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SOFTWARE AND ALGORITHMIC PROVISION OF PARALLEL CALCULATION OF 

NON-ISOTHERMAL MOISTURE TRANSFER BASED ON THE APPARATUS OF 

FRACTIONAL DERIVATIVES 
 

A new mathematical model of the nonstationary process of heat and moisture transfer in 

the two-dimensional region is constructed on the basis of the use of Caputo and Grunwald-

Letnikov derivatives. An implicit finite-difference scheme for approximation of a mathematical 

model of noisothermal moisture transfer taking into account the fractional integro-differential 

apparatus is developed. The given algorithm of numerical realization of model allows to receive 

values of function of temperature and humidity for all points of area of partition. The method 

of fractional steps is adapted for numerical realization of mathematical model. It allowed 

performing parallel calculations of two difference half-step taking into account the 

corresponding spatial coordinate. The implemented algorithm of parallel calculation of non-

isothermal moisture transfer in materials of fractal structure makes it possible to obtain a 

reliable result without the need to conduct complex and expensive practical experiments. It is 

proposed to use the Model-View-Presenter design pattern for software development. The 

software a parallel algorithm using .Net threads and algorithmic features of the TPL library has 

developed. It has been tested on multi-core computer systems with CPUs of different capacities. 

The .NET Stopwatch class was used to measure the execution time of sequential and parallel 

algorithms. A two-dimensional case with a mesh partition is studied for three cases: a square 

shape, a wide rectangular shape, and a tall rectangular shape. Graphs of dynamics of 

acceleration and efficiency of algorithms are given, and their analysis is also carried out. To 

smooth the graphs of acceleration and efficiency of algorithms, we apply approximation of 

experimental data based on the obtained results. 

Key words: Caputo derivatives, Core, Efficiency, Fractal materials, Grunwald-Letnikov 

derivatives, Heat-and-moisture transfer, Parallelization, Thread. 

 

Introduction 

The relevance of the study. Non-equilibrium processes of heat and mass transfer in capillary-porous 

anisotropic media are characterized by fractality of spatial and temporal characteristics. Therefore, 

mathematical modeling of such processes requires the development of new non-traditional methods and 

means of modeling, which are based on the mathematical apparatus of integro-differential equations of 

fractional order. Unlike traditional mathematical models based on local partial differential equations, they 

will be able to describe the fractal nature of nonlinear relationships in time and space, the self-similarity of 

fractal systems, the "memory" effect, and spatial correlations. Such mathematical models of fractional order 

describe the evolution of physical systems with residual memory, which occupy an intermediate place 

between Markov systems and systems characterized by full memory. In particular, the fractionalization 

indicator show the fate of system states that are preserved throughout the entire process of its functioning. 

However, taking into account all components of the model, in particular the effects of memory and spatial 

correlation on a real time scale, leads to a significant increase in the computational complexity of 

implementation algorithms. And this leads to significant costs of computing resources. In addition, most 

modern technical means of parallelization are expensive. Therefore, to parallelize processes, it is advisable 

to use publicly available hardware that supports parallel computing. The relevance of this research is 

determined by the construction of such mathematical models that would be amenable to parallel 

implementation on available computing equipment and at the same time would provide the necessary speed 

and high efficiency of the computing process.
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The purpose of the study – to investigate the efficiency and acceleration of parallel algorithms that 

implement the implicit finite-difference scheme of the mathematical model of the non-stationary process of 

moisture transfer taking into account the fractional integro-differential apparatus. 

The main tasks of the research – build a mathematical model of the non-stationary process of heat 

and moisture transfer in the two-dimensional domain based on the use of Caputo and Grunwald-Letnikov 

derivatives. Develop an implicit finite-difference scheme for approximating the specified mathematical 

model; 

– to develop an algorithm for parallelizing the process of heat and moisture transfer in a two-

dimensional domain. 

– to develop software that implements a parallel algorithm using the TPL library in .Net; 

– test the software on available hardware with processors of different power. 

