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Complex nonlinear oscillations in the elastic bodies are studied using a priori information
about the oscillations form and taking into account a refined mathematical model of the
second (other) form of oscillations. Application of existing methods or development of
the new ones for the analysis of received non-autonomous boundary value problems is
proposed. The effectiveness of the practical implementation of the discussed methodology
significantly increases in cases where the magnitude of the elastic body displacements
due to the one form of oscillations is much higher than the other one. To analyze the
problem one can use the well-known tested analytical methods for the systems with the
small nonlinearity. Torsional and bending oscillations of the elastic body are shown as
the example. It is also demonstrated that especially dangerous resonant processes can be
caused not only by the external perturbations but also by the internal influence between
some forms of oscillations. The obtained results allow to choose the basic technological and
operational parameters of the machine oscillating elements in order to avoid the resonance

phenomena.

Keywords: nonlinear elastic body, asymptotic methods, amplitude, resonance, complex
oscillations.
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1. The statement of the problem

Operation of various types of machines and mechanisms, elastic elements of structures is accompanied,
usually, by the oscillations of their elements. Interacting between themselves, they can lead not only
to significant dynamic loads, but can also cause failure of the whole object. On the other hand,
mathematically, these processes are usually described by ordinary nonlinear differential equations or
boundary value problems for the system of partial differential equations. It is possible to integrate the
latter except by numerical methods. However, numerical simulation of these equations cannot answer
many important practical questions. First, these are the conditions for the existence of internal and
external resonances, features of their passage, stability of the process, etc. Therefore, the problem of
analytical study of complex oscillations, even for the one-dimensional models of elastic bodies, remains
open. In our view, even a approaching analytical study of such complex processes in elastic bodies
can give much more information about their dynamics than numerical integration. Therefore, the
article develops the main ideas of the methodology which was developed in [1] for the study of complex
oscillations in the case of a combination of torsional and bending oscillations. The methodology is based
on the idea of using a priori information about one form of oscillation and using it in the construction of
a mathematical model of another with the subsequent use or development of analytical methods for the
study of the obtained “refined” non-autonomous mathematical model. The methodology is particularly
effective for practical implementation when the displacements of elastic body points caused by one form
of oscillation are much smaller than the others. In this case, effective analytical methods for the study
of relevant mathematical models of elastic body dynamics have been developed for quasilinear or
nonlinear elastic body characteristics [2].
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2. Material and methods

The most effective analytical methods for the study of nonlinear oscillations of distributed parame-
ter systems are methods based on the idea of perturbation methods [3]. On the basis of them, in
conjunction with the principle of oscillation frequency in nonlinear mechanical systems, the theory of
asymptotic integration of quasilinear 2| and nonlinear [4-8] mathematical models of systems with dis-
tributed parameters has been developed, provided that the dynamic process in the respective systems
can be interpreted as simple (mono) oscillations (longitudinal, transverse, torsional, bending). Further,
the indicated methods have been developed for some classes of dynamic systems, characterized by the
speed of longitudinal movement, (rope lifts, belt and chain transmissions, belt extended mechanisms,
conveyor lines). However, mono oscillations are more the exception than the regularity of dynamic
processes, even in elastic bodies. Thus, columns for drilling oil and gas wells perform complex oscilla-
tions (a combination of torsional, bending, and in some cases also longitudinal) [9], turbine rotors —

a combination of torsional and bending [10,11] etc. Separate studies show that these kinds of oscilla-

tions in elastic bodies interacting with one another can lead to such undesirable phenomena as internal

resonance. Therefore, the development of a methodology of studying of complex oscillations of elastic
bodies is an important applied problem. In order to partially solve it, it is proposed to:

a) with the aid of processing of empirical information for the one of the oscillations form describe
them by approximate analytic relations (the laws of their changes);

b) take the above laws into account in the mathematical model of other oscillations, which makes it
possible to reduce the number of differential equations that together with the boundary conditions
describe the dynamics of the object;

c) by the most accessible analytical methods to investigate non-autonomous mathematical models
that correspond to unknown oscillations.

A mathematical model of nonlinear torsional oscillations of a rectilinear one-dimensional body that
rotates about a fixed vertical axis OZ at an angular velocity € can serve (under certain boundary
conditions) a differential equation

G 1
Htt - ;sz = TQ(x7t7979t705L‘7Q0)' (1)

In (1) by é(z,t) we denote the angle of rotation of the elastic body, by I = pJ, — its running
moment of inertia relative to the axis of rotation, by G — the shear modulus (modulus of elasticity of
the second kind), by p — the density of the material of the body. .J, denotes the equatorial moment
of the cross-section (the moment of inertia of the cross-section), Q(z,t,0,6;,0,,¢) is nonlinear with
respect to the set of variables, periodic for ¢ = pt + ¢g function that describes the distribution of
the moments of external forces relative to the axis of rotation along the length of the body (including
moments of resistance), and p denotes the frequency of periodic perturbation.

