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Several families of new exact solutions for a general second order linear partial differential
equation with variable coefficients are derived in this paper. All the possible polynomial
and polynomial-like solutions of this equation are derived. It is shown that there exist ex-
actly two sets of such families of exact solutions. These solutions are extended to construct
different families of exact solutions in terms of hypergeometric functions, which include
polynomial solutions as particular cases. A total of eight families of exact solutions are
derived using a novel method of balancing powers of the variables simultaneously. Several
well known linear partial differential equations in applied mathematics and mechanics are
special cases of the general equation considered in this paper and all the polynomial and
polynomial-like solutions of these partial differential equations are also explicitly derived
as special cases.
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1. Introduction

The process of finding exact solutions to differential equations is the one of the most difficult problem
in applied mathematics. Exact solutions are available to only certain types of differential equations.
Finding exact solutions for linear or non-linear partial differential equations which represent real world
problems are much more difficult, they possess many solutions and only a few of them can be derived
using available methods. Exact solutions are always important as they give more insight in to the
physical problem compared to numerical or approximate solutions.

In this paper we derive certain families of new exact solutions of the linear second order partial
differential equation with variable coefficients given by

(

αxp1 + βyp2 + γxp1+1 ∂

∂x
+ δyp2+1 ∂

∂y
+ µxp1+2 ∂

2

∂x2
+ ηyp2+2 ∂
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∂y2

)

f = 0, (1)

where f is a function of the variables x and y and α, β, γ, δ, η, µ, p1 and p2 are various parameters.
Polynomial solutions of some constant coefficient partial differential equations are discussed in [1–8] and
polynomial solutions of some variable coefficient ordinary differential equations are discussed in [9–11]
and references therein. Exact solutions to the general partial differential equation (1) with variable
coefficients are not available in the literature, except for a very few special cases.

We derive all possible polynomial solutions of this equation in this paper. In addition to the polyno-
mial solutions, we derive several other exact solutions which are expressible in terms of hypergeometric
functions. The equation (1) and its special cases have a large number of applications in different fields
of mathematical physics such as fluid mechanics, theory of surfaces, heat and mass transfer, mechanics,
elasticity, propagation of sounds, relativity theory etc. Putting p1 = −2 and p2 = −2 in equation (1)
we get the equation,
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)

f = 0. (2)
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One of the most important special cases of this equation is the Beltrami equation given by

∂f

∂x
− x

(

∂2f

∂x2
+
∂2f

∂y2

)

= 0.

This equation has applications in the case of Navier–Stokes fluid flows. A very good account of exact
solutions and applications of this equation can be found in [12–14]. The second important special case
of the equation (2) is the hyperbolic Euler–Poisson–Darboux (EPD) equation given by

∂2f

∂y2
=
∂2f

∂x2
+
λ

x

∂f

∂x
,

where λ is any real or complex parameter. The importance of these equations, its review and further
solutions are given in the papers [15–17]. In addition to the exact solutions of these two equations we
obtain exact solutions of several other important partial differential equations, such as, steady state
Schrödinger equation in two dimension, the heat and mass transfer equation in a two dimensional
inhomogeneous anisotropic medium, etc. Some of these differential equations and their exact solutions
are also discussed in this paper.

First of all, all possible polynomial solutions of the equation (2) in the variables x and y are
derived. After assuming a polynomial solution for this equation, a new method of balancing powers of
the variables is used to derive the required solutions. Using this method we derive recurrence formula
for the powers of the variables as well as recurrence formula for the coefficients of the variables. This
method is different from the usual method of deriving series solutions for ordinary differential equations.
We solve these recurrence relations to find the required possible polynomial solutions. The obtained
solutions are not always polynomial solutions. Depending upon the value of the parameters α, β, γ,
δ, η and µ, the derived solutions can have different forms. Some of them are polynomial solutions. In
some other cases we get polynomials multiplied by some non-integer power functions of the variables
x and y. We can call all these solutions as polynomial-like solutions. After obtaining these polynomial
or polynomial-like solutions, they are used to generate other new exact solutions which are expressed
in terms of hypergeometric functions. These polynomial or polynomial-like solutions and other exact
solutions of equation (2) are derived in the second and third sections. In the fourth section we derive
all polynomial or polynomial-like solutions and other exact solutions for the general partial differential
equation (1). After that we discuss some important special cases of the equations (1) and (2) which
appear in the field of applied mathematics and mechanics with many applications. These equations
include equation governing heat and mass transfer in an anisotropic media, Beltrami equations, Euler–
Poisson–Darboux equation, Euler–Tricomi equation, Keldysh equation and Schrödinger equation. The
paper is concluded in the last section.

2. The method and first set of exact solutions

In this section we derive all possible polynomial or polynomial-like solutions for the partial differential
equation (2) by applying the method of balancing powers of the variables, as described in the proof of
the following theorem. After finding these solutions we derive the exact solutions which generalize the
polynomial solutions. We characterize all the possible polynomial or polynomial-like solutions of the
this equation in the following theorem.

Theorem 1. The first set of different families of exact polynomial or polynomial-like solutions of the
second order partial differential equation (2) are given by

f1(x, y) =

N1
∑

k=1

ck x
µ−γ
2µ

−Φ
y
−

δ+η(3−4k)
2η

−Ψ
2F1

(

1− k,−k +Ψ+ 1; 1− Φ;−x
2η

y2µ

)

, (3)

f2(x, y) =

N2
∑

k=1

ckx
µ−γ
2µ

−Φ
y

η(4k−3)−δ

2η
+Ψ

2F1

(

1− k,−k −Ψ+ 1; 1− Φ;−x
2η

y2µ

)

, (4)

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 37–52 (2023)



Several families of new exact solutions for second order partial differential equations . . . 39

f3(x, y) =

N3
∑

k=1

ck x
µ−γ
2µ

+Φ
y
−

δ+η(3−4k)
2η

−Ψ
2F1

(

1− k,−k +Ψ+ 1;Φ + 1;−x
2η

y2µ

)

(5)

and

f4(x, y) =

N4
∑

k=1

ck x
µ−γ
2µ

+Φ
y

η(4k−3)−δ

2η
+Ψ

2F1

(

1− k,−k −Ψ+ 1;Φ + 1;−ηx
2

µy2

)

(6)

where, for each summation, ck are any constants and N1, N2, N3 and N4 are arbitrary positive integers.
Also

Φ =

√

(γ − µ)2 − 4αµ

2µ
and Ψ =

√

(δ − η)2 − 4βη

2η
.

