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1. Introduction

Polynomial matrix algebra is used in various areas of applied mathematics. In particular, it is a
fundamental tool for investigating the dynamics of a linear system and for designing feedback control
laws [1, 2]. Efficient algorithms, based on elementary transformations of Laurent polynomial matrices
and their factorizations, allow for a complete analysis of the system dynamics. Also in recent years
they have also been used extensively in the areas of digital signal processing and communication.
Examples of their applications include broadband adaptive sensor array processing, the description of
multiple-input-multiple-output communication channels, broadband subspace decomposition, and also
digital filter banks for subband coding or data compression [3, 4]. This matrices are used to describe
a convolutive mixing process, which occurs, for example, when a set of signals arrives at an array of
sensors via multiple paths. The study of factorizations of the Laurent polynomial matrices is relevant
and many problems in the areas of digital signal processing and communication [5], can be converted to
algebraic problems over polynomial and Laurent polynomial rings, and can be solved using the existing
of algebraic methods.

In [6] was introduced the notion of semiscalar equivalence of polynomial matrices of maximal rank
over an algebraically closed field of characteristic zero (in particular, a field of complex numbers) and
the lower triangular form of matrices established there played an important role in constructing of
the matrix factorization theory. These results were later generalized for polynomial matrices over
an arbitrary field [7, 8], and the so called standard form of matrix pairs with respect to generalized
equivalence was established [8,9]. In [10] the conditions for the existence of symmetric equivalence for
symmetric matrix polynomials over a ring with involution were investigated.

Note that similar form for one polynomial matrix over infinite field with the respect to right
semiscalar equivalence of matrices was obtained in [11].

For simplicity, we agree to assume that the main field is a field of complex numbers.
Let C[x] be the ring of polynomials with complex coefficients: p(x) =

∑m
i=0 pix

i with m ∈ N,
pi ∈ C. If pm 6= 0, then the polynomial degree of p(x) is deg p(x) = m, if pm = 1, p(x) is said to be
monic.
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Let C[x, x−1] be the ring of Laurent polynomial: p(x) =
∑m

i=−l pix
i with l, m ∈ Z, −l 6 m, pi ∈ C.

Let us suppose that p−lpm 6= 0, then one can always factorize p(x) = pmx−lq(x) with monic polynomial
q(x) ∈ C[x]. The degree of p(x) is defined as the degree of q(x) and is denoted as: deg p(x) = m+ l.
According to these considerations, C[x, x−1] is an Euclidean ring, so a principal ideal domain. Hence
C[x, x−1] is an elementary divisor domain [12]. The invertible elements of C[x, x−1] are non-zero
monomials: p(x) = axα with a ∈ C

∗ = C\{0} and α ∈ Z. As greatest common divisors (g.c.d.) are
defined up to an invertible element, one can set for uniqueness purposes, the g.c.d. to be a monic
polynomial of C[x].

Let Mn(C[x]) and Mn(C[x, x−1]) be a ring of polynomial n× n matrices and a ring of polynomial
Laurent n×n matrices (a ring of quasipolynomials), respectively, GLn(C[x]) and GLn(C[x, x−1]) their
corresponding general linear groups.

By upper (lower) degree of Laurent polynomial matrix A(x) of the form A(x) = A−lx
−l + . . . +

A0 + . . . +Amxm, Ai ∈ Mn(C), we will understand the number m = degA(x) with matrix coefficient
Am 6= 0, (−l = degA(x) = −degA(x−1) with matrix coefficient A−l 6= 0) (where 0 denotes the n × n

zero matrix). The degree of Laurent polynomial matrix A(x) is defined as:

degA(x) = degA(x)− degA(x),

i.e. s = m+ l.

Definition 1. Laurent polynomial matrix A(x) =
∑m

i=−l Aix
i, Ai ∈ Mn(C) is called a regular if

detA−l 6= 0, detAm 6= 0. If leading matrix coefficient Am = E (where E denotes the n × n identity
matrix), then the quasipolynomial matrix A(x) is called a monic.