The object of the study is heat-mass transfer processes in capillary-porous materials with a fractal 

structure during drying.  

The subject of research is mathematical models, methods of analysis and parallel algorithms 

implementing heat-mass transfer processes in capillary-porous materials based on the use of Caputo and 

Grunwald-Letnikov derivatives. 

The research methods. The work used finite-difference methods using the fractional integro-

differentiation apparatus for numerical implementation of the mathematical model of non-isothermal wet 

transfer and methods of parallel implementation of the proposed algorithm. 

The scientific novelty consists in building a mathematical model of the non-stationary process of heat 

and moisture exchange in capillary-porous materials of the fractal structure and increasing the efficiency of 

the parallel algorithm for implementing the model. 

Practical significance. Based on the proposed mathematical models, an algorithm and software were 

developed for the parallelization of the computational process of heat-mass transfer in capillary-porous 

materials with a fractal structure. 

 

Analysis of literary sources 

Non-traditional approaches should be used to model complex systems characterized by structural 

inhomogeneity, self-organization and biological variability of rheological properties, deterministic chaos, 

and "memory" effects. This approach can be based on the use of fractional integro-differentiation [3]. In 

addition, the mathematical apparatus of non-integer differentiation and integration is ambiguous. The 

derivative or integral can be used to model systems in different senses: Wright, Weyl, Riemann-Liouville, 

Marshaw, Grunwald-Letnikov, or Caputo. From the analysis of existing works, the most used fractional 

derivatives are Riemann-Liouville derivatives [1] - [2] and Caputo [4] - [5]. In particular, in [5] a numerical 

approach to the Caputo derivative is given and the stability of derivative numerical algorithms is proved 

using the Fourier method. In other articles [5] propose algorithms for numerical calculations of integrals that 

arise during time sampling in diffusion equations with the Caputo derivative are developed. The speed of 

these algorithms was tested. There are works where the non-integer derivative in spatial coordinates in the 

boundary value problem of heat transfer is defined in the Grunwald-Letnikov sense, and a method for solving 

the problem using fractional steps is proposed.  

It is expedient to use distributed and parallel computing technologies for research this will reduce time 

and reduce the use of natural resources. A works [1], [9-12], are devoted to this problem. They present 

parallel multistage methods for solving ordinary differential equations.  

Thus, in this work a two-dimensional mathematical model of heat and humidity transfer in the material 

is built, it is described by a system of fractional-differential equations in partial derivatives. An algorithm 

for numerical implementation of a mathematical model based on the splitting method is developed and 

presented. Parallel software for analysis of acceleration and efficiency of this algorithm has been created. 

 

The results of the study and their discussion 

Mathematical model. 

The mathematical model of the nonstationary process of heat and moisture transfer in the two-

dimensional region is described by an interconnected system of differential equations in partial derivatives 

with fractional order in time t  and spatial coordinates 1x  and 2x :
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with the initial conditions: 

( ),, 2100
xxTT

t
=

=
 ( ),, 2100

xxUU
t

=
=

   (3) 

and the following boundary conditions of the third kind: 

( ) ( ) ( )00, 0, 0,
1 ,

i i i i i i i
i x i p i cx l x l x l
D T U U T t    

  = = =
+ − − = −    (4) 

( )0, 0, 0,
,

i ii i i i i i
i x i x i px l x l x l

a D T a D U U U 
  = = =
+ = −    (5) 

where ( )21,, xxtTT =
 

is temperature, ( )21,, xxtUU =  is moisture content, ( ) Gxxt 21 ,,  

     max 1 20, 0, 0,G T l l =   ,  is phase transition coefficient, 0  is basic density, i ( )UT , ( )1,2i =  are 

coefficients of thermal conductivity, ( )UTc ,  is specific heat capacity, ia ( )UT , ( )2,1=i  are coefficients of 

water conductivity,  ( )U  is density, r  is specific heat of vapour generation,  ( )UT ,  is thermogradient 

coefficient, ia ( )UT , ( )2,1=i  are coefficients of water conductivity, ( ),p cU t   is equilibrium humidity, ct  is 

the ambient temperature value,   is relative moisture content of the drying agent i  are coefficients of heat 

exchange, i  are coefficients of moisture exchange, 
ixD is derivative of the first order in spatial coordinates, 


t

CD , 

ix
CD are Caputo  derivatives of fractional order ( )10,   in time and spatial coordinates, 

ix
GLD is the 

Grunwald-Letnikov derivative of fractional order ( )21,   in spatial coordinates.  

