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To guarantee the non-negativity of the conditional variance of the GARCH process, it is
sufficient to assume the non-negativity of its parameters. This condition was empirically
violated besides rendering the GARCH model more restrictive. It was subsequently re-
laxed for some GARCH orders by necessary and sufficient constraints. In this paper, we
generalized an approach for the QML estimation of the GARCH(p, q) parameters for all
orders p > 1 and ¢ > 1 using a constrained Kalman filter. Such an approach allows a
relaxed QML estimation of the GARCH without the need to identify and/or apply the
relaxed constraints to the parameters. The performance of our method is demonstrated
through Monte Carlo simulations and empirical applications to real data.
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1. Introduction

We are not wrong in saying that the wide use of the GARCH(p, q) [1] for p,q € {1,2} has hindered the
study of computational proposals for the estimation of higher-order GARCH parameters, including the
deal with the issue of the conditional variance non-negativity. For this last, Bollerslev [1] had imposed
the non-negativity of the GARCH model parameters as sufficient condition avoiding the conditional
variance to be negative. Bollerslev’s GARCH(p, q) specification of a discrete process e; is given by

Et = OMN, e ~ lld(07 1)7
(1)

p q
Var (¢ | eg;u < t) i= 02 = w + Zaiz—:?_,- + Zﬁjaf_j.
i=1 j=1

Bollerslev’s assumptions are the next
w>0, >0, for i=1,....,p and B3; 20, for j=1,...,q.

However, several empirical studies have showed violations of Bollerslev’s assumptions for some
GARCH orders greater than 1, e.g., GARCH(2,1) for daily capital gains on the S&P500 from 1928 to
1984 [2] and GARCH(1,4) for exchange-rate movements in different world markets [3|. Indeed, in these
works, some estimated parameters were significantly negative which questioned the prior enforcement
of the parameter non-negativity.

Actually, the appearance of other extensions of the GARCH (EGARCH, log-GARCH, etc.) did not
prevent researchers from investigating relaxation areas of the GARCH model related to the problem
of non-negativity of the conditional variance. Nelson and Cao [4] and Tsai and Chan [5] derived
necessary and sufficient constraints relaxing those of Bollerslev for ¢ < 2. The same works deal
briefly with ¢ > 3 case giving sufficient conditions ensuring the almost sure non-negativity of o2. He
and Terasvirta [7] studied the properties of the autocorrelation function of squared observations for
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second order GARCH processes under Nelson and Cao’s constraints and revealed a more flexibility in
the shape of the correlation. Conrad and Karanasos [6] generalize the univariate case and derive a
set of necessary and sufficient conditions for the non-negativity of the conditional variance vector of
multivariate GARCH models.

In fact, the methodology developed in Nelson and Cao [4] and Tsai and Chan [5] does not seem to be
practical from a computational viewpoint especially for ¢ > 3 where the relaxed constraints degenerate
to an infinite number of inequalities [4]. Nelson and Cao indeed do not argue to impose them in
the estimation and advocate the use of other practical routines for higher-order GARCH models.
Furthermore, in R program, all packages, e.g., fGarch [8] and rugarch [9] estimate the GARCH model
under Bollerslev’s standard assumptions.

Settar et al. [10] outlined a set of algorithms for the QML estimation of the GARCH(1,1) param-
eters using a constrained Kalman filter to enforce the non-negativity constraint of o7 or any other
boundedness constraints on volatility with no need to identify or/and apply the associated relaxed
constraints. Such an estimation was used to relax the QML estimation of the CGARCH model with
GARCH(1,1) components against the relaxed non-negativity constraints [11]. In this work, we extend
this approach to all orders p > 1 and ¢ > 1 of GARCH(p, ¢) models. Such an extension consists in
(i) determining the auto-covariance function of o7 which was not required for the GARCH(1,1) case
and (ii) randomizing the non-negativity constraint of o7 used in Settar et al. [10] to be more accurate.