The aim of this article is to investigate the problem of semiscalar equivalence for Laurent polynomial
matrices, to establish a triangular form of such matrices and their finite sets with respect to this
equivalence. This can be done given that the ring of quasipolynomial matrices is an extension of the
ring of polynomial matrices. Also derive the regularization condition for Laurent polynomial matrices
and use it in the study of the factorization problem of Laurent polynomial matrices, i.e. the isolation
of a regular factor with a predetermined Smith form from a nonsingular quasipolynomial matrix.

Due to the introduced notion of the value of the matrix on the system of roots of diagonal ele-
ments in [12] the process of establishing the conditions of regularization of the matrix polynomial and
factorization of symmetric matrix polynomials is significantly simplified [13].

Definition 2. Laurent polynomial matrices A(x) and B(x) in the ring Mn(C[x, x−1]) is called semis-
calar equivalent if there exist such matrices Q ∈ GLn(C) and S(x) ∈ GLn(C[x, x−1]) that

A(x) = QB(x)S(x).

Definition 3. Laurent polynomial matrices A(x) and B(x) in the ring Mn(C[x, x−1]) is called scalar
equivalent if there exist such matrices S, T ∈ GLn(C) that

A(x) = SB(x)T.

Denote by SA(x) the Smith normal form of Laurent polynomial matrix A(x):

SA(x) = P (x)A(x)Q(x) = diag (ε1(x), ε2(x), . . . , εn(x)), (1)

where P (x), Q(x) ∈ GLn(C[x, x−1]), εi(x) are the invariant quasipolynomials, εi(x)|εi+1(x), i =
1, . . . , n− 1.

2. Semiscalar equivalence of Laurent polynomial matrices

In this section we will show that by semiscalar transformations each Laurent polynomial matrix can be
reduced to a triangular form with invariant factors on the main diagonal. We will generalize this result
for finite sets of quasipolynomial matrices and we will show that these sets of matrices have triangular
forms, which are obtained using the same left and different right transformation matrices.
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Theorem 1. Let A(x) be a nonsingular Laurent polynomial matrix over C[x, x−1] and rankA(x) =
n. Then for matrix A(x) there exist such matrices C ∈ GLn(C) and R(x) ∈ GLn(C[x, x−1]) that

CA(x)R(x) =

∥∥∥∥∥∥∥∥∥

ε1(x) 0 . . . 0
a21(x) ε2(x) 0

...
...

. . .
...

an1(x) an2(x) . . . εn(x)

∥∥∥∥∥∥∥∥∥

, (2)

where the invariant factors εj(x)|aij(x), i > j and they are the same as in the relation (1).

Proof. Let us consider the matrix A1(x) = A(x)xl where l = degA(x). This matrix is a polynomial
matrix. Using the notion of semiscalar equivalence for polynomial matrices [6], we obtain that there
exist matrices C ∈ GLn(C) and R1(x) ∈ GLn(C[x]) that

CA1(x)R1(x) =

∥∥∥∥∥∥∥∥∥

ε′1(x) 0 . . . 0
b21(x) ε′2(x) 0

...
...

. . .
...

bn1(x) bn2(x) . . . ε′n(x)

∥∥∥∥∥∥∥∥∥

, (3)

where ε′i(x), i = 1, . . . , n, are the invariant polynomials of the matrix A1(x) and ε′i(x) divides all the
elements of the column to which it belongs ε′j(x)|bij(x), i > j and ε′i(x) = xliεi(x),

∑n
i=1 li = l, εi(x),

i = 1, . . . , n are the invariant quasipolynomials of A(x). Since the elements of the form xli are invertible
in the ring C[x, x−1], then by the right elementary transformations we can reduce the matrix (3) to
the form

CA(x)xlR1(x) =

∥∥∥∥∥∥∥∥∥

ε1(x) 0 . . . 0
a21(x) ε2(x) 0

...
...