Derived Caputo , where ( )0,1   is determined by the following relationship: 

( )
( )

( )
0

1
( ) ,

1

t

C

tD f t t f d   


− = −
 −    (6) 

where: ( )   – Gamma function. 

The Grunwald-Letnikov derivative is described by the following relation: 

( ) ( )
( )
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( )
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11
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! 1
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jGL
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j jh
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 − +
   (7) 

Given the ratio for the Caputo derivative (6) and the results of studies [5], we can write its numerical 

approximation in the form: 
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( )
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[
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   (8) 

where: ( ) ( )
1 1

1,

2
1 ,

2
k jw k j k j

  − −

−

−  = − − − −
   

( ) ( ) ( )( )
2 2 1

2, 1 2 1 ,k jw k j k j k j
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
− − −

− = − − − − − − − −
 0,..., 1;j k= −

1,...,K;k = .kt k =   

The numerical approximation of the fractional Grunwald-Letnikov derivative is recorded taking into 

account (7): 

( ) 1

0

1
,

n

n
GL

x n j n j

j

D f x g f
h



 − +

=

    (9) 

where 0 1,g =
 ( ) ( ) ( )1 ... 1

1
!

j

j

j
g

j
  − − +

= − . 

Thus, taking into account the approximation of the fractional derivatives Kaputo (8) and Grunwald-

Letnikov (9), we obtained a numerical approximation of the mathematical model of no isothermal moisture 

transfer (1-2):
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where: 
( ) ( )( ) ( ) ( )( ), ,1 2 1 2

, , , , ,k k k k

n m n mn m n m
T T t x x U U t x x= =  is the value of the function of temperature and moisture 

content, respectively, at points ( ) ( )1 2
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Algorithm of numerical implementation of the model 

The mathematical model in the finite-difference form (10) - (11) is depicted in the form of an implicit 

scheme and for its numerical implementation it is necessary to use the splitting method [13-15]. 

In this work, the method of fractional steps is used, which allows to calculate in parallel two difference 

half-step taking into account a certain spatial coordinate and to find the value of the function of temperature 

and moisture content for all points of the 
1 2, ,h h 

 partition area. 

We present the algorithm of numerical implementation: 

1. In the time step 0=k implement a cycle by Nn ,...,1=  and a cycle by Mm ,...,1= from the initial 

conditions:  

( ),, )(2)(10
0
, mnmn xxTT =  ( ),, )(2)(10

0
, mnmn xxUU =    (12) 

2. At the time step 1k =  we take into account the property ( )3

1 0f f − = +   and the value of the coefficients

( )1,1 2 / 2,w = − 2,1 1w = . Get the difference scheme: 
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The time interval  between the points 0t and 1t on the difference grid is split in half. In the general 

case between the points of kt and 1kt + splitting is shown in Fig.1. 

 
Fig.1. Splitting the time interval 

2.1. In the first half-step of the interval  we will consider only the Grunwald-Letnikov  derivative 

in the spatial coordinate 1x . Thus, the first half-step will look like: 
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2.2. In the second half of the  interval, we will take into account only the Grunwald-Letnikov   

derivative in the spatial coordinate of the
2x . Thus, the second half-step will look like: 
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In both half-steps we obtain a matrix of non-traditional form ( )ijA a= Z const= : 
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the algorithm for solving half-step (15) - (18) is given in [1,]. 