Thus, we construct in section 2 the extended state space representation of the GARCH(p, q), using
it to compute the auto-covariance function of o2. The constrained Kalman filter is implemented in
section 3 in order to estimate O't2 with respect to a new random non-negativity constraint. Section 4
presents Monte Carlo simulations. A comparative application to real data is performed in section 5.
Conclusion is given in section 6.

The following notations will be used throughout this paper. M) is the set of the matrices
of size (k,l) and O is its zero matrix. [y is the identity matrix of M ). The transpose of
a matrix A = (a;) is AT A; and A,; stand respectively for the ith row and the j column of A.
Ao i= (AT, . AT)T € RF and Ay := (Aar ... Ag)T € R¥. AL = (ag ... ap)T, 1 <s <k AL) =
(Assl) - A.‘Z))T € RE=s+1)? ) stands for the spectral radius of a matrix. “iid” means independent and

identically distributed. The Kronecker product is denoted by ®. e;‘g is the first vector of the canonical
base of R¥. For any sequence of random variables (X;)iez, X; := (X¢,..., Xy—ps1)? € R".

2. Relaxed GARCH state space representation

Throughout this work, we use the state space representation in the form proposed by Hung [12],
applying to the relaxed GARCH(p, ¢) model with iid Gaussian innovation 7;', under assumptions
(A1) and (A2) giving respectively a sufficient conditions of the second order stationary and the
existence of the fourth moment of the relaxed GARCH [10],

(A1) Yl +181 <1 and  (A2) p(4?) <1,
=1

where r = max(p, ¢) such that o; =0 (resp. ; =0) if i > p (resp. j > ¢) and

aygp e apn - Pimg - Bai
A = Ip-1 Op-1) Op-1,9)
a1 .. a B .. B,
Og—1,p) Ig—1 O(g—1,1)

The choice of the Gaussian distribution is not restrictive since we work with the quasi-maximum likelihood for the
parameter estimation.
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Therefore, GARCH equations (1) can be rewritten in the state space form as:

{ht:g—l—l\ht_l‘Fq)Zt—l’ (2)

€t2 — erht+yt7

where 14 ~ iid(0,v) which represents the linear white noise innovation of €7 given by v, = &7 — o7,
Here, the state vector is hy = (67 07 ...07 ,,1)7 € R". The transition matrices are defined by
T )\1 . )\r o A [e7%
w=(w 0p_11 GRT,A:< >€M ,(I):< >€M .
(@ O¢-1,1)) Lor Opn () 010t ()

2.1. Auto-covariance structure

Unlike the GARCH(1,1) case dealt by Settar et al., the application of the Kalman filter requires a
knowledge of the covariance structure of h;. For this purpose, we provide in the following a recursive
method based on the state space model (2) to compute the auto-covariance function of hy. At first, we
express via the following lemma, E(¢? ® v,) and E(y, ® £7) as functions of the relaxed GARCH(p, q)
parameters and v. These quantities will be needed to provide the auto-covariance function of h; given
by the proposition 7.

Lemma 1. Let g; be a relaxed GARCH(p, q) process. For all k € [2,7], let aj,_q = (op_1...a1)”
and I'y—1, M € M,y 1) defined by:

(1) (2) (k=1)

L =A =X . . =N Lomys my o omy
0 1 —/\1 . . —)\k_g 0 1 m;z) . . mgk_l)
T'ni=1. . . .o . and M =]. . . .o .
_ k—1
. S A1 o S m}g_l )
¢ o0 0 00 1 o 0 0 00 1
with ml(-k_l) stands for the i*" component of I'; ' ay,_y, for all i € [1,k]. Then:

E(f 4 ®v;_q) = Myev and E(y,_ ® et ;) = Moxv.
Proof. Recall that the white noise 14 is the linear innovation of 2. Hence, for all i > k > 0:
E(ef_ivi-k) =0 3)
It follows:
r q
E(ef_ivi-i) =E |wvei + Z Ajgf—i—th—i +ui— Z Bivi—i—jVi—i| = V. (4)
j=1 Jj=1