Here the hypergeometric function [18] 2F1(a, b; c; z) is given by

2F1(a, b; c; z) =
∞
∑

m=0

(a)m(b)m
m!(c)m

zm

with (a)m = a(a+1)(a+2) . . . (a+m−1) is the Pochhammer symbol. The function 2F1(a, b; c; z) will be
a polynomial of degree k in z when a or b is a non-positive integer, −k, and c 6= 0,−1,−2,−3, . . . [18].
Since k > 1, it follows from the above equations that fi’s are always polynomials or polynomial-like
solutions in x and y depending on the values of the parameters. For certain values of the coefficients
of the PDE (2) these solutions will become polynomial solutions. We discuss certain examples later.

Proof. We consider a general polynomial in the variables x and y of the form

a1x
n1ym1 + a2x

n2ym2 + . . .+ akx
nkymk .

We need to obtain the conditions under which this polynomial is a solution this partial differential
equation (2). Substituting this in equation (2) and after a proper regrouping we get
(

αa1x
n1−2ym1 + a1γn1x

n1−2ym1 + a1µ (n1 − 1)n1x
n1−2ym1

)

+
k
∑

i=2

(

αaix
ni−2ymi + γainix

ni−2ymi + µai (ni − 1)nix
ni−2ymi + βai−1x

ni−1ymi−1−2

+ δai−1mi−1x
ni−1ymi−1−2 + ηai−1 (mi−1 − 1)mi−1x

ni−1ymi−1−2
)

+
(

βakx
nkymk−2 + δakmkx

nkymk−2 + ηak (mk − 1)mkx
nkymk−2

)

= 0. (7)

In this equation there are k+1 different groups in parenthesis. Here we have done the grouping in
such a way that the recurrence relation for the powers of variables and the recurrence relation for the
coefficients can be obtained (There is a second possible grouping that can be performed so that we are
able to obtain polynomial solutions, which will be discussed in the next section. It can be easily verified
that there exist only these two types of grouping leading to polynomial or polynomial-like solutions).
The above equation is satisfied if the objects in the parentheses vanish. We have to determine the
recurrence relations so that balancing of the terms in the parentheses are possible. When this is made
possible we get the following relations among the powers and coefficients. To balance the powers of x
and y in each group of the summation, the powers should be such that, mi = mi−1−2 and ni = ni−1+2.

Then the terms will vanish if we choose ai = − (β+mi−1(δ−η+ηmi−1))
α+ni(γ−µ+µni)

ai−1. Now the last term vanishes

only when mk = −
√

(δ−η)2−4βη+δ−η

2η or mk =

√
(δ−η)2−4βη−δ+η

2η . At last we need to consider the first

group. This group will vanish only when n1 = −
√

(γ−µ)2−4αµ+γ−µ

2µ or n1 =

√
(γ−µ)2−4αµ−γ+µ

2µ . So we
need to consider the following four different cases according to the values of mk and n1.

— Case 1: mk = −
√

(δ−η)2−4βη+δ−η

2η and n1 = −
√

(γ−µ)2−4αµ+γ−µ

2µ .

— Case 2: mk =

√
(δ−η)2−4βη−δ+η

2η and n1 = −
√

(γ−µ)2−4αµ+γ−µ

2µ .

— Case 3: mk = −
√

(δ−η)2−4βη+δ−η

2η and n1 =

√
(γ−µ)2−4αµ−γ+µ

2µ .
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— Case 4: mk =

√
(δ−η)2−4βη−δ+η

2η and n1 =

√
(γ−µ)2−4αµ−γ+µ

2µ .

Case 1: In this case the recurrence relation for the power of x is ni = ni−1 + 2, for 2 6 i 6 k,

with n1 = −
√

(γ−µ)2−4αµ+γ−µ

2µ . Solving this recurrence relation we get ni = −
√

(γ−µ)2−4αµ+γ+(3−4i)µ

2µ ,

for 1 6 i 6 k. So nk = −
√

(γ−µ)2−4αµ+γ+(3−4k)µ

2µ . Considering the power of the variable y, we have the

recurrence relation mi = mi−1−2, 1 6 i 6 k−1, with mk = −
√

(δ−η)2−4βη+δ−η

2η . Solving this recurrence

relation we get mi = −
√

(δ−η)2−4βη+δ+η(4i−4k−1)

2η , for 1 6 i 6 k. Hence the required solutions will be

homogeneous functions of degree −
µ
√

(δ−η)2−4βη+γη+δµ+η
(√

(γ−µ)2−4αµ+(2−4k)µ
)

2ηµ . If the solution is a
polynomial then this degree will be positive integer and if the solution is polynomial-like then this
value is not a positive integer. From the recurrence relation of the coefficients we get

ai =
(−1)i+1

∏i−1
q=1(β +mq(δ − η + ηmq))

∏i
q=2(α+ nq(γ − µ+ µnq))

a1, (8)

where 2 6 i 6 k. Hence the corresponding solution can be written as a homogeneous function of above
given degree and is given as

k
∑

i=1

aix
niymi = a1

(

xn1ym1 +
k
∑

i=2

(−1)i+1
∏i−1
q=1(β +mq(δ − η + ηmq))

∏i
q=2(α+ nq(γ − µ+ µnq))

xniymi

)

, (9)

where ni and mi are given above for 1 6 i 6 k. Once again we will expand the products in the
expression given by equation (8) using the values of ni and mi given above and simplify in terms of
Pochhammer symbols to obtain

ai =

(−1)i+1ηi−1(1− k)i−1

(

−k +
√

(δ−η)2−4βη

2η + 1

)

i−1

µi−1Γ(i)

(

1−
√

(γ−µ)2−4αµ

2µ

)

i−1

a1.