If, in addition, the body makes the bending oscillations of small amplitudes in the moving plane
XOZ, then for each element of the length dz there exist the inertia forces of relative motion and
Coriolis inertia force [12]. To determine them, we assume that:

a) the running body mass is equal to m;
b) the deflection of an arbitrary element with the applique z in the above plane is determined by the

function u(z,t);

c) there is no deplanation of flat normal section.

In this case, the inertia force of the relative motion d®, of the specified element (caused by
bending oscillations) is determined by the dependence d®, = —muy(z,t)idz. Similarly it is de-
termined the Coriolis inertia force d®,, of the specified element: d®.,, = —2mQk X u(z,t)idz =
—2m Quy(z,t) j dz.

From the above, it follows that the inertia force of relative motion does not affect the torsional
oscillations of the body, because their moment relative to the axis of rotation is equal to zero. As for
the Coriolis inertia force of the specified element, its moment relative to the axis of rotation is equal
to dMS" = d® oru(z,t) = 2m Qui(z,t) u(z,t) dz.

Mathematical Modeling and Computing, Vol.9, No. 1, pp. 152-158 (2022)



154 Huzyk N., Pukach P., Sokil B., Sokil M., Vovk M.

Thus, the “refined” differential equation of the torsional oscillations of the body, taking into account
its small transverse oscillations, has the form

1
O — %ezz = e{Q(,1,0, 0,00, 0) +2m Quy(z, 1) ulz,0)}, &= 7. )

Our aim is to obtain basic relations that describe the main parameters of the torsional oscillations
of the investigated elastic body under condition that the bending oscillations are described by a known
analytical function or a discrete set of amplitude values and oscillation periods. In [12] it is shown
that for the simplest forms of oscillations a discrete set of values of amplitudes and periods of bending
oscillations of an elastic body can also lead to an analytical dependence. Thus in the below the bending
oscillations will be described by dependence

us(2,t) = ¥(z, Zst + Jos) = bs sin ? cos (Z5(Q)t + Vos),
where Z4(Q)t +Yos, Z5(€2), Jos denote the phase of bending oscillations, their frequency and the initial
phase respectively.

Solving procedure. It is known [2], that not only the acting forces determine the dynamic process
of mechanical systems with distributed parameters, but also by the initial and boundary conditions.
So we will investigate the basic differential equation (2) under boundary conditions that are consistent
with the rotation of the elastic body in ideal bearings, that is

9(:13,t)|m:0 = 9(:E,t)|x:l =0. (3)

The restrictions imposed on the right-hand side of the differential equation (1) and the amplitude
of the bending oscillations allow to use the main relations of Krylov—Bogolyubov—Mitropolsky method
and the principle of the frequency of oscillations for “weakly nonlinear” systems of hyperbolic type |7]
for construction of the solution of the boundary value problem (2), (3). According to them, the first
approximation of the one frequency asymptotic solution of boundary value problem (2), (3) can be
represented in the form

k
9(Z7 t) = asin % sin ¢k +e€ U(CL, 2y T;Z)Im/y) qbs)v ¢s = ES(Q)t + 19087 T;Z)k = wit + ¢Ok' (4)

In the formula (4) wy = kTﬂ\/g and U(a, 2z, Yk, 7, ¢s) is the 27 periodic with respect to phase ¥, v, ¢

function that does not contain the oscillation mode k. It means that it satisfies the conditions

27 .
/0 U(CL, Z, T,Z)k, Y, ¢) { Sln¢k } d¢k = 0. (5)

cos Yy,

As for the parameters a and vy, than for the perturbed motion, they, as a function of time, are
determined not only by the right-hand side of differential equation (2), but also by the relations between
frequencies wy, u; Z5(2), wi that is, by the frequency of its own torsional oscillation wy and the forced
w or by the frequency of the bending oscillations Z4(€2). If between these parameters there is a rational

relation of the form pkl—“\/g /S ql Or ka“ \/g ~ qZ4(Q) (p, q are relatively simple numbers), then such

cases will be called resonant, with the first caused by external periodic perturbation and the second
by bending oscillations (“internal” resonance).

Let us dwell in more detail on the resonant oscillations caused by the bending oscillations of the
elastic body. The spectrum of the own frequency of bending oscillations of an elastic body rotating
about a fixed axis with an angular velocity §2 under the condition of a quasi-linear oscillation model
(this is the model of the system considered), as shown in [2], is determined by the relation conditions

=:(Q) = (ST’T)4 % — Q2. Such an internal resonance in the elastic body will exist if the condition

st\4 El kr |G
- 002 =—p .,
q\/<l) m 2 P p (6)

hold.
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The relation (6) determines the angular velocity of rotation of the body at which resonant oscilla-
tions occur at frequencies close to the frequency spectrum of the bending oscillations. We will call this
value the resonant angular velocity of rotation. Therefore, the