
THE IMPLEMENTATION OF A METHOD FOR WORKING WITH SENSITIVE DATA
USED BY VARIOUS SERVICES AND SYSTEMS

Ulyana Dzelendzyak, PhD, As.-Prof., Nazar Mashtaler, PhD Student
Lviv Polytechnic National University, Ukraine; e-mail: u.dzelendzyak@gmail.com

https://doi.org/

Abstract. The article describes the method of working with sensitive data used by various services and systems, including
CRM/ERM systems, as well as the implementation of storing this data using the classic .NET FRAMEWORK. The main driver of
this initiative is a missing centralized repository for connection strings to various systems like databases, CRM/ERM systems (for
example. Netsuite or Salesforce), system variables, other sensitive info (for example tokens), and third-party components. The
problem here is that each application has stored these connection strings in its configuration (usually in the web. config). It means
one connection string is multiplied in many places and if there is a change in credentials, for example, the change must be done in
all these application configurations. Finally, it would be better to have any registry of which connection string is used where. This
is adding complexity for global updates, and it also doesn't help with security (since credentials to production systems are in the
configuration and thus in source control, where they are visible to anybody).

Key words: Net Framework security, storing sensitive information, secrets, securing Microservices and Web Applications

1. Introduction

Nowadays, the processing and storage of sensitive
data play an important role. To connect with protected
resources and other services and systems .NET
applications typically need to use tokens, connection
strings, passwords, or other credentials that contain
sensitive information. These sensitive pieces of
information are called secrets. It's a best practice to not
include secrets in source code and to make sure not to
store secrets in source control. Instead, it would be better
to store read the secrets in more secure locations [2]. A
good approach would be to separate the secrets for
accessing development and staging resources from the
ones used for accessing production resources because
different individuals will need access to those different
sets of secrets [1, 5].

2. Drawbacks

The described approach suits well for big systems
that have parts implemented using different technologies
and for systems that are implemented mostly using the
classic .Net framework. The alternatives for smaller
systems or systems implemented via ASP.NET Core also
will be mentioned but the main focus would be on the
classic .Net framework.

3. Goal

The goal of the current article is to introduce the
approach of implementing a centralized and secured
repository for sensitive info which could fit enterprise-
level systems for different technologies, components,
and CRM/ERM systems.

4. Implementation of Configuration
Provider

Configuration Provider is a client library that
provides a persistent store for all stored configurations.
The library contains a registry of requested configu-

rations by applications, which allows us to see what
configuration is used by what application. Implemented
the ability to locally store the configuration for cases
when the Configuration provider is not available for any
reason to allow the application to start without it. Each
environment is separated to have a specific
Configuration provider for Production, QA, and Staging.
Also, the app provides access control for particular keys
based on Active Directory (AD) Groups. Active
Directory has two forms of common security principles:
user accounts and computer accounts. These accounts
represent a physical entity that is either a person or a
computer. A user account also can be used as a dedicated
service account for some applications. Security groups
are a way to collect user accounts, computer accounts,
and other groups into manageable units. Fig. 1 shows the
concept of the Configuration Provider process.

The management console is a simple web
application with strongly restricted access. It should
provide a few screens where the user should be able to:

• See all configurations
• Add/Edit/Remove configuration
• See apps, which are using a particular

configuration
• Permit/Deny app/AD group to be able to get the

configuration
• See the log of requests for configuration
Configuration Provider Client is a standard

RestSharp client which is hiding REST service and
which can return configuration in C# objects. It should
also allow the creation of a local store of the configura-
tion to ensure that the app is the particular configuration
in case of the Configuration provider's unavailability.

We have several separate applications: ‘Service
Tier’, ‘Customer Portal’, ‘Orchestrations’, and so on. Such
applications could be not related to each other but they
have one common characteristic. It is injected into the
Configuration Provider package that contains the method
‘GetConfig’. The Configuration Provider is injected into
our .Net applications via the NuGet package.

Measuring equipment and metrology. Vol. 83, No. 4, 2022 57

Fig.1. Concept of Process

A NuGet package contains reusable code that

other developers have made available to you for use in
your projects. You can install a NuGet package in a
Microsoft Visual Studio project by using the NuGet
Package Manager, the Package Manager Console, or the
.NET CLI. After you install a NuGet package, you can
then make a reference to it in your code using
<namespace> statement, where <namespace> is the
name of the package you're using. After you've referred,
you can then call the package through its API [6].

An essential tool for any modern development
platform is a mechanism through which developers can
create, share, and consume useful code. Often such code
is bundled into "packages" that contain compiled code
(as DLLs) along with other content needed in the
projects that consume these packages.

For .NET (including .NET Core), the Microsoft-
supported mechanism for sharing code is NuGet, which
defines how packages for .NET are created, hosted, and
consumed, and provides the tools for each of those roles.