This equation is valid for 1 6 i 6 k. Then the equation (9) can be written as

a1

k
∑

i=1

(−1)i+1ηi−1(1− k)i−1 (−k +Ψ+ 1)i−1

µi−1Γ(i) (1− Φ)i−1

x
Φ−

γ+(3−4i)µ
2µ y

Ψ−
δ+η(4i−4k−1)

2η

where Φ =

√
(γ−µ)2−4αµ

2µ and Ψ =

√
(δ−η)2−4βη

2η . This can be written as

a1x
−

γ
2µ

+Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

k
∑

i=1

(−1)i+1ηi−1(1− k)i−1(−k +Ψ+ 1)i−1

µi−1Γ(i)(1− Φ)i−1

x2(i−1)

y2(i−1)
.

Since k and i are positive integers this equation becomes an infinite summation of the form

a1x
−

γ
2µ

+Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

∞
∑

i=1

(1− k)i−1(−k +Ψ+ 1)i−1

Γ(i)(1− Φ)i−1

(

−ηx
2

µy2

)i−1

.

Putting n = i− 1 this becomes

a1x
−

γ
2µ

+Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

∞
∑

n=0

(1− k)n(−k +Ψ+ 1)n
n!(1− Φ)n)

(

−ηx
2

µy2

)n

.

This infinite sum is nothing but the hypergeometric function given by [18]

a1x
µ−γ
2µ

−Φ
y
−

δ+η(3−4k)
2η

−Ψ

2 F1

(

1− k,−k +Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

. (10)
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So, in this case, the homogeneous polynomial or polynomial-like solution of degree

−
µ
√

(δ−η)2−4βη+γη+δµ+η
(√

(γ−µ)2−4αµ+(2−4k)µ
)

2ηµ to the partial differential equation (2) becomes (10).
Hence it follows that (3) is a solution of equation (2), since it is a linear partial differential equation.
We have, the function 2F1(a, b; c; z) is not defined for c = 0,−1,−2, · etc. [18]. So, it follows that the

above solution is not defined for positive integer values of Φ =

√
(γ−µ)2−4αµ

2µ .
Case 2: Here, the recurrence relation for the power of x and its initial value n1 are same as in the

previous case. Hence the value of ni, for 1 6 i 6 k is as given in the previous section. The recurrence

relation for the power of y is given bymi = mi−1−2, 1 6 i 6 k−1, withmk =

√
(δ−η)2−4βη−δ+η

2η . Solving

this recurrence relation we get mi =

√
(δ−η)2−4βη−δ+η(1−4i+4k)

2η , for 1 6 i 6 k. Hence the required

solution will be a homogeneous function of degree
µ
√

(δ−η)2−4βη−γη−δµ−η
(√

(γ−µ)2−4αµ+(2−4k)µ
)

2ηµ . Here
also the recurrence relation for the coefficients is same as in the first case. So the coefficients ai are
given by the equation (8), for 2 6 i 6 k. Hence the corresponding solution can be written as a
homogeneous function of above given degree. This solution is given by equation (9). Once again we
will expand the products in the expression given by equation (8) using the same values of ni and mi

given in the first case, and simplify using Pochhammer symbols to obtain

ai =

(−1)i+1ηi−1µ1−i(1− k)i−1

(

−k −
√

(δ−η)2−4βη

2η + 1

)

i−1

Γ(i)

(

1−
√

(γ−µ)2−4αµ

2µ

)

i−1

a1.

This equation is valid for 1 6 i 6 k. Then the equation (9) can be written as

a1

k
∑

i=1

(

(−1)i+1ηi−1µ1−i(1− k)i−1(−k −Ψ+ 1)i−1

)

Γ(i)(1 − Φ)i−1
x

(4i−3)µ−γ

2µ
−Φ
y

−δ+η(1−4i+4k)
2η

+Ψ
,

where Φ =

√
(γ−µ)2−4αµ

2µ and Ψ =

√
(δ−η)2−4βη

2η . This can be written as

a1x
µ−γ
2µ

+Φ
y
Ψ−

δ+η(3−4k)
2η

k
∑

i=1

(−1)i+1ηi−1(1− k)i−1(−k +Ψ+ 1)i−1

µi−1Γ(i)(1 − Φ)i−1

x2(i−1)

y2(i−1)
.

Since k and i are positive integers this equation becomes an infinite summation of the form

a1x
−

γ
2µ

+Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

∞
∑

i=1

(1− k)i−1(1− k −Ψ)i−1

Γ(i)(1− Φ)i−1

(

−ηx
2

µy2

)i−1

.

Putting n = i− 1 this becomes

a1x
−

γ
2µ

+Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

∞
∑

n=0

(1− k)n(1− k −Ψ)n
n!(1− Φ)n)

(

−ηx
2

µy2

)n

.

This infinite sum is nothing but the hypergeometric function given by [18]

a1x
−

γ
2µ

−Φ+ 1
2 y

− δ
2η

+2k+Ψ− 3
2

2 F1

(

1− k,−k −Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

. (11)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree
µ
√

(δ−η)2−4βη−γη−δµ−η
(√

(γ−µ)2−4αµ+(2−4k)µ
)

2ηµ to the partial differential equation (2) becomes (11).
Hence it follows that (4) is a solution to equation (2), since this equation is a linear partial differ-
ential equation. As in the previous case, it is to be noted that the above solution is not defined for

positive integer values of Φ =

√
(γ−µ)2−4αµ

2µ .
Case 3: Here, the recurrence relation for the power of y and its last value mk are same as in the

case 1. Hence the value of mi, for 1 6 i 6 k is as given in the first case. The recurrence relation for
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the power of x is given by ni = ni−1 + 2, for 1 6 i 6 k − 1, with n1 =

√
(γ−µ)2−4αµ−γ+µ

2µ . Solving this

recurrence relation we get ni =

√
(γ−µ)2−4αµ−γ+(4i−3)µ

2µ , for 1 6 i 6 k. Hence the required solution will

be a homogeneous function of degree
η
(√

(γ−µ)2−4αµ+(4k−2)µ
)

−µ
√

(δ−η)2−4βη−γη−δµ

2ηµ . Proceeding as in
case 1 and 2, the equation (9) can be written as

a1x
µ−γ
2µ

+Φ
y
Ψ−

δ+η(3−4k)
2η

k
∑

i=1

(−1)i+1ηi−1µ1−i(1− k)i−1(−k +Ψ+ 1)i−1

Γ(i)(Φ + 1)i−1

x2(i−1)

y2(i−1)
,

where Φ =

√
(γ−µ)2−4αµ

2µ and Ψ =

√
(δ−η)2−4βη

2η . This can be further extended to an infinite sum and is
finally expressed using hypergeometric function [18] as

a1x
µ−γ
2µ

+Φ
y
Ψ−

δ+η(3−4k)
2η

2 F1

(

1− k,−k +Ψ+ 1;Φ + 1;−ηx
2

µy2

)