Consider the case 0 < i < k < r. By taking the expectation of €2 ;4. into the ARMA represen-
tation of €2 given by:

I8 I8
2 2
g =w+ E (o + Bi)ey_; + v — E Bivi—;,
i=1 j=1
one can obtain:

k—i—1 2 . .
oap—iv+ Y 1 NE(E_vig), if0<i<k-—1,
Bleb--r) = { ozlfu Zmt Ao ifi=Fk—1 5)
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Let’s set X, = E(¢?_,v4_). Then, (3)—(5) become:

ah—iv + 35T N X O <i<k—1,

x.. = aw ifi=k—1,
ok v, if i =k, (6)
0, if i > k.

The first two equations of the system (6) can be expressed in matrix form as:
(Xi,l v X@]f_l)T = F,:lgk_ly.

(k=1)

This gives, by denoting m; the ¥ component of F;_llgk_l, that

m* Dy if0<i<k,
E(efiver) = Xik =3 v, if i =k, (7)
0, if 1 > k.

Let X = (Xik)ik=1,.r € M,y which can be written as X = Mv. Hence, two expectations E(e2 , ®
v,_1) and E(v,_; ® g7 ;) result. [
The following proposition gives the covariance matrix of hy.

Proposition 7. Let ©, P, @, B and C be the matrices defined by:

— € M(;2 2y is the zero matrix except at the positions ((k — 1)r +k,(k —L)r + k) for k=1,...,r
being ones;

— P =2(A®®)(Myee,2 — Q) + A®%

- Q={(®®A)(Mexe,2 — Q) + 292} Q;

-1
— B = (By)r € R” such that By = w? (1 = =0 ﬂj> for k =1,...,r and 0 elsewhere;

1
— C = (Cy)r € R™ such that Cutyrp1 = w? (1 =3P —23:1 53) for l = 1,...,r and 0

elsewhere.

Assume that (I, — P — 2Q) is not singular. Then, the auto-covariance matrix of h; is obtained
through the following recursive system:

E(hi?) = (Ie = P=2Q) " {B+ (A® 1)C};
E(hy ® hi—s) = B+ (A ® L)E(hy @ hy—si1) + 2(® © L)(ML) — gi)e,2QE(RE?), Vs > 0;  (8)
Cov (07,0%,) = €2E(hy @ hy—s) — (e Ehy)?, Vs >0,

where g, € R with ones at the position (s — 1+ k)(r — s+ 1) + k + 1 for k > 0 and 0 elsewhere.

Proof. Applying the elementary properties of the Kronecker product to the state equation of the
representation (2), we obtain

him =w®hi+Ahi_1 ® (g—l—A hi—1 +<I>zt_1) +oy, | ® (£+A hi—1 + <I>zt_1) .
Let set

Ty=Ah1 @ (w+ Ay +Py,_y),
=0y, @ w+Ah1+Pv,_,).

Then, on the one hand

Ti=(A® L) (1 @ w) + AR + (A © D) (he1 @ vy_y)
=(A® L) (hi1 ®w) + AP*hE + (AR D) (6], ®vy ) — (A @) 2.
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Since
v =Ev} = E(¢} — 07)* = E(njo} — 07)* = E(1} — 1)°Eo} = 2¢,2E(h{?) (9)

and Eg?z = 2&'2E(h§2).
It follows
E(T) = (A®L)E (b1 ®w) + {2(A® @) (Mxee,2 — L2) 2+ A} E (h?)
=(A®1,)C+ PE (h?).
On the other hand

T=(20 1) (v ®w) + (@A) (vy_y @ hy_r) + P2
= (@) (11 ®w) + (@A) (v ®er ) — {(@®A) — 2%} P,

Then
E(T) = 2(® ® A) Maxe,29QE (h{?) + 2 (%% — & @ A) QF (h{*?)
=2{(®®A) (Mexe,e — I,2) + 2%} QF (h§?)
= QE (h?).
Hence