. . .
...

an1(x) an2(x) . . . εn(x)

∥∥∥∥∥∥∥∥∥

T (x), (4)

where T (x) = diag (xl1 , xl2 , . . . , xln) is invertible matrix in Mn(C[x, x−1]). Right-multiplying (4) by
the matrix T (x)−1, we obtain equality (2) where

xlR1(x)T (x)
−1 = R(x) ∈ GLn

(
C[x, x−1]

)
.

The theorem is proved. �

Remark 1. The lower triangular form of the matrix A(x) from the equation (2) will hereinafter be
called the triangular form or the standard form of Laurent polynomial matrix.

Theorem 1 can be generalized to the case of a finite set of Laurent polynomial matrices.

Theorem 2. Let A1(x), A2(x), . . . , Ak(x) ∈ Mn(C[x, x−1]) be a nonsingular Laurent polynomial
matrices and rankAj(x) = n, j = 1, . . . , k. Then there exist such matrices C ∈ GLn(C), Rj(x) ∈
GLn(C[x, x−1]), j = 1, . . . , k that

CAj(x)Rj(x) =

∥∥∥∥∥∥∥∥∥∥

ε
(j)
1 (x) 0

ε
(j)
2 (x)

. . .

∗ ε
(j)
n (x)

∥∥∥∥∥∥∥∥∥∥

, j = 1, . . . , k (5)

where ε
(j)
i (x) are the invariant factors of quasipolynomial matrices Aj(x), i = 1, . . . , n, j = 1, . . . , k.
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Proof. Let A1(x), A2(x), . . . , Ak(x) be a nonsingular Laurent polynomial matrices and

s = −
k

min
j=1

{
degAj(x)

}
.

Matrices Bj(x) = Aj(x)x
s, j = 1, . . . , k are the polynomial matrices. According to [6,7] there exist

such matrices C ∈ GLn(C), Rj(x) ∈ GLn(C[x, x−1]), j = 1, . . . , k that

CBj(x)R
′
j(x) =

∥∥∥∥∥∥∥∥∥∥

ε
′(j)
1 (x) 0

ε
′(j)
2 (x)

. . .

∗ ε
′(j)
n (x)

∥∥∥∥∥∥∥∥∥∥

, j = 1, . . . , k (6)

where ε
′(j)
i (x) = xsijε

(j)
i (x),

∑n
i=1 sij = s, j = 1, . . . , k, ε

′(j)
i (x) are invariant polynomials of Bj(x) and

ε
(j)
i (x) are invariant quasipolynomials of Aj(x), i = 1, . . . , n, j = 1, . . . , k.

By the right elementary transformations we can reduce the matrix (6) to the form

CAj(x)x
sR′

j(x) =

∥∥∥∥∥∥∥∥∥∥

ε
(j)
1 (x) 0

ε
(j)
2 (x)

. . .

∗ ε
(j)
n (x)

∥∥∥∥∥∥∥∥∥∥

Tj(x), j = 1, . . . , k

where Tj(x) = diag (xs1j , xs2j , . . . , xsnj ), j = 1, . . . , k are invertible matrices in Mn(C[x, x−1]).
Right-multiplying j-th relation by the matrix Tj(x)

−1, j = 1, . . . , k we obtain equality (5), where
xsR′

j(x)Tj(x)
−1 = Rj(x), j = 1, . . . , k are invertible matrices in Mn(C[x, x−1]).

The theorem is proved. �

Definition 4. It is said that Laurent polynomial matrix A(x) =
∑p

i=−l Aix
i right regularized if there

exists such matrix R(x) ∈ GLn(C[x, x−1]) that

A(x)R(x) = A−s1x
−s1 + . . .+A0 + . . .+As2x

s2

is regular matrix, i.e. detA−s1 6= 0, detAs2 6= 0.

The following theorem establishes a connection between scalar and semiscalar equivalences of Lau-
rent polynomial matrices.