. (12)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree
η
(√

(γ−µ)2−4αµ+(4k−2)µ
)

−µ
√

(δ−η)2−4βη−γη−δµ

2ηµ to the partial differential equation (2) becomes (12).
Hence it follows that (5) is a solution to equation (2), since this equation is a linear partial differ-
ential equation. As in the previous case, it is to be noted that the above solution is not defined for the

negative integer values of Φ =

√
(γ−µ)2−4αµ

2µ .
Case 4: Here, the recurrence relation for the power of x and its initial value n1 are same as in

the case 3. Hence the value of ni, for 1 6 i 6 k is as given in third case given above. The recurrence
relation for the power of y and its final value mk are same as in case 2. Hence the value of mi, for
1 6 i 6 k is as given in second case given above. Hence the required solution will be a homogeneous
function of degree

µ
√

(δ − η)2 − 4βη − γη − δµ + η
(

√

(γ − µ)2 − 4αµ + (4k − 2)µ
)

2ηµ
. (13)

Proceeding as in case 1 and 2, the equation (9) can be written as

a1

k
∑

i=1

(−1)i+1ηi−1µ1−i(1− k)i−1(−k +Ψ+ 1)i−1

Γ(i) (1 + Φ)i−1

x
(4i−3)µ−γ

2µ
+Φ
y
Ψ−

δ+η(4i−4k−1)
2η ,

where Φ =

√
(γ−µ)2−4αµ

2µ and Ψ =

√
(δ−η)2−4βη

2η . This can be further extended to an infinite sum and is
finally expressed using hypergeometric function [18] as

a1x
µ−γ
2µ

+Φ
y

η(4k−3)−δ

2η
+Ψ

2 F1

(

1− k, 1 − k −Ψ;Φ + 1;−ηx
2

µy2

)

. (14)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree (13) to the partial
differential equation (2) becomes (14). Hence it follows that (6) is a solution to equation (2), since
this equation is a linear partial differential equation. As in the previous case, it is to be noted that the

above solution is not defined for the negative integer values of Φ =

√
(γ−µ)2−4αµ

2µ .
We have derived all the above polynomial or polynomial-like solutions given by (3), (4), (5) and

(6) in terms of hypergeometric functions where k is a positive integer. Now the much interesting
and significant conclusion is that all these functions are solutions of the second order linear partial
differential equation (2) even when k is not a positive integer. That is, k can be any real numbers or
a complex number and the summation is taken over arbitrary set of real number or complex numbers.
Such exact solutions need not be polynomial solutions when k is not a positive integer. So we can
extend the above family of polynomial or polynomial-like solutions to more general exact solutions.
These extended exact solutions are given in the following theorem. �
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Theorem 2. Four different families of exact solutions to the second order linear partial differential
equation (2) are given by

f1(x, y) =
∑

k

ckx
µ−γ
2µ

−Φ
y
−

δ+η(3−4k)
2η

−Ψ

2 F1

(

1− k,−k +Ψ+ 1; 1− Φ;−x
2η

y2µ

)

, (15)

f2(x, y) =
∑

k

ckx
µ−γ
2µ

−Φ
y

η(4k−3)−δ

2η
+Ψ

2 F1

(

1− k,−k −Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

,

f3(x, y) =
∑

k

ckx
µ−γ
2µ

+Φ
y
−

δ+η(3−4k)
2η

−Ψ

2 F1

(

1− k,−k +Ψ+ 1;Φ + 1;−x
2η

y2µ

)

and

f4(x, y) =
∑

k

ckx
µ−γ
2µ

+Φ
y

η(4k−3)−δ

2η
+Ψ

2 F1

(

1− k,−k −Ψ+ 1;Φ + 1;−ηx
2

µy2

)

,

where the summation is running over any arbitrary finite set of numbers and ck are arbitrary param-
eters. Also

Φ =

√

(γ − µ)2 − 4αµ

2µ
and Ψ =

√

(δ − η)2 − 4βη

2η
.

Proof. Since the proof for all the four solutions are similar, we give the proof of the first solution and
the remaining solutions can be derived in the same manner. A general term in the sum (15) is given
by

g(x, y) = ckx
µ−γ
2µ

−Φ
y
−

δ+η(3−4k)
2η

−Ψ

2 F1

(

1− k,−k +Ψ+ 1; 1 − Φ;−ηx
2

µy2

)

(16)

for any real or complex number k. Since the equation (2) is a linear partial differential equation it is
enough to show that g(x, y) satisfies this partial differential equation. Using the formula

∂ 2F1(a, b; c; z)

∂z
=
ab 2F1(a+ 1, b+ 1; c+ 1; z)

c

we get, on simplification

∂g

∂x
=
x
−

γ+2µΦ+µ
2µ y

2k− δ+2ηΨ+3η
2η

2µ(Φ− 1)y2

{

(Φ− 1)y2(−γ − 2µΦ + µ)2F1

(

1− k,−k +Ψ+ 1; 1− Φ;−x
2η

y2µ

)

+4η(k − 1)x2(k −Ψ− 1)2F1

(

2− k,−k +Ψ+ 2; 2 − Φ;−x
2η

y2µ

)}

,

∂g

∂y
=
x
−

γ
2µ

−Φ+ 1
2 y

2k− δ+2ηΨ+5η
2η

2η

{

(−δ − 2ηΨ + η)2F1

(

1− k,−k +Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

+4η(k − 1) 2F1

(

2− k,−k +Ψ+ 1; 1 − Φ;−x
2η

y2µ

)}

.