E (h{?) =E(w® hy) + (A® I,) C + PE (h{®) + QE (h{?)
=B+ (A®I,)C + PE (h{®) + QE (h{?) .
Which implies
(I, —P—-Q)E (h*) =B+ (A® I,)C.
Since (I,2 — P — Q) is not singular, then E(hZ?) follows.
As for E(hy ® hy—s), it is directly deducted by multiplying the state equation in (2) by h;—s and
noting that E(v, | ®¢e? ) = M.(i)y and that E(v,_; @ v,_) = gxv. [

3. Conditional variance estimation

In this section, we start by estimating o? without any non-negativity constraint (Prediction step).
Afterwards, the obtained predicted estimates are truncated so that the non-negativity constraint is
enforced (Robustification step).

3.1. Prediction

We extend the Kalman filter algorithm proposed in Settar et al. [10] for the GARCH(1,1) to the
GARCI—}\(p, q) where the error covariance matrices are computed through the recursive equations (8).

Let hyj¢, hyje—1, Py and Pyy_; be respectively the filtered and predicted estimates of iy and their
error covariance matrices. Note that the initial state of h; is given by its mean:

W

1 Do~ 23:1 B;

and its covariance matrix Pyjg = E {(ho — Ehq)(ho — Eh)T} determined by the recursive equations (8).
Then, one derives the Kalman filter equations for ¢t = 1,...,n as follows,

Ehq (1...0)7T eRr"

hyjp—1 = w + Ahy_qje—1,
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Pyy—1 = AP,y AT + 0007,
K; = Pyy_yel (e, Py_yel +v) 7,
}Alt\t = }Alt\t—l + Ky (ef — erﬁt\t—l),
Pt\t = Pt\t—l (Ir - eZKQf) .
Thus, the predicted conditional variance is extracted for t = 1,...,n as

3t2\t—1 = €r ht|t—1' (10)

3.2. Robustification

This step consists in enforcing the non-negativity constraint of 52 without regard to the relaxed con-
straints on the model parameters. Settar et al. [10] used the probability density function truncation
method [13] to truncate the density function of {33‘ 1) 1, (assumed Gaussian), with respect to

the non-negativity constraint % <02 <N, fort=1,...,n and some upper bound N empirically set.

However, because of the deterministic shape of such a constraint, the empirical choice of N related
to the non-negativity of o7 remains arbitrary or even fallacious in the absence of a priori information
on volatility boundedness. In order to control such a choice, we explore a random non-negativity

constraint through a bound Nj_; such that for a fixed confidence level 1 — 7 and for all t = 1,...,n,
we set 1
1—T=]P>{ gangl_T}. (11)
NI—T

Which implies A2
NI—T = \/Pt|t—1 *1-7 + Jt|t—17

where z1_, stands for (1 — 7)* quantile of the standard Gaussian distribution.
The conditional variance estimate after enforcement of constraint (11):

53@—1 = \/Ptjt—1 B+ 31?\1&—17 (12)

Pyj¢—1 is the first diagonal element of Fy;_; and p is the mean of the truncated Gaussian density be-

t l _ 1_N1778t2\t71 d _ N177—8?‘t71
ween |y = = and uy = —et—
Now, the quasi-log likelihood is well defined for all 6 € © as follows
n nl1lg g2
L, (0; =——log(2m) — - [ — ——t 4+ 1log(52 0 13
n( ;€1,€2, 7€n) 9 Og( 7T) 2 (TL ; fo_v?‘t_l (0) + Og(0t|t—l( ))) ’ ( )
where § = (w,a1,...,0p,01,..., ﬁq)T is the parameter vector and © is a subset of R** x RP*4 satisfying

assumptions (A1)—(A2). Thus, maximizing (13) with respect to § € © is equivalent to minimizing

the following criterion:
1< 7
(021,82, 8n) = = Y =
T Otje—1 (0)
Remark 1. The conditional variance extraction as given by (10) allows returning to the univariate
dimension of 6. Then, the constrained Kalman filter is applied with a single non-negativity constraint,

that is (11) for all p > 1 and ¢ > 1.