2.3. Combining two half-step: relations (15) and (17), (16) and (18), respectively, we obtain: 
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3. In time step 2k = , the values of the 0

,n mT , 0

,n mU , 1

,n mT , 1

,n mU  functions are known from the initial conditions 

and are found in paragraph 2 of this algorithm. Taking into account half-step 2.1-2.3, we will similarly find 

the values of the functions 2

,n mT , 2

,n mU . 

4. Thus, each subsequent time step contains a number of known values of the temperature and moisture 

content functions, which were found from the previous steps. For k K= we get: 
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In the case of ' 1/ 2, '' 1K K K K= − = − , we obtain the first half-step (taking into account the derived 

, in the spatial coordinate 
1x ). In the case of ' , 1/ 2,K K K K= = −  we obtain the second half-step (taking 

into account the derivative of  in the spatial coordinate of 
2x ). 

Given half-step 2.1-2.3 in the same way we find the values of the functions of 
,

K

n mT , 
,

K

n mU . 

5. Given the boundary conditions of the third kind and their classical approximations of derivatives, we 

find
,

k

N mT , 
1,

k

mT , 
,

k

N mU , 
1,

k

mU , 
,

k

n MT , 
,1

k

nT , 
,

k

n MU , 
,1

k

nU . 

Software implementation. 

A distributed software complex was developed for this work Fig.2. It consists of a cloud database and 

three interconnected software products:   module of mathematical model; module analysis of algorithms; 

graph approximation web-system. All three products work according to a clearly defined procedure. They 

have implemented various functionalities for the study of heat and mass transfer. Connections for data 

exchange are organized between these modules. In the future, some calculations will be transferred to cloud 

technology. This will increase the productivity of the study several times. 

 

  
Fig. 2. Software distributed systems 

 

Mathematical model module 

Software for the study of non-isothermal moisture transfer in fractal structure materials [11]. It 

implements a mathematical model for the distribution of heat and moisture in a material using a parallel 

algorithm Fig.3.
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Fig. 3. Mathematical model implementation module 

 

Module analysis of algorithms 

It is software for performing comparative analysis of serial and parallel algorithms. This is the main 

unit of the distributed system so let's look at it in more detail. 

We need to measure the time between two events in the program. This is the time of execution of the 

serial algorithm and the parallel algorithm. The .NET Stopwatch class allows you to accurately measure 

elapsed time. A Stopwatch instance can measure elapsed time at several intervals with the total elapsed time 

calculated by adding all the intervals. Stopwatch is good when we need to watch the time and get some 

additional information about how much elapsed processor ticks does the method take etc. 

There are times when classic performance measurement techniques produce conflicting results, even 

with repeated launches of the same application. The most common sources of error are the compiler; inability 

to predict the required number of background threads for training ("warm-up") on a particular application; 

total OS load [8]. 

The software is implemented in object-oriented analysis notations by .Net mechanisms. We focus on 

large-scale parallelism throughout the system rather than small-scale parallelism in the method. The 

Producer/Consumer Parallel Programming Pattern were used to design the software [7]. 

The Model-View-Presenter pattern is used to design the software Fig.4. It separates components and 

allows you to improve code effectively. It is used when we need to maximize the amount of code to 

parallelize. Our software is divided into 3 parts. View - intended for dialogue with the user. It collects input 

data. Model - provides functionality and work with data that will be obtained from the user. Presenter - 

contains software logic. Manage experiments to implement parallelization algorithms. 

 
Fig. 4. Software architecture. 

The developed architecture in the software system provides not only scaling, but also easy extension 

of parallel implementation, which will allow to implementing similar more complex models. 

Graph approximation web-system 

It is intended to select and display the optimal approximants for the one- and two-dimensional 

dependencies obtained experimentally. This system smoothes out the acceleration and efficiency graphs of 

the algorithms. We plot and approximate the experimental data based on the results obtained in tabular form.
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Determination of acceleration and efficiency of the algorithm 

Acceleration of the Parallel Algorithm - the ratio of the execution time of the serial algorithm to the 

execution time of the parallel algorithm: pTTS /1= . Where T1 – is the time of the sequential algorithm, Tp 

- is the time of the parallel algorithm on p processors. 