Similarly, on simplification

∂2g

∂x2
=

Γ(1− Φ)x
−

γ
2µ

−Φ− 3
2 y

2(k−1)− δ+2ηΨ+3η
2η

4µ2

×
{

y2
(

(γ + 2µΦ)2 + (8k − 9)µ2
)

2F̃1

(

1− k,−k +Ψ+ 1; 1− Φ;−x
2η

y2µ

)

+8η(k − 1)x2(k −Ψ− 1)(γ + µ(−2k + 2Φ + 3)) 2F̃1

(

2− k,−k +Ψ+ 2; 2− Φ;−x
2η

y2µ

)

−8(k − 1)µ2y2 2F̃1

(

2− k,−k +Ψ+ 1; 1− Φ;−x
2η

y2µ

)
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+16η(k − 2)(k − 1)µx2(k −Ψ− 1) 2F̃1

(

3− k,−k +Ψ+ 2; 2− Φ;−x
2η

y2µ

)}

and

∂2g

∂y2
=
x
−

γ
2µ

−Φ+ 1
2 y

2k− δ+2ηΨ+7η
2η

4η2 (ηx2 + µy2)

{

2F1

(

1− k,−k +Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

×
(

µy2
(

(δ + 2ηΨ)2 + η2(16k(−k +Φ+ 2)− 16Φ− 17)
)

+ ηx2(δ + 2ηΨ − η)(δ + 2ηΨ + η)
)

−8η(k − 1) 2F1

(

2− k,−k +Ψ+ 1; 1 − Φ;−x
2η

y2µ

)

(

µy2(δ + 2η(−2k +Φ+Ψ+ 2)) + δηx2
)

}

.

Substituting these values in the equation (2) and on straight forward simplification we see that the
expression vanishes. So, (16) is a solution to the equation (2) and hence it follows that (15) is a
solution to the linear second order partial differential equation (2), where the summation is taken over
any finite set of real or complex numbers. �

3. Second set of exact solutions

In this section, we will find another set of exact solutions of the equation (2). We have used first
possible grouping of terms in equation (7) for deriving four sets of families of solutions in the previous
section. Here, the required exact solutions of the equation (2) is derived from the second possible
grouping of the the terms in equation (7), which facilitate the balancing procedure. The grouping is
given below,

(

a1βy
m1−2xn1 + a1δm1y

m1−2xn1 + a1η(m1 − 1)m1y
m1−2xn1

)

+
k
∑

i=2

(

αai−1y
mi−1xni−1−2 + γai−1ni−1y

mi−1xni−1−2 + µai−1 (ni−1 − 1)ni−1y
mi−1xni−1−2

+ βaiy
mi−2xni + δaimiy

mi−2xni + ηai(mi − 1)miy
mi−2xni

)

+
(

αaky
mkxnk−2 + γaknky

mkxnk−2 + a4µ(nk − 1)nky
mkxnk−2

)

= 0.

In this equation there are k + 1 different groups in parenthesis. Here also we have done the grouping
in such a way that the recurrence relation of powers of the variables and the recurrence relation of
coefficients can be easily derived. The above equation is satisfied if the objects in the parentheses
vanish. Now we have to determine the recurrence relations so that balancing of the terms in the
parentheses are possible. When this is made possible we get the following relations among the powers
and coefficients. To balance the powers of x and y in each group of the summation, the powers
should be such that, mi = mi−1 + 2 and ni = ni−1 − 2. Then the terms will vanish if we choose

ai = −ai−1(α+ni−1(γ−µ+µni−1))
β+mi(δ−η+ηmi)

. Now the last term vanishes only when mk = −
√

(γ−µ)2−4αµ+γ−µ

2µ or

nk =

√
(γ−µ)2−4αµ−γ+µ

2µ . Finally consider the first group. This group will vanish only when m1 =

−
√

(δ−η)2−4βη+δ−η

2η or m1 =

√
(δ−η)2−4βη−δ+η

2η . So, we need to consider the following four different
cases according to the values of nk and m1.

Case 1: nk = −
√

(γ−µ)2−4αµ+γ−µ

2µ and m1 = −
√

(δ−η)2−4βη+δ−η

2η .

Case 2: nk = −
√

(γ−µ)2−4αµ+γ−µ

2µ and m1 =

√
(δ−η)2−4βη−δ+η

2η .

Case 3: nk =

√
(γ−µ)2−4αµ−γ+µ

2µ and m1 = −
√

(δ−η)2−4βη+δ−η

2η .

Case 4: nk =

√
(γ−µ)2−4αµ−γ+µ

2µ and m1 =

√
(δ−η)2−4βη−δ+η

2η .
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We consider the first case and find the corresponding solution. In this case the recurrence relation
for the power of x is ni = ni−1 − 2, for 2 6 i 6 k, with

nk = −
√

(γ − µ)2 − 4αµ + γ − µ

2µ
.

Solving this recurrence relation we get

ni =
−
√

−4αµ+ γ2 − 2γµ+ µ2 − γ − 4iµ + 4kµ+ µ

2µ
(17)

for 1 6 i 6 k. We have the recurrence relation mi = mi−1 + 2, 1 6 i 6 k − 1, with

m1 = −
√

(δ − η)2 − 4βη + δ − η

2η
.

Solving this recurrence relation we get

mi = −
√

(δ − η)2 − 4βη + δ + η(3− 4i)

2η
(18)

for 1 6 i 6 k. Hence the required exact solution will be a homogeneous function of degree

−
µ
√

(δ − η)2 − 4βη + γη + δµ + η
(

√

(γ − µ)2 − 4αµ + (2− 4k)µ
)

2ηµ
. (19)

If the solution is polynomial then this degree will be positive integer and if the solution is polynomial-
like then this value is not a positive integer. From the recurrence relation of the coefficients we get

ai =
(−1)i+1

∏i−1
q=1(α + nq(γ − µ+ µnq))

∏i
q=2(β +mq(δ − η + ηmq))

a1, (20)

where 2 6 i 6 k. Hence the corresponding solution can be written as a homogeneous function of degree
given by equation (19) as

k
∑

i=1

aix
niymi = a1

(

xn1ym1 +
k
∑

i=2

(−1)i+1
∏i−1
q=1 (α+ nq(γ − µ+ µnq))

∏i
q=2 (β +mq(δ − η + ηmq))

xniymi

)

, (21)

where ni and mi are given by equations (17) and (18) for 1 6 i 6 k. Once again we will expand the
products in the expression given by equation (20) using the values of ni and mi given by equations (17)
and (18), and simplify in terms of Pochhammer symbols to obtain

ai =

(−1)i+1η1−iµi−1(1− k)i−1

(

−k +
√

(γ−µ)2−4αµ

2µ + 1

)

i−1

Γ(i)

(

1−
√

(δ−η)2−4βη

2η

)

i−1

a1.