+ log (51?\t—1(9))' (14)

4. Monte Carlo experiment

In this section, we conduct two Monte Carlo simulations to assess the performance of our QML es-
timation based on the minimization of (14) compared to the standard QML estimation, in terms of
estimating the relaxed GARCH parameters.
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For each sample size n € {500, 1000, 5000}, splitted into 1000 replications, we simulated two pro-
cesses GARCH(3,1) and GARCH(2,3) respectively with parameter vectors (0.01,0.1,0.2,0.1,0.4)T and
(0.01,0.1,0.2,0.1,0.4,0.1)7. The generated data is afterword estimated by our method with 7 = 0.005
and by standard QML. Note that both GARCH processes have highly persistent volatility, of 0.8 for
the GARCH(3,1) and 0.9 for the GARCH(2,3). The mean squared error (MSE) is used for comparison
purposes. Further, we minimize the Tn criterion using the optim. command in R [14].

Tables 1 and 2 show that all parameters are better estimated by our method based on the relaxed
GARCH, compared to the standard QML estimation since it leads to a decrease in the MSE. Note
also that the low values of the standard deviations (SE) of 6 compared to those of 6 indicate that
the estimates over all replications are less dispersed around the former. In other words, the proposed
algorithm is more stable around 6. Moreover, it is clear that for all samples, our method captured
the high persistence of the volatility that characterizes the simulated GARCH processes, by recording
values > 0, &; + 23:1 B; that are close to the true persistence values set during the simulations
compared to the values resulting from the standard QML estimation.

Table 1. Finite sample properties of the --GARCH(3.1) and GARCH(3.1) parameter estimates.
Estimated standard deviations are shown in brackets. Smallest MSEs are marked by (*).

n  parameters values 6 (SE) MSE 6 (SE) MSE
500 w 0.01  0.0102 (0.0223) 0.0005* 0.0964 (0.4935) 0.2511
(%1 0.1 0.0995 (0.0574) 0.0033* 0.1823 (0.2245) 0.0572

g 0.2 0.1953 (0.0753) 0.0057* 0.1330 (0.2757) 0.0805

a3 0.1 0.0963 (0.0478) 0.0023* 0.0413 (0.1332) 0.0212

51 0.4 0.4002 (0.0888) 0.0079* 0.5678 (0.3222) 0.1320

1000 w 0.01  0.0097 (0.0932) 0.0087* 0.0478 (0.2589) 0.0685
o1 0.1 0.0968 (0.1009) 0.0102* 0.1034 (0.1956) 0.0383

g 0.2 0.1950 (0.0942) 0.0089* 0.1955 (0.2887) 0.0834

as 0.1 0.0921 (0.1026) 0.0106* 0.1416 (0.1251) 0.0174

B1 0.4 0.3974 (0.0989) 0.0098* 0.2654 (0.2865) 0.1002

5000 w 0.01  0.0092 (0.0830) 0.0069* 0.0172 (0.1573) 0.0248
o3 0.1 0.1013 (0.0888) 0.0079* 0.0829 (0.1323) 0.0178

g 0.2 0.1926 (0.0945) 0.0090* 0.2123 (0.2935) 0.0863

as 0.1 0.0960 (0.0853) 0.0073* 0.1222 (0.1170) 0.0142

51 0.4  0.3981 (0.0830) 0.0069* 0.3599 (0.2935) 0.0878

Table 2. Finite sample properties of the -~-GARCH(2,3) and GARCH(2,3) parameter estimates.
Estimated standard deviations are shown in brackets. Smallest MSEs are marked by (*).