A parallel algorithm can give a lot of acceleration, but using many processes is inefficient. The concept 

of efficiency is used to evaluate the scalability of a parallel algorithm pSpTTE p //1 == [6]. 

Experiment settings 

To perform the simulation, you must first make the necessary input parameters in the software 

“Algorithm Analysis”. Clicking the "Conduct Analysis" button and set the input parameters to begin the 

modeling process. To conduct experiments and study the acceleration and efficiency of the proposed 

algorithm, we introduce the necessary input parameters. We introduce the dimension of the partition of the 

grid for three cases. For a square shape, the initial size of the grid is 1000x1000 nodes. For a wide rectangular 

shape, the initial size of the grid is 500x5000 nodes. For a high rectangular shape, the initial size of the grid 

is 5000x500 nodes. The grid change step is 1000 nodes; the number of measurements for each case is 100. 

For both serial and parallel modes, the size of the area division grid used varied from 1000 to 104000 nodes. 

The results presented in this paper are based on experiments performed on computers with such 

processors: Intel Core i3-2350m - 2.30GHz (2c/4th); Intel Core i5-3427U - 2,80GHz (2c/4th); Intel Core i7-

3770K - 3.50GHz (4c/4th). 

Considering that the implementation of the algorithm is a time-consuming process and given the size 

of the partition grid and the simulation time, one should expect long simulations. Simulation time is also 

affected by the CPU specifications on which the program will run. 

Let's consider the Task Manager report Fig. 5. on a computer with a processor with Specifications: 

Number of cores 2, Number of threads four, CPU base clock 2.30GHz.  

 
Fig.5. Task Manager 

It indicates the change in CPU load during the execution of serial and parallel algorithms. Here we see 

the maximum load on the CPU cores during the execution of the parallel algorithm. After the completion of 

parallel calculations, the processor cores are unloaded to a minimum value. This kind of processor core 

management is provided by Task Parallel Library included in Framework .Net 4.0 [10], [6].  

Analysis of parallel solutions. 

Consider the acceleration graphs of the algorithm Fig.6. The approbation of the parallel algorithm was 

performed by dividing the grid into a square shape by 100K x 100K node. Can see how fast the acceleration 

of all three experiments is growing. We have approximated the experimental data and see the best result of 

the algorithm on the Core i7-3770K processor. As the number of experiments increases, the acceleration 

ranges from 2 to 4 on a dual-core machine and 4.8 to 5.2 on computers with 4-core processors. The efficiency 

demonstrated by the Core i3-2350m processor fluctuates within 1, which indicates low parallelization 

performance.
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Fig.6.  Algorithm acceleration change. Max grid nodes: 100K x 100K 

Graphs of the acceleration algorithm tested when breaking the grid in the form of a wide rectangular 

shape at 500 x 100K node are presented in Fig.7. The acceleration of the parallel algorithm increases, and 

reaches a constant value after 20 experiments. On a dual-core computer, the average acceleration is 2.3. The 

algorithm has the best performance on a quad-core Core i7-3770K. As the number of experiments increases, 

the acceleration ranges from 4 to 5.2 on processors with a higher frequency.  

 
Fig. 7. Algorithm acceleration change. Max grid nodes: 500 х 100K 

The result of approbation of the parallel algorithm was carried out by dividing the grid in the form of 

a high rectangular shape by 100K x 500 node shown in Fig. 8. The best indicator of the algorithm on the 

Core i7-3770K processor. The average acceleration of the parallel algorithm on different processors differs. 

The highest acceleration rate was obtained on a quad-core computer - 2.7. A dual-core computer shows a 

low acceleration of 0.6, but a dual-core with a high processor frequency is effective at 1.6.  

 
Fig. 8. Algorithm acceleration change. Max grid nodes: 100K х 500
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It is possible to conduct many experiments and get good acceleration and efficiency, even at very large 

mesh sizes. However, we reduced the number of measurement to 100. 