This equation is valid for 1 6 i 6 k. Then the equation (21) can be written as

a1

k
∑

i=1

(−1)i+1η1−iµi−1(1− k)i−1(−k +Φ+ 1)i−1

Γ(i)(1 −Ψ)i−1
x
−

γ+µ(4i−4k−1)
2µ

−Φ
y
−

δ+η(3−4i)
2η

−Ψ
,

where Φ =

√
(γ−µ)2−4αµ

2µ and Ψ =

√
(δ−η)2−4βη

2η . This can be written as

a1y
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ

k
∑

i=1

(1− k)i−1(−k +Φ+ 1)i−1

Γ(i)(1 −Ψ)i−1

(

−µy
2

ηx2

)i−1

.

Since k and i are positive integers this equation becomes an infinite summation of the form

a1y
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ

∞
∑

i=1

(1− k)i−1(−k +Φ+ 1)i−1

(i− 1)!(1 −Ψ)i−1

(

−µy
2

ηx2

)i−1

.
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Putting n = i− 1 this becomes

a1y
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ

∞
∑

n=0

(1− k)n(−k +Φ+ 1)n
n!(1−Ψ)n

(

−µy
2

ηx2

)n

.

This infinite sum is nothing but the hypergeometric function given by [18]

a1y
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ 2F1

(

1− k,−k +Φ+ 1; 1−Ψ;−µy
2

ηx2

)

. (22)

So, in this case, the homogeneous polynomial or polynomial-like solution of degree (19) to the partial
differential equation (2) becomes (22). Hence it follows that

N
∑

k=1

cky
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ
2F1

(

1− k,−k +Φ+ 1; 1 −Ψ;−µy
2

ηx2

)

is a solution to equation (2) for any positive integer N , since this equation is a linear partial differential
equation. We have, the function 2F1(a, b; c; z) is not defined for c = 0,−1,−2, . . . etc. [18]. So, it follows

that the above solution is not defined for positive integer values of Ψ =

√
(γ−µ)2−4αµ

2µ .
In a similar way, for the remaining three cases also we can derive the required three family exact

polynomial solutions. It is also possible to extend all these four families of polynomial solutions to exact
solutions in terms of hypergeometric functions which include non-polynomial solutions, as derived in
the first case in the previous section. These results are summarized in the following theorem.

Theorem 3. The second set of families of exact solutions for the second order linear partial differ-
ential equation (2) are given by

f5(x, y) =
∑

k

cky
− δ

2η
−Ψ+ 1

2x
2k− γ+2µΦ+3µ

2µ
2F1

(

1− k,−k +Φ+ 1; 1 −Ψ;−µy
2

ηx2

)

,

f6(x, y) =
∑

k

cky
η−δ
2η

+Ψ
x
−

γ+(3−4k)µ
2µ

−Φ
2F1

(

1− k,−k +Φ+ 1;Ψ + 1;−µy
2

ηx2

)

,

f7(x, y) =
∑

k

cky
−

δ−η
2η

−Ψ
x

(4k−3)µ−γ

2µ
+Φ

2F1

(

1− k,−k − Φ+ 1; 1 −Ψ;−µy
2

ηx2

)

and

f8(x, y) =
∑

k

cky
η−δ
2η

+Ψ
x

(4k−3)µ−γ

2µ
+Φ

2F1

(

1− k,−k −Φ+ 1;Ψ + 1;−µy
2

ηx2

)

,

where, for each summation, ck are constants and the summation is taken over any finite set of real or
complex numbers.

Here if we restrict each of the above sums over a finite set of positive integers k, we are getting four
families of polynomial or polynomial-like solutions of the equation (2).

4. Generalized second order equation

In this section we consider the generalized second order linear partial differential equation (1). We can
find all polynomial solutions or polynomial-like solutions and other exact solutions of this equation
using the method of balancing powers of variables as described in the previous section. The derivation
is very similar to the procedure given in the previous two sections with slight modifications in the
steps. The final results are summarized in the following theorem.
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Theorem 4. The eight different classes of families of exact solutions of the generalized second order
linear partial differential equation (1) are given by

f1(x, y) =
∑

k

ckx
µ−γ
2µ

−Φ
y
−

δ+2(k−1)ηp2−η

2η
−Ψ

2F1

(

1− k,−k − 2Ψ

p2
+ 1;

2Φ

p1
+ 1;− ηp22y

p2

µp21x
p1

)

,

f2(x, y) =
∑

k

ckx
µ−γ
2µ

−Φ
y

−δ−2(k−1)ηp2+η

2η
+Ψ

2F1

(

1− k,−k + 2Ψ

p2
+ 1;

2Φ

p1
+ 1;− ηp22y

p2

µp21x
p1

)

,

f3(x, y) =
∑

k

ckx
µ−γ
2µ

+Φ
y
−

δ+2(k−1)ηp2−η

2η
−Ψ

2F1

(

1− k,−k − 2Ψ

p2
+ 1; 1− 2Φ

p1
;− ηp22y

p2

µp21x
p1

)

,

f4(x, y) =
∑

k

ckx
µ−γ
2µ

+Φ
y

−δ−2(k−1)ηp2+η

2η
+Ψ

2F1

(

1− k,−k + 2Ψ

p2
+ 1; 1 − 2Φ

p1
;− ηp22y

p2

µp21x
p1

)

,

f5(x, y) =
∑

k

cky
− δ−η

2η
−Φ
x
−

γ−µ+2µ(k−1)p1
2µ

−Φ
2F1

(

1− k,−k − 2Φ

p1
+ 1;

2Ψ

p2
+ 1;−µp

2
1x
p1

ηp22y
p2

)

,

f6(x, y) =
∑

k

cky
η−δ
2η

+Ψ
x
−

γ−µ+2µ(k−1)p1
2µ

−Φ
2F1

(

1− k,−k − 2Φ

p1
+ 1; 1 − 2Ψ

p1
;−µp

2
1x
p1

ηp22y
p2

)

,

f7(x, y) =
∑

k

cky
η−δ
2η

−Ψ
x

−γ+µ−2µ(k−1)p1
2µ

+Φ
2F1

(

1− k,−k + 2Φ

p1
+ 1;

2Ψ

p2
+ 1;−µp

2
1x
p1

ηp22y
p2

)

and

f8(x, y) =
∑

k

cky
η−δ
2η

+Ψ
x

−γ+µ−2µ(k−1)p1
2µ

+Φ
2F1

(

1− k,−k + 2Φ

p1
+ 1; 1 − 2Ψ

p2
;−µp

2
1x
p1

ηp22y
p2

)

,

where, for each summation, ck are constants and the summation is taken over any finite set of real or
complex numbers. Also

Φ =

√

(γ − µ)2 − 4αµ

2µ
and Ψ =

√

(δ − η)2 − 4βη

2η
.