n  parameters values 0 (SE) MSE 6 (SE) MSE
500 w 0.01  0.0106 (0.0727) 0.0053* 0.0062 (0.0859) 0.0074
o 0.1 0.0998 (0.0989) 0.0098* 0.0885 (0.2221)  0.0495

g 0.2 0.1987 (0.0574) 0.0033* 0.0129 (0.0222) 0.0355

51 0.1 0.1006 (0.0299) 0.0009* 0.1223 (0.2729) 0.0750

B2 0.4 0.4001 (0.0299) 0.0009* 0.1563 (0.2970) 0.1476

B3 0.1 0.1005 (0.0264) 0.0007* 0.1890 (0.3973) 0.1658

1000 w 0.01  0.0119 (0.0754) 0.0057* 0.0814 (0.0938) 0.0139
o 0.1 0.0989 (0.0632) 0.0040* 0.0901 (0.1212) 0.0148

g 0.2 0.1993 (0.0678) 0.0046* 0.0149 (0.3882)  0.1850

b1 0.1 0.1009 (0.0519) 0.0027* 0.0757 (0.3667) 0.1351

B2 0.4 0.4303 (0.0942) 0.0098* 0.1430 (0.2373) 0.1224

B3 0.1 0.0991 (0.0399) 0.0016* 0.1643 (0.2320)  0.0580

5000 w 0.01  0.0116 (0.0647) 0.0042 0.0180 (0.0472) 0.0023*
o 0.1 0.0987 (0.0479) 0.0023* 0.0977 (0.0573) 0.0033

o3 0.2 0.1980 (0.0871) 0.0076* 0.0102 (0.3920) 0.1897

B1 0.1 0.0995 (0.0399) 0.0016* 0.0256 (0.4359) 0.1956

B2 0.4 0.3987 (0.0734) 0.0054 0.3990 (0.0479) 0.0023*

B3 0.1 0.0992 (0.0399) 0.0016* 0.1405 (0.0957) 0.0108
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5. Empirical application

In this section, we conduct an empirical application of our estimation in order to compare its per-
formance to the relaxed QML estimation established by Nelson and Cao in terms of the optimums
obtained by each approach. The application covers three real series used by Baillie and Bollerslev [15]
and reused by Nelson and Cao [4], namely the exchange rate of the German mark/dollar, the French
franc/dollar and the Japanese yen/dollar from June 1, 1973 to January 28, 1985, each with a size of
2920 observations. These series as well as the corresponding return series are presented respectively in
figures 1-3. We denote by (s;) the exchange rate series and by (r;) the corresponding log-return series
in percent given by r; = 100log(s:/si—1), t = 1,...,2920.

o
—
©

©

20 25 30
1
-1 0 1 2

-1 0

<
I T T T T I I T T T T I I T T T T I I T T T T I

1974 1978 1982 1974 1978 1982 1974 1978 1982 1974 1978 1982

Fig. 1. Daily mark/dollar exchange rate (left) and the
corresponding return series (right) from June 1, 1973
to January 28, 1985.

Fig. 2. Daily franc/dollar exchange rate (left) and the
corresponding return series (right) from June 1, 1973
to January 28, 1985.

g - We follow the fitting of (r;) adopted by Nel-
7] : ] son and Cao [4] as a non-centred GARCH with

g o an order selected by the AIC criterion, i.e.

g - Y - re=0+e;, (eiler1,eia,...€1) ~ N(0,07),

T T T T 1 T T T T 1
P q

1974 1978 1982 1974 1978 1982 2 2 2
Fig. 3. Daily exchange rate of the yen/dollar (left) and o =Wt Z Qi€ T Z Bioij-
the corresponding return series (right) from June 1, 1973 = 7=l

to January 28, 1985. Table 3 reports the model parameter esti-
mates obtained by both the QCK method and the approach of Nelson and Cao denoted oNC | 1t
is easy to check that @’s values satisfy the inequalities of Nelson and Cao (See Theorem 1 and 2 in [4])
and relax accordingly Bollerslev’s non-negativity constraints. This is indeed the case of as in the
fitting of the series of returns of the yen/dollar exchange rate. Actually, the advantage of using our
method appears with the obtained values of log-likelihood. Indeed, it is clear that 6 maximize the
log-likelihood compared to oN €. which shows the potential of our method to reach a better optimum.