Theorem 3. Let

A(x) =

p∑

i=−l

Aix
i, Ai ∈ Mn(C)

and

B(x) =

p∑

i=−l

Bix
i, Bi ∈ Mn(C)

be are regular Laurent polynomial matrices with the triangular forms (2), respectively,

TA(x) = LA(x)V (x) and TB(x) = KB(x)W (x) (7)

with L, K ∈ GLn(C), V (x), W (x) ∈ GLn(C[x, x−1]).
Quasipolynomial matrices A(x) and B(x) are scalar equivalent if and only if their triangular forms

TA(x) and TB(x) are semiscalar equivalent.
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Proof. Necessity. Let us suppose that A(x) and B(x) are scalar equivalent, i.e. A(x) = SB(x)T with
S, T ∈ GLn(C).

By (7) we obtain

TA(x) = LA(x)V (x) = LSB(x)TV (x) = LSK−1TB(x)W (x)−1TV (x). (8)

Denote C = LSK−1 and Q(x) = W (x)−1TV (x). We see that these matrices are invertible over C

and C[x, x−1] respectively. By (8) it follows that

TA(x) = CTB(x)Q(x).

Thus, the triangular forms TA(x) and TB(x) respectively of the matrices A(x) and B(x) are semis-
calar equivalent.

Proof of sufficiency directly follows from the fact that regular semiscalar equivalent matrices are
scalar equivalent.

The theorem is proved. �

3. Theorem on the regularization of Laurent polynomial matrices

In this section we will prove the theorem on the regularization of Laurent polynomial matrices in terms
of value of the matrix on a system of roots of diagonal elements of matrix [12,14] and we apply it to the
problem of isolation a regular multiplier with a predetermined Smith form from the quasipolynomial
matrix.

Definition 5 (see [14]). The matrix of the form

MG(x)(Φ) =

∥∥∥∥∥∥∥∥

Mg1(x)(ϕ1)

Mg2(x)(ϕ2)

. . .

Mgn(x)(ϕn)

∥∥∥∥∥∥∥∥

is called value of the matrix G(x) on a system of roots of diagonal elements of matrix Φ(x) =
diag(ϕ1(x), ϕ2(x), . . . , ϕn(x)), where Mgi(x)(ϕi) is the value of polynomial matrix on a system of roots
of polynomial

ϕi(x) = (x− α1)
s1(x− α2)

s2 · . . . · (x− αm)sm ,

introduced in [12] as follows:

Mgi(x)(ϕi) =

∥∥∥∥∥∥∥∥

H1

H2

. . .

Hm

∥∥∥∥∥∥∥∥
, Hk =

∥∥∥∥∥∥∥∥

gi(αk)
g′i(αk)
. . .

g
(sk−1)
i (αk)

∥∥∥∥∥∥∥∥
,

where g
(j)
i (x) are the derivatives of the j-th order of the matrix gi(x).

This definition is true in the case of quasipolynomial matrices G(x) and Φ(x), given that the
elements of the form xl are invertible in the ring C[x, x−1].

Definition 6 (see [15]). Diagonal matrix

Φ(x) = diag(ϕ1(x), ϕ2(x), . . . , ϕn(x))

is called d-matrix if ϕi(x)|ϕi+1(x), i = 1, . . . , n− 1.

Suppose that Laurent polynomial matrix A(x) has the Smith form SA(x).
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Theorem 4. Let A(x) be a Laurent polynomial matrix. Then there exists a matrix R(x) ∈
GLn(C[x, x−1]) such that A(x)R(x) is a regular quasipolynomial matrix of degree s if and only if

1) deg detSA(x) = ns,

2) detMP (x)‖Ex−s+1,...,Ex−1,E‖(SA) 6= 0, (9)

where P (x) ∈ GLn(C[x, x−1]) is the matrix of relation (1).

Proof. Necessity. Let us suppose that matrix A(x) can be right regularized, i.e.