 

Conclusions 

Fractal geometry is the optimal method for studying materials with a fractal structure while 

minimizing internal stress and maximizing the ratio of objects. Taking into account the numerical 

approximations of the fractional derivatives of Grunwald-Letnikov and Caputo, an implicit finite-difference 

scheme of the mathematical model is developed. An algorithm for numerical implementation of the model 

is presented, which uses the method of fractional steps to split a complex mathematical model. As a result 

of this method, the process of numerical implementation of the model is reduced to the parallel calculation 

of temperature and humidity of the material. 

Most modern devices are equipped with multi-core a processor, which encourages the development 

of parallel algorithms and the creation of parallel software.  

As a result of the study, it was established that the parallel implementation of the proposed algorithm 

on available hardware is faster than the sequential one: 

- When breaking the grid in the form of a square shape in 2, 3.2, 5.2 times; 

- When breaking the grid in the form of a wide rectangular shape -in 2.6, 4.1, 5 times; 

- When breaking the grid in the form of a high rectangular shape in  0.6, 1.4, 2.6 times. 

Thus, the algorithm should be used to study two-dimensional heat and mass transfer on the basis of 

fractions of fractional order when breaking the grid in the form of a square or wide rectangular shape. Given 

the obtained indicators, the algorithm can be attributed to algorithms that have high acceleration and 

efficiency. Analyzing the obtained estimates of acceleration and efficiency, we can conclude that the parallel 

implementation of the algorithm is more effective for cases where the division of the area exceeds 500x500 

nodes. 

We were also able to run individual operations with extremely large partitions and received 

accelerations within these limits. Smaller data sets resulted in very short runtimes that did not yield important 

results. With a little effort it is possible to create parallel software that can save a lot of resources on field 

experiments. 
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ПРОГРАМНО-АЛГОРИТМІЧНЕ ЗАБЕЗПЕЧЕННЯ ПАРАЛЕЛЬНОГО 

РОЗРАХУНКУ НЕІЗОТЕРМІЧНОГО ВОЛОГОПЕРЕНЕСЕННЯ НА ПІДСТАВІ 

АПАРАТУ ПОХІДНИХ ДРОБОВОГО ПОРЯДКУ 
 

Побудовано нову математичну модель нестаціонарного процесу тепло- і 

вологообміну в двовимірній області на основі використання похідних Капуто та 

Грюнвальда-Летникова. Розроблено неявну скінченно-різницеву схему для апроксимації 

математичної моделі ноізотермічного вологоперенесення з урахуванням дробового 

інтегро-диференціального апарату. Наведений алгоритм чисельної реалізації моделі 

дозволяє отримати значення функції температури і вологості для всіх точок області 

розбиття. Для чисельної реалізації математичної моделі адаптовано метод дробових 

кроків. Це дозволило провести паралельні обчислення двох різницевих півкроків з 

урахуванням відповідної просторової координати. Реалізований алгоритм паралельного 

розрахунку неізотермічного волого-перенесення в матеріалах фрактальної структури дає 

можливість отримати достовірний результат без необхідності проведення складних і 

дороговартісних практичних експериментів. Для розроблення програмного забезпечення 

пропонується використовувати шаблон проектування Model-View-Presenter. У 

програмному забезпеченні розроблено паралельний алгоритм із використанням потоків 

.Net і алгоритмічних особливостей бібліотеки TPL. Для вимірювання часу виконання 

послідовних і паралельних алгоритмів використовувався клас .NET Stopwatch. 

Тестування програмного забезпечення здійснено на багатоядерних комп'ютерних 

системах з центральним процесором різної потужності. Досліджується двовимірний 

випадок для області розбиття квадратної форми, широкої прямокутної форми та високої 

прямокутної форми. Наведено графіки динаміки прискорення та ефективності 

алгоритмів, а також проведено їх аналіз. Для згладжування графіків прискорення та 

ефективності алгоритмів застосовуємо апроксимацію експериментальних даних. 
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