Put simply, a NuGet package is a single ZIP file
with the .nupkg extension that contains compiled code
(DLLs), other files related to that code, and a descriptive
manifest that includes information like the package's
version number. Developers with code to share create
packages and publish them to a public or private host.
Package consumers obtain those packages from suitable
hosts, add them to their projects, and then call a
package's functionality in their project code. NuGet itself
then handles all of the intermediate details.

Because NuGet supports private hosts alongside
the public nuget.org host, you can use NuGet packages
to share code that's exclusive to an organization or a
work group. You can also use NuGet packages as a
convenient way to factor your code for use in nothing
but your projects. In short, a NuGet package is a
shareable unit of code but does not require nor imply any
particular means of sharing [7].

In its role as a public host, NuGet itself maintains
the central repository of over 100,000 unique packages at
nuget.org. These packages are employed by millions of
.NET/.NET Core developers every day. NuGet also
enables you to host packages privately in the cloud (such
as on Azure DevOps), on a private network, or even on
just your local file system. By doing so, those packages
are available to only those developers that have access to
the host, giving you the ability to make packages available
to a specific group of consumers. The options are
explained for Hosting your NuGet feeds. Through
configuration options, you can also control exactly which
hosts can be accessed by any given computer, thereby
ensuring that packages are obtained from specific sources
rather than a public repository like nuget.org.

Whatever its nature, a host serves as the point of
connection between package creators and package
consumers. Creators build useful NuGet packages and
publish them to a host. Consumers then search for useful
and compatible packages on accessible hosts,
downloading and including those packages in their

Measuring equipment and metrology. Vol. 83, No. 4, 2022 58

projects. Once installed in a project, the packages' APIs
are available to the rest of the project code [6, 7].

To have a whole picture of how it works let’s see
how we get all-need Configuration Keys(‘Netsuite

ConnectingString’, ‘SalesforceConnectingString’) for
the ‘Customer Portal’ app. Fig. 2 shows the request that
gets Keys for the ‘Customer Portal’ app and Fig. 3
shows the response that returns sensitive data.

 Fig.2. Request example

Fig.3. Response example

Fig.4. Usage workflow

Table 1. Description of public methods

Method Description
PreloadConfiguration(configurationKeys) Preloads the configuration to the internal cache and it is expected that

this method will be called within the application start

GetConfiguration<type>(key) Returns the configuration of a particular type and key. If the
configuration doesn't exist or the app doesn't have permission on it,
then null is returned

SetConfigurationProviderUrl(url) Allows to change URL to configuration provider
SetDomainUser(username, password) Set the Domain username and password for the user, which should

connect to the Configuration provider

Measuring equipment and metrology. Vol. 83, No. 4, 2022 59

The usage workflow is described in Fig. 4
Some of the applications call ConsultProxy

Service. The client that takes a request validates it and
sends it ConsultProxyService.Service that connects our
Configuration Provided with the Consul/Consul UI.

If the app and Configuration Key(s) exist and the
request was valid, Consul sends sensitive data via
ConsultProxyService.Service and
ConsultProxyService.Client.

Consul/Consul UI manages Secrets and Protect
Sensitive Data. Secure, store and tightly control access to
tokens, passwords, certificates, and encryption keys for
protecting secrets and other sensitive data using a UI,
CLI, or HTTP API. Also, Consul/Consul UI is used as a
storage and UI for editing keys ConsultProxyService.
The client is responsible for validation and sending
responses. ConsultProxyService.Service responsible for
working with Consul that is 3rd party component.

Let’s take a look at the class diagram for the
implementation of the Configuration Provider shown in
Fig. 5. Table 1 below described all public methods.

5. Alternatives

The configuration management database (CMDB)
is an ITIL term for a database used by an organization to
store information about hardware and software assets
(commonly referred to as configuration items). It is
useful to break down configuration items into logical
layers. This database acts as a data warehouse for the
organization and also stores information regarding the
relationships among its assets. The CMDB provides a
means of understanding the organization's critical assets
and their relationships, such as information systems,
upstream sources or dependencies of assets, and the
downstream targets of assets[3]. An example of the
configuration management database is shown in Fig. 6.

Fig.5. Configuration Provider Class Diagram

Fig.6. Example of CMDB

Measuring equipment and metrology. Vol. 83, No. 4, 2022 60

CMDB Features:
• Fully configurable CMDB
• HelpDesk and Incident Management
• Service and Contract Management
• Change Management
• Configuration Management
• Automatic impact analysis
• CSV import tool for all data
• Data synchronization (data federation)
CMDB’s Pros&Cons are described in Table 2.