Here if we restrict each of the above sums over a finite set of positive integers k, we are getting
families of polynomial or polynomial-like solutions of the equation (1). Otherwise we are getting
exact solutions which are expressible in terms of hypergeometric functions. The exact solutions of the
equation (2) derived in the previous sections are obtained by putting p1 = p2 = −2 in the above exact
solutions.

5. Discussion and applications

Equation (2) is the second order linear partial differential equation with variable coefficients and
equation (1) is its generalization. By assigning particular vales for the parameters in these equations
we get different well known partial differential equations in applied mathematics and mechanics. In
this section we discuss some special cases of the equations (1) and (2). The first important special case
that we discuss is the Beltrami equation.

5.1. Heat and mass transfer equation

The heat and mass transfer equation in two dimensional inhomogeneous anisotropic medium is given
by

∂
(

axm∂f
∂x

)

∂x
+
∂
(

byn ∂f
∂y

)

∂y
= 0, (23)
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where axn and byn are the principal thermal diffusivities [19]. This equation is a special case of the
equation (1). It can be obtained from equation (1) by putting α = β = 0, γ = ma, δ = nb, µ = a

and η = b, p1 = −2 +m and p2 = −2 + n. So, we get eight new different families of exact solutions
of the corresponding heat and mass transfer equation (23) in terms of hypergeometric functions from
Theorem 5. These solutions include all polynomial solutions or polynomial-like solutions of the heat
and mass transfer equation (23). As an illustration, the first solution is given by

f1(x, y) =
∑

k

ckx
1−my−k(n−2)−1

2F1

(

1− k,
1

2− n
− k; 2 +

1

m− 2
;−b(n− 2)2x2−myn−2

a(m− 2)2

)

.

5.2. Generalized Beltrami equation

The partial differential equation satisfied by the stream function of a steady state axisymmetric Navier–
Stokes fluid flows under conservative body forces, which satisfies the generalized Beltrami condition [13,
14] is given by

(

1

x

∂

∂x
− ∂2

∂x2
− ∂2

∂y2

)

f = cx3.

The corresponding homogeneous Beltrami equation is given by
(

1

x

∂

∂x
− ∂2

∂x2
− ∂2

∂y2

)

f = 0.

This can be obtained from equation (2) by putting α = β = δ = 0, γ = 1 and η = µ = −1. So the
exact polynomial solutions of this equation are obtained from solutions (3) and (4) given in Theorem 1.
These are given by

f1(x, y) =

N1
∑

k=1

ck x
2y2k−1

2F1

(

1

2
− k, 1− k; 2;−x

2

y2

)

and

f2(x, y) =

N1
∑

k=1

ck x
2y2k−2

2F1

(

1− k,
3

2
− k; 2;−x

2

y2

)

.

The other two solutions are not defined in this case as Φ = −1. In a similar way we can find the
different exact solutions of generalized beltrami equation in terms of hypergeometric functions from
Theorems 2 and 3. Here it is to be noted that the solutions f7 and f8 are equivalent to the solutions
f5 and f6 respectively and the solutions f3 and f4 does not exist in this case. The above solutions
include all the polynomial solutions of the generalized Beltrami equation. These solutions are same as
the solutions given in [13] while discussing the exact solutions of generalized Beltrami flows which are
special cases of Navier–Stokes fluid flows.

5.3. Elliptic Euler–Poisson–Darboux equation

This equation is also a special case of the equation (2), which is given by
(

λ

x

∂

∂x
+

∂2

∂x2
+

∂2

∂y2

)

f = 0.

This can be obtained from equation (2) by putting α = β = δ = 0, γ = λ and η = µ = 1. The
exact polynomial or polynomial-like solutions of these equation are obtained from the solutions given
in Theorem 1. A representative solution is given by

f1(x, y) =

N1
∑

k=1

cky
2k−2x

1
2

(

−λ−
√

(λ−1)2+1
)

2F1

(

1− k,
3

2
− k; 1− 1

2

√

(λ− 1)2;−x
2

y2

)

.
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But, here we are getting polynomial solutions only for particular values of the parameter λ. When
1
2

(

−λ−
√

(λ− 1)2 + 1
)

is zero or a positive integer we are getting polynomial solutions from f1 and f2

and when 1
2

(

−λ+
√

(λ− 1)2 + 1
)

is zero or a positive integer we are getting polynomial solutions from

f3 and f4. In all other cases we are getting only polynomial-like solutions. The eight different families
of exact solutions of elliptic Euler–Poisson–Darboux equation in terms of hypergeometric functions
can also be obtained from Theorems 2 and 3 in a similar way. These solutions include all polynomial
solutions of the elliptic Euler–Poisson–Darboux equation. Some other solutions and applications of
this equation can be found in [19, 20].

5.4. Hyperbolic Euler–Poisson–Darboux equation

This equation is also a special case of the equation (2) which is given by
(

λ

x

∂

∂x
+

∂2

∂x2
− ∂2

∂y2

)

f = 0.

This can be obtained from equation (2) by putting α = β = δ = 0, γ = λ, η = 1 and µ = −1. The
exact polynomial solutions of these equation are obtained from the solutions given in Theorem 1. The
first solution is given by

f1(x, y) =

N1
∑

k=1

cky
2k−2x

1
2

(

λ+
√

(λ+1)2+1
)

2F1

(

1− k,
3

2
− k;

1

2

√

(λ+ 1)2 + 1;
x2

y2

)

.