Table 3. Estimated GARCH models for daily exchange rates from June 1, 1973 to January 28, 1985.
The last row gives the log-likelihoods.

mark /dollar franc/dollar yen/dollar

GARCH(2,2) GARCH(2,1) GARCH(3,1)

0 pNC 0 pNC 0 gNC
5 0.0028  —0.0009 0.0116  —0.0002  —0.0006 0.0016
w 0.0182 0.0186 0.0021 0.0079 0.0111 0.0002
o 0.0576 0.0573 0.1680 0.1024 0.0088 0.1888
s 0.2265 0.2262 0.2449 0.1444 0.1988 0.0752
a3 —-0.1011  —0.2344
b1 0.3829 0.3833 0.5846 0.7735 0.4011 0.9730
B2 0.3096 0.3100

log-Lik —1462.94 —2447.24 —1459.63 —2356.21 —1659.94 —2086.27
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6. Conclusion

In this work, we generalized an approach based on the constrained Kalman filter allowing to relax the
QML estimation of the GARCH(p, q¢) parameters for all p > 1 and ¢ > 1. A practical method for
computing the auto-covariance function of the conditional variance based on the state-space represen-
tation was given and proved. We showed through a Monte Carlo experiment that our method is better
for parameter and volatility estimation of high-order GARCH when compared to the QML estimation
applied to the GARCH model under Bollerslev’s conditions. The empirical study of three real series,
namely the daily exchange rate returns of the mark/dollar, the franc/dollar and the yen/dollar showed
the performance of our estimation method to relax the non-negativity assumption of parameters as
well as maximizing the likelihood function compared to the QML estimation.
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Mpo ob6uucntoBansbHy ouinky mogeni GARCH Bucokoro nopsigky

Cerrap A.', ®armi H. 1.1, Bagayi M.1?2

LIPIM, Hauiorarvna wkoara npukiadrux wayx Xopibeu,
Vuisepcumem Cyamana Myaes Caimana, Mapoxko
2LaMSD, Buwa mexnoroziuna wroaa Yosicou,
Hepwuti ynisepcumem Moxammeda, Maporxko

11106 rapanTyBaTu HeBix'emuicTb yMoBHOI aucrepcii nporecy GARCH, mocrarabo mpu-
MyCTUTH HeBiT eMHicTh 11 mapameTpiB. Ilg ymoBa Oysia eMIipu<HO MOPYIIEHa, M0 3POOMIO
mozenb GARCH 6iibin oomexkenoro. Ilicis nporo 1 ymosa Oyiia mociabiieHa [js Jesi-
KX BHOOPIB HEOOXITHUX Ta [OCTATHIX OOMEKeHb. ¥ IIifi pobOTi y3arajbHEHO MiIXiJ Jijis
ouinku QML napamerpis GARCH(p, ¢) ayist Beix nopsiakis p > 1 ta ¢ > 1, Bukopucro-
Byroum obmexxennii pinbrp Kaamana. Takwmii miaxis qo3BoJisie nocaabieny ominky QML
st GARCH 6e3 HeoGximHOCT] BUSBIATH Ta/abo 3aCTOCOBYBATH MOCJIa0IeH] OOMEKEHHsI
Ha mapamMeTpu. KdeKTHBHICTD 3aIpOIIOHOBAHOIO METO/Y JIEMOHCTPYETHCS 3a JOIOMOTOIO
mogemioBantst Moure—Kapiio Ta eMIipuaHux 3aCTOCYBaHb JI0 PEAJbHAX JTAHUX.

Knwouosi cnoBa: GARCH, obmesicernuti diavmp Kaamana, ymosha ducnepcis, 60aa-
MUALHICTD, KBASIMAKCUMAALHE TMOBIPHICTY.
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