A(x) = (A−s1x
−s1 + . . .+A0 + . . . +As2x

s2)R(x)−1 (10)

with R(x) ∈ GLn(C[x, x−1]), s1 + s2 = s is degree of the quasipolynomial matrix A(x)R(x).
If (10) holds, then it is obvious that there exist matrices N1, N2, . . . , Ns ∈ Mn(C) such that

A(x) = (Ex−s1 −N1x
−s1+1 − . . .−Nsx

s2)x−s2xs2R1(x),

where the matrix R1(x) = A−s1R(x)−1 ∈ GLn(C[x, x−1]).
Since Ex±s ∈ GLn(C[x, x−1]) we have

A(x) = (Ex−s −N1x
−s+1 − . . .−Ns−1x

−1 −Ns)R2(x),

where R2(x) = xs2R1(x) ∈ GLn(C[x, x−1]).
Left-multiplying the last equation by the matrix P (x) from relation (1) and considering that

P (x)A(x) = SA(x)Q(x)−1, we obtain

P (x)(Ex−s −N1x
−s+1 − . . . −Ns−1x

−1 −Ns) = SA(x)Q(x)−1R2(x)
−1

or

∥∥P (x)x−s,−P (x)x−s+1, . . . ,−P (x)x−1,−P (x)
∥∥

∥∥∥∥∥∥∥∥∥

E

N1
...
Ns

∥∥∥∥∥∥∥∥∥

= SA(x)Q1(x),

where Q1(x) = Q(x)−1R2(x)
−1 ∈ GLn(C[x, x−1]).

Taking a certain number of derivatives (which depends on the multiplicity of a roots of the elements
of diagonal matrix SA(x)) and account the definition 5, we obtain

MP (x)x−s(SA)−MP (x)‖Ex−s+1,...,Ex−1,E‖(SA)

∥∥∥∥∥∥∥

N1
...
Ns

∥∥∥∥∥∥∥
= 0.

This means that the linear inhomogeneous matrix equation

MP (x)‖Ex−s+1,...,Ex−1,E‖(SA)

∥∥∥∥∥∥∥

X1
...
Xs

∥∥∥∥∥∥∥
= MP (x)x−s(SA)

with unknown n× n matrices X1,X2, . . . ,Xs has a solution.

The solution

∥∥∥∥∥∥∥

N1
...
Ns

∥∥∥∥∥∥∥
is nonzero (detNs 6= 0) and it is determined simultaneously SA(x) and R(x).

Therefore, condition (9) is satisfied.
Sufficiency. By (1) for a matrix A(x) we obtain
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A(x) = P (x)−1SA(x)Q(x)−1 (11)

where P (x), Q(x) ∈ GLn(C[x, x−1]). By condition (10) it follows that matrix P (x)−1SA(x) is right
regularized, i.e. there exists matrix Z(x) ∈ GLn(C[x, x−1]) that P (x)−1SA(x)Z(x) = B(x) is regular
quasipolynomial matrix of degree s.

By (11) it follows that
A(x)R(x) = B(x),

where R(x) = Q(x)Z(x) ∈ GLn(C[x, x−1]).
The theorem is proved. �

The following theorem establishes the uniqueness of the regularization of the Laurent polynomial
matrix.

Theorem 5. The Laurent polynomial matrix A(x) is right regularized uniquely.

Proof. Suppose that for a matrix A(x) there exist matrices R1(x), R2(x) ∈ GLn(C[x, x−1]) such that

A(x) =
(
A

(1)
−s1

x−s1 + . . . +A
(1)
0 + . . .+A(1)

s2
xs2

)
R1(x)

−1 (12)

and
A(x) =

(
A

(2)
−s1

x−s1 + . . .+A
(2)
0 + . . . +A(2)

s2
xs2

)
R2(x)

−1. (13)

If (12) and (13) are holds, then there exist matrices N1, N2, . . . , Ns ∈ Mn(C) and H1,H2, . . . ,Hs ∈
Mn(C) such that

A(x) = (Ex−s −N1x
−s+1 − . . .−Ns)R̃1(x)

and
A(x) = (Ex−s −H1x

−s+1 − . . .−Hs)R̃2(x),

where the matrices R̃i(x) = xs2A
(i)
−s1

Ri(x)
−1 ∈ GLn(C[x, x−1]), i = 1, 2.