But here we are getting polynomial solutions only for particular values of the parameter λ. When
1
2

(

λ+
√

(λ+ 1)2 + 1
)

or 1
2

(

λ−
√

(λ+ 1)2 + 1
)

is zero or a positive integer we are getting polynomial

solutions corresponding to first two equations or last two equations in Theorem 1 respectively. In
all other cases we are getting only polynomial-like solutions. Putting the above parametric values
in Theorems 2 and 3, we get all the eight different families of exact solutions of hyperbolic Euler–
Poisson–Darboux equation in terms of hypergeometric functions. These solutions include all polynomial
solutions of the hyperbolic Euler–Poisson–Darboux equation. Some other solutions and applications
of this equation can be found in [15–17].

5.5. Schrödinger equation

The steady state Schrödinger equation with zero energy [19] given by

∂2f

∂x2
+
∂2f

∂y2
= f

(

α

x2
+
β

y2

)

(24)

is also a special case of the equation (2). This can be obtained from equation (2) by putting γ = δ = 0,
η = µ = −1. Applying these parametric values we can easily derive all the eight different families of
new exact solutions of the Schrödinger equation (24) in terms of hypergeometric functions. The first
solution is given by

f1(x, y) =
∑

k

ckx
φ+1
2 y

1
2
(4k+ψ−3)

2F1

(

1− k,−k − 1

2

√

4β + 1 + 1;
ψ + 2

2
;−x

2

y2

)

,

where φ =
√
4α+ 1 and ψ =

√
4β + 1. The corresponding solutions include all polynomial solutions

or polynomial-like solutions of the Schrödinger equation.

5.6. Keldysh equation

The Keldysh equation is the second order partial differential equation of mixed elliptic-hyperbolic type
which is given by

x
∂2f

∂x2
+
∂2f

∂y2
= 0. (25)
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This equation also has many applications in the fields such as in non-geometrical optics and in modeling
of zero temperature plasma to which a magnetic field has been applied [21–24]. It is a special case of
the equation (1). This can be obtained from equation (1) by putting α = β = γ = δ = 0, η = µ = 1,
p1 = −1 and p2 = −2. Applying these parametric values in Theorem 5, we get the different families of
new exact solutions of the Keldysh equation (25) in terms of hypergeometric functions and one such
solution is given by

f3(x, y) =
∑

k

ckxy
2k−2

2F1

(

1− k,
3

2
− k; 2;−4x

y2

)

.

These solutions include all polynomial solutions or polynomial-like solutions of Keldysh equation.
These solutions are in full agreement with the solutions of these equations obtained in [25].

5.7. Euler–Tricomi equation

The Euler–Tricomi equation is also the second order partial differential equation of mixed elliptic-
hyperbolic type which is given by

∂2f

∂x2
+ x

∂2f

∂y2
= 0. (26)

This equation mainly appears in the study of aerodynamics and the isometric embedding of Rieman-
nian manifolds. It is useful in the analysis of transonic flows and this equation has application in
vanishing viscosity method which is formulated for studying two-dimensional transonic steady irrota-
tional compressible fluid flows [8, 22, 24, 26, 27]. It is a special case of the equation (1). This can be
obtained from equation (1) by putting α = β = γ = δ = 0, η = µ = 1, p1 = −3 and p2 = −2. Using
these parametric values we can derive the eight different families of exact solutions of the Euler–Tricomi
equation (26) in terms of hypergeometric functions from Theorem 5 and one such solution is given by

f1(x, y) =
∑

k

cky
2k−2

2F1

(

1− k,
3

2
− k;

2

3
;−4x3

9y2

)

.

These solutions include all polynomial solutions or polynomial-like solutions of the Euler–Tricomi
equation. These solutions are in full agreement with the solutions of these equations obtained in [25]

6. Conclusion

We have derived all polynomial and polynomial-like solutions solutions of the variable coefficient linear
partial differential equation (1) in this paper. There exist exactly two sets of such family of solutions.
All these exact solutions are derived by applying a new method of balancing powers of the variables
x and y simultaneously. Clearly there are only two possible ways to group the resulting terms so
that this method is applicable. In both these cases we have derived the corresponding polynomial or
polynomial-like solutions. These polynomial solutions are having compact form expressed in terms
of hypergeometric functions. These solutions are then extended to more general solutions, which
include all the polynomial or polynomial-like solutions. Several linear partial differential equations
with various applications appearing in mathematical physics are particular cases of the general second
order equation (1) considered in this paper. These special cases include the heat and mass transfer
equation in two dimensional inhomogeneous anisotropic medium, generalized Beltrami equation, steady
state Schrödinger equation in two dimensions, Keldysh equation, Euler–Tricomi equation, hyperbolic
Euler–Poisson–Darboux equation, elliptic Euler–Poisson–Darboux equation, two dimensional heat and
wave equation etc. The exact solutions of such equations are also explicitly discussed in this paper.
The method employed in this paper can be modified to find exact solutions of the higher order linear
partial differential equations.
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Декiлька сiмейств нових точних розв’язкiв рiвнянь iз частковими
похiдними другого порядку зi змiнними коефiцiєнтами

Джозеф С. П.

Кафедра математики, Державний iнженерний коледж, Ваянад,

Талапужа П.О., Ваянад, Керала, Iндiя

У цiй статтi виведено декiлька сiмейств нових точних розв’язкiв загального лiнiйного
рiвняння в частинних похiдних другого порядку зi змiнними коефiцiєнтами. Отрима-
но всi можливi полiномiальнi та полiномiоподiбнi розв’язки цього рiвняння. Показано,
що iснує точно двi множини таких сiмейств точних розв’язкiв. Цi розв’язки розши-
рено для побудови рiзних сiмейств точних розв’язкiв у термiнах гiпергеометричних
функцiй, якi включають полiномiальнi розв’язки як окремi випадки. Всього вiсiм сi-
мейств точних розв’язкiв отримано за допомогою нового методу одночасного баланс-
ування степеней змiнних. Декiлька добре вiдомих лiнiйних диференцiальних рiвнянь
iз частковими похiдними в прикладнiй математицi та механiцi є окремими випадками
загального рiвняння, розглянутого в цiй статтi, i всi полiномiальнi та полiномiоподiб-
нi розв’язки цих рiвнянь iз частковими похiдними також явно виведенi як частковi
випадки.

Ключовi слова: полiномiальнi розв’язки; точнi розв’язки; змiнний коефiцiєнт

ДРЧП; рiвняння тепломасопереносу; узагальненi потоки Бельтрамi; рiвняння

Шредiнгера.
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