.0998 (0.0989) 0.0098∗ 0.0885 (0.2221) 0.0495
α2 0.2 0.1987 (0.0574) 0.0033∗ 0.0129 (0.0222) 0.0355
β1 0.1 0.1006 (0.0299) 0.0009∗ 0.1223 (0.2729) 0.0750
β2 0.4 0.4001 (0.0299) 0.0009∗ 0.1563 (0.2970) 0.1476
β3 0.1 0.1005 (0.0264) 0.0007∗ 0.1890 (0.3973) 0.1658

1000 ω 0.01 0.0119 (0.0754) 0.0057∗ 0.0814 (0.0938) 0.0139
α1 0.1 0.0989 (0.0632) 0.0040∗ 0.0901 (0.1212) 0.0148
α2 0.2 0.1993 (0.0678) 0.0046∗ 0.0149 (0.3882) 0.1850
β1 0.1 0.1009 (0.0519) 0.0027∗ 0.0757 (0.3667) 0.1351
β2 0.4 0.4303 (0.0942) 0.0098∗ 0.1430 (0.2373) 0.1224
β3 0.1 0.0991 (0.0399) 0.0016∗ 0.1643 (0.2320) 0.0580

5000 ω 0.01 0.0116 (0.0647) 0.0042 0.0180 (0.0472) 0.0023∗

α1 0.1 0.0987 (0.0479) 0.0023∗ 0.0977 (0.0573) 0.0033
α2 0.2 0.1980 (0.0871) 0.0076∗ 0.0102 (0.3920) 0.1897
β1 0.1 0.0995 (0.0399) 0.0016∗ 0.0256 (0.4359) 0.1956
β2 0.4 0.3987 (0.0734) 0.0054 0.3990 (0.0479) 0.0023∗

β3 0.1 0.0992 (0.0399) 0.0016∗ 0.1405 (0.0957) 0.0108
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5. Empirical application

In this section, we conduct an empirical application of our estimation in order to compare its per-
formance to the relaxed QML estimation established by Nelson and Cao in terms of the optimums
obtained by each approach. The application covers three real series used by Baillie and Bollerslev [15]
and reused by Nelson and Cao [4], namely the exchange rate of the German mark/dollar, the French
franc/dollar and the Japanese yen/dollar from June 1, 1973 to January 28, 1985, each with a size of
2920 observations. These series as well as the corresponding return series are presented respectively in
figures 1–3. We denote by (st) the exchange rate series and by (rt) the corresponding log-return series
in percent given by rt = 100 log(st/st−1), t = 1, . . . , 2920.
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Fig. 1. Daily mark/dollar exchange rate (left) and the
corresponding return series (right) from June 1, 1973

to January 28, 1985.

Fig. 2. Daily franc/dollar exchange rate (left) and the
corresponding return series (right) from June 1, 1973

to January 28, 1985.
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Fig. 3. Daily exchange rate of the yen/dollar (left) and
the corresponding return series (right) from June 1, 1973

to January 28, 1985.

We follow the fitting of (rt) adopted by Nel-
son and Cao [4] as a non-centred GARCH with
an order selected by the AIC criterion, i.e.

rt = δ + εt, (εt|εt−1, εt−2, . . . ε1) ∼ N(0, σ2
t ),

σ2
t = ω +

p∑

i=1

αiε
2
t−i +

q∑

j=1

βjσ
2
t−j.

Table 3 reports the model parameter esti-
mates obtained by both the QCK method and the approach of Nelson and Cao denoted θ̂NC . It
is easy to check that θ̃’s values satisfy the inequalities of Nelson and Cao (See Theorem1 and 2 in [4])
and relax accordingly Bollerslev’s non-negativity constraints. This is indeed the case of α̃3 in the
fitting of the series of returns of the yen/dollar exchange rate. Actually, the advantage of using our
method appears with the obtained values of log-likelihood. Indeed, it is clear that θ̃ maximize the
log-likelihood compared to θ̂NC , which shows the potential of our method to reach a better optimum.

Table 3. Estimated GARCH models for daily exchange rates from June 1, 1973 to January 28, 1985.
The last row gives the log-likelihoods.

mark/dollar franc/dollar yen/dollar
GARCH(2,2) GARCH(2,1) GARCH(3,1)

θ̃ θ̂NC θ̃ θ̂NC θ̃ θ̂NC

δ 0.0028 −0.0009 0.0116 −0.0002 −0.0006 0.0016
ω 0.0182 0.0186 0.0021 0.0079 0.0111 0.0002
α1 0.0576 0.0573 0.1680 0.1024 0.0088 0.1888
α2 0.2265 0.2262 0.2449 0.1444 0.1988 0.0752
α3 −0.1011 −0.2344
β1 0.3829 0.3833 0.5846 0.7735 0.4011 0.9730
β2 0.3096 0.3100

log-Lik −1462.94 −2447.24 −1459.63 −2356.21 −1659.94 −2086.27
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6. Conclusion

In this work, we generalized an approach based on the constrained Kalman filter allowing to relax the
QML estimation of the GARCH(p, q) parameters for all p > 1 and q > 1. A practical method for
computing the auto-covariance function of the conditional variance based on the state-space represen-
tation was given and proved. We showed through a Monte Carlo experiment that our method is better
for parameter and volatility estimation of high-order GARCH when compared to the QML estimation
applied to the GARCH model under Bollerslev’s conditions. The empirical study of three real series,
namely the daily exchange rate returns of the mark/dollar, the franc/dollar and the yen/dollar showed
the performance of our estimation method to relax the non-negativity assumption of parameters as
well as maximizing the likelihood function compared to the QML estimation.
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Про обчислювальну оцiнку моделi GARCH високого порядку

Сеттар А.1, Фатмi Н. I.1, Бадауї М.1,2
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Щоб гарантувати невiд’ємнiсть умовної дисперсiї процесу GARCH, достатньо при-
пустити невiд’ємнiсть її параметрiв. Ця умова була емпiрично порушена, що зробило
модель GARCH бiльш обмеженою. Пiсля цього ця умова була послаблена для дея-
ких виборiв необхiдних та достатнiх обмежень. У цiй роботi узагальнено пiдхiд для
оцiнки QML параметрiв GARCH(p, q) для всiх порядкiв p > 1 та q > 1, використо-
вуючи обмежений фiльтр Калмана. Такий пiдхiд дозволяє послаблену оцiнку QML
для GARCH без необхiдностi виявляти та/або застосовувати послабленi обмеження
на параметри. Ефективнiсть запропонованого методу демонструється за допомогою
моделювання Монте–Карло та емпiричних застосувань до реальних даних.

Ключовi слова: GARCH, обмежений фiльтр Калмана, умовна дисперсiя, вола-

тильнiсть, квазiмаксимальна ймовiрнiсть.
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