Using the reasoning of Theorem 4, we obtain linear inhomogeneous matrix equations

MP (x)‖Ex−s+1,...,Ex−1,E‖(SA)

∥∥∥∥∥∥∥

N1
...
Ns

∥∥∥∥∥∥∥
= MP (x)x−s(SA) (14)

and

MP (x)‖Ex−s+1,...,Ex−1,E‖(SA)

∥∥∥∥∥∥∥

H1
...
Hs

∥∥∥∥∥∥∥
= MP (x)x−s(SA) (15)

where matrices N1, N2, . . . , Ns and H1,H2, . . . ,Hs are the solutions of equations (14) and (15), respec-
tively.

Subtracting the left and right parts of equations (14) and (15), we obtain a homogeneous matrix
equation with detMP (x)‖Ex−s+1,...,Ex−1,E‖(SA) 6= 0. This means that Ni = Hi, i = 1, . . . , s.

The theorem is proved. �

Definition 7. Condition (9) is called the regularization condition of Laurent polynomial matrix.

By theorem 4, we obtain the method of finding the coefficients of the regular factor that stands
out.

The matrix coefficients N1, N2, . . . , Ns of regular multiplier B(x) = Ex−s − N1x
−s+1 − . . . − Ns

can be found by the formula:

∥∥∥∥∥∥∥

N1
...
Ns

∥∥∥∥∥∥∥
=

[
MP (x)‖Ex−s+1,...,Ex−1,E‖(SA)

]−1
MP (x)x−s(SA). (16)
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Remark 2. Note that the regularization of Laurent polynomial matrix A(x) is not obtained by regu-
larization of the corresponding polynomial matrix A(x)xl where l = −degA(x), because the condition

n|deg detA(x)xl where n is order of matrix A(x) is not always fulfilled.

Example 1. Let A(x) =

∥∥∥∥
x−2 x−2 − 1
x−1 0

∥∥∥∥ be a Laurent polynomial matrix. This matrix is not

regular. The Smith form SA(x) of A(x) is equal to:

SA(x) =

∥∥∥∥
1 0
0 x−1 − x−3

∥∥∥∥ =

∥∥∥∥
1 0

−x−1 1

∥∥∥∥
∥∥∥∥
x−2 x−2 − 1
x−1 0

∥∥∥∥
∥∥∥∥
1 1− x−2

−1 x−2

∥∥∥∥ .

Let us check the regularization condition (9) of matrix A(x). Degree of quasipolynomial
detA(x) = x−1 − x−3 is equal 2, so a regular matrix can be a degree s = 1. For system of roots
1, −1 of elements of diagonal matrix SA(x) = diag(1, x−1 − x−3) we calculate the determinant of
matrix of value MP (x)(1,−1):

detMP (x)(1,−1) =

∣∣∣∣
−1 1
1 1

∣∣∣∣=− 2 6= 0,

where P (x) =

∥∥∥∥
1 0

−x−1 1

∥∥∥∥ . Since it is nonzero, the regularization condition (9) is satisfied.

Therefore, by theorem 4 for matrix A(x) there exists matrix R(x) ∈ GLn(C[x, x−1]) such that
A(x)R(x) is regular of degree s = 1. We find the regular factor B(x) = Ex−1 −N1 by formula (16).
Let us calculate values of matrix:

MP (x)x−1(1,−1) =

∥∥∥∥
−1 1
−1 −1

∥∥∥∥ ,

and we find the solution of the matrix equation (16): N1 =

∥∥∥∥
0 −1
−1 0

∥∥∥∥ .

Hence B(x) =

∥∥∥∥
x−1 1
1 x−1

∥∥∥∥ is the regular matrix and A(x)R(x) = B(x) with R(x) =

∥∥∥∥
x 1
0 −1

∥∥∥∥ ∈

GLn(C[x, x−1]).