Table 2. CMDB Pros&Cons

Pros Cons
• Could allow more
complex management
than classical CM tools

• Too heavy
• Expensive

.NET Core has its secret manager. The ASP.NET

Core Secret Manager tool provides another method of
keeping secrets out of source code during
development[1]. To use the Secret Manager tool, install
the package
Microsoft.Extensions.Configuration.SecretManager in
your project file. Once that dependency is present and
has been restored, the .NET user-secrets command can
be used to set the value of secrets from the command
line. These secrets will be stored in a JSON file in the
user’s profile directory (details vary by OS), away from
the source code.

To have a bigger picture let’s take a look at cloud
solutions that are popular nowadays. Let’s overview 2
the most popular Azure Key Vault and AWS Secrets
Manager.

Azure Key Vault is a secret store: a centralized
cloud service for storing app secrets; configuration
values like passwords and connection strings that must
remain secure at all times[4]. Key Vault helps you
control your apps' secrets by keeping them in a single
central location and providing secure access, permissions
control, and access logging.

The main benefits of using Key Vault are:
• Separation of sensitive app information from

other configurations and code, reducing the risk of
accidental leaks

• Restricted secret access with access policies
tailored to the apps and individuals that need them

• Centralized secret storage, meaning required
changes only have to be made in one place

• Access logging and monitoring to help you
understand how and when secrets are accessed

Secrets are stored in individual vaults, which are
Azure resources used to group secrets together. Secret
access and vault management are accomplished via a
REST API, which is also supported by all of the Azure
management tools, and client libraries available for

many popular languages. Every vault has a unique URL
where its API is hosted.

AWS Secrets Manager helps you protect the
sensitive data needed to access your applications,
services, and IT resources. The service allows you to
easily switch, manage, and retrieve database credentials,
API keys, and other sensitive data throughout its
lifecycle[5]. Users and applications retrieve sensitive
data with a call to the Secrets Manager APIs, eliminating
the need to encode sensitive information in plain text.
Secrets Manager offers sensitive data shifting with built-
in integration for Amazon Relational Database Service
(Amazon RDS), Amazon Redshift, and Amazon
DocumentDB. Additionally, the service can be extended
to other types of sensitive data, including API keys and
OAuth tokens. Secrets Manager also enables you to
control access to sensitive data through fine-grained
permissions and centrally audit sensitive data rotation for
resources located in the AWS Cloud, third-party
services, or on-premises.

6. Conclusions

The advantages of described approach for storing
secrets are the next. It provides:

• A persistent store for all stored configu-
rations.

• A configuration based on the requested key;
for example, the connection string to the CRM system.

• Access control for particular keys based on
AD Groups.

• A management console (web app) with
restricted access to allow user-friendly management of
the configuration.

• A registry of requested configurations by
applications, which enables monitoring of the certain
configuration used by the particular application.

• A client library with the ability to locally
store the configuration for cases when the Configuration
provider is not available for any reason to allow the
application to start without it

• A separation for each environment; we
should support a specific Configuration provider for
Production, QA, and Staging.

7. Gratitude

The authors express their gratitude to the Staff
members of the Departments of Computerized Auto-
matic Systems and the Information-Measuring Techno-
logies of Lviv Polytechnic National University.

8. Conflict of Interest

The authors state that there are no financial or
other potential conflicts regarding this work.

Measuring equipment and metrology. Vol. 83, No. 4, 2022 61

References
[1] C. de la Torre, B. Wagner, M. Rousos, .NET Micro-

services Architecture for Containerized NET
Applications, One Microsoft Way Redmond, Washington
98052-6399, 2022. https://learn.microsoft.com/en-
us/dotnet/architecture/microservices/

[2] Safe storage of app secrets in development in ASP.NET,
Microsoft 2022. [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/security/app-
secrets?view=aspnetcore-6.0&tabs=windows

[3] CMDB Design Guidance, Servicenow, 2020.
https://www.servicenow.com/content/dam/servicenow-
assets/public/en-us/doc-type/resource-center/white-
paper/wp-cmdb-design-guidance.pdf

[4] Azure Key Vault configuration provider in ASP.NET
Core, Microsoft 2022. [Online]. Available: https://learn.
microsoft.com/en-us/aspnet/core/security/key-vault-
configuration?view=aspnetcore-6.0

[5] AWS Secrets Manager: User Guide, Amazon Web
Services, Inc, 2022. https://docs.aws.amazon.com/
managedservices/latest/userguide/secrets-manager.html

[6] Quickstart: Install and use a NuGet package, Microsoft
2022. [Online]. Available: https://learn.microsoft.com/en-
us/nuget/quickstart/install-and-use-a-package-in-visual-
studio

[7] An introduction to NuGet, Microsoft 2022. [Online].
Available: https://learn.microsoft.com/en-us/nuget/what-
is-nuget