4. Factorization of Laurent polynomial matrices

The theorem on regularization Laurent polynomial matrix can be successfully used to the problem
of separation a regular factor with a predetermined of the Smith form from a nonsingular Laurent
polynomial matrix. In this section we will formulate the necessary and sufficient conditions of the
existence of the factorization

A(x) = B(x)C(x) (17)

with B(x) a regular quasipolynomial matrix and we indicate an efficient method for its actual con-
struction. Let Φ(x) = diag(ϕ1(x), ϕ2(x), . . . , ϕn(x)) be a d-matrix and it is a divisor of the Smith form
SA(x) (1) of Laurent polynomial matrix A(x). Denote by

V (Φ) =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 . . . . . . 0
ϕ2k21

(ϕ2, ε1)
1 . . . . . . 0

...
...

...
. . .

...
ϕnkn1

(ϕn, ε1)

ϕnkn2

(ϕn, ε2)
. . .

ϕnknn−1

(ϕn, εn−1)
1

∥∥∥∥∥∥∥∥∥∥∥∥

(18)
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the matrix generated by the d-matrix Φ(x), where (ϕi, εj) is a greatest common divisor of quasipoly-
nomials ϕi(x) and εj(x), i, j = 1, . . . , n, i > j,

kij =

{
0, if (ϕi, εj) = ϕj ,

kijhijx
−hij + . . .+ kij1x

−1 + kij0 , if (ϕi, εj) 6= ϕj ,
(19)

hij = deg
(ϕi, εj)

ϕj
− 1, i = 2, . . . , n, j = 1, . . . , n − 1, i > j, kijs are variables that join field C,

s = 0, 1, . . . , hij [12].
The following theorem establishes the necessary and sufficient conditions of a separation of a regular

factor with a prescribed the Smith form from a Laurent polynomial matrix.

Theorem 6. Let Φ(x) be a d-matrix, deg detΦ(x) = nr and it is a divisor of the Smith form SA(x) (1)
of Laurent polynomial matrix A(x). The matrix A(x) has a left regular divisor with the Smith form
Φ(x) if and only if

detMV (Φ)P (x)‖Ex−r+1,...,Ex−1,E‖(Φ) 6= 0, (20)

where P (x) ∈ GLn(C[x, x−1]) in (1), V (Φ) has the form (18).

The proof of this theorem follows from theorem 2 [16] and theorems 4, 5 of this article.

Theorem 7. Let Φ(x) be a d-matrix, deg detΦ(x) = nr and A(x) has the Smith form SA(x). Suppose
that

SA(x) = Φ(x)Ψ(x).

The matrix A(x) can be presented as A(x) = B(x)C(x), where B(x) and Φ(x), C(x) and Ψ(x) are
semiscalar equivalent matrices if and only if

detMP (x)‖Ex−r+1,...,Ex−1,E‖(Φ) 6= 0, (21)

where P (x) ∈ GLn(C[x, x−1]) in (1).

Proof. Since in (18) the conditions (ϕi, εj) = ϕj hold for i = 2, . . . , n, j = 1, . . . , n−1, i > j, therefore
the matrix V (Φ) = E.

By theorem 3 [16] we obtain the condition (21).
From theorem 6 follows the method of constructing of factorization (17) of Laurent polynomial

matrix A(x) with B(x) = Ex−r −B1x
−r+1 − . . .−Br a regular quasipolynomial matrix of degree r of

Smith form
Φ(x) = diag(ϕ1(x), ϕ2(x), . . . , ϕn(x))

where matrix coefficients B1, B2, . . . , Br can be found by the formula:
∥∥∥∥∥∥∥

B1
...
Br

∥∥∥∥∥∥∥
=

[
MV (Φ)P (x)‖Ex−r+1,...,Ex−1,E‖(Φ)

]−1
MV (Φ)P (x)x−r (Φ). (22)

Condition (20) of theorem 6 provides the solvability of matrix equation (22). �

Example 2. Let A(x) =

∥∥∥∥
2 −i(x−1 − x)

i(x− x−1) 2

∥∥∥∥ be a matrix.

We calculate detA(x) = 4− (x−1 − x)(x− x−1) = 2 + x2 + x−2.
The Smith form SA(x) for A(x) is equal to:

SA(x) =

∥∥∥∥
1 0
0 2 + x2 + x−2

∥∥∥∥ =

∥∥∥∥
1 0

−i
2 (x− x−1) 1

∥∥∥∥
∥∥∥∥

2 −i(x−1 − x)
i(x− x−1) 2

∥∥∥∥
∥∥∥∥
1
2 i(x−1 − x)
0 2

∥∥∥∥ ,

where P (x) =

∥∥∥∥
1 0

−i
2 (x− x−1) 1

∥∥∥∥ ∈ GLn(C[x, x−1]).
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Since Smith form SA(x) of matrix A(x) can be presented as:

SA(x) =

∥∥∥∥
1 0
0 2 + x2 + x−2

∥∥∥∥ =

∥∥∥∥
1 0
0 1 + x−2

∥∥∥∥
∥∥∥∥
1 0
0 1 + x2

∥∥∥∥

and deg detA(x) = 4, then we distinguish from the quasipolynomial matrix A(x) a regular factor B(x)
of degree r = 1 of Smith form Φ(x) = diag(1, 1 + x−2), deg detΦ(x) = 2 = nr. By theorem 7 we have
V (Φ) = E.

For the system of roots i,−i of elements of diagonal matrix Φ(x) = diag(1, 1+x−2) let us calculate
the matrices of values:

MP (x)(i,−i) =

∥∥∥∥
1 1
−1 1

∥∥∥∥ , MP (x)x−1(i,−i) =

∥∥∥∥
−i −i

−i i

∥∥∥∥ ,

where P (x)x−1 =

∥∥∥∥
x−1 0

−i
2 (1− x−2) x−1

∥∥∥∥.

We find the regular factor B(x) = Ex−1 −B1 by formula (22). Let us solve the matrix equation:

B1 =

∥∥∥∥
1 1
−1 1

∥∥∥∥
−1 ∥∥∥∥

−i −i

−i i

∥∥∥∥ =

∥∥∥∥
0 −i

−i 0

∥∥∥∥ .

Hence B(x) =

∥∥∥∥
x−1 i

i x−1

∥∥∥∥ is a regular factor of degree r = 1 of Smith form Φ(x) = diag(1, 1+x−2).

Thus, A(x) =

∥∥∥∥
x−1 i

i x−1

∥∥∥∥
∥∥∥∥
x −i

−i x

∥∥∥∥ is a required factorization of matrix A(x).

5. Conclusions

In the context of this paper, the triangular form with invariant factors on the main diagonal, and the
same as in Smith form, is obtained by means of semiscalar transformations for Laurent polynomial
matrices. The theorem on regularization of Laurent polynomial matrices is proved. The latter result
is important in solving the problem of isolating a regular multiplier with a predetermined Smith form
from a nonsingular Laurent polynomial matrix. An efficient method for the actual construction of a
factorization for Laurent polynomial matrix is indicated.
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Трикутна форма полiномiальних матриць Лорана та їх
факторизацiя

Кучма М. I.1, Гаталевич А. I.2

1Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна
2Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Унiверситетська, 1, 79000, Львiв, Україна

Дослiджено питання напiскалярної еквiвалентностi полiномiальних матриць Лорана i
встановлена вiдносно цiєї еквiвалентностi трикутна форма таких матриць та їх скiн-
ченних наборiв. Доведено теорему про регуляризацiю для полiномiальних матриць
Лорана. Ця теорема використовується у задачi факторизацiї таких матриць. Отрима-
но критерiй факторизацiї полiномiальних матриць Лорана iз регулярним множником
iз наперед заданою нормальною формою Смiта.

Ключовi слова: полiномiальна матриця Лорана, напiвскалярна еквiвалентнiсть,

трикутна форма, нормальна форма Смiта, факторизацiя матриць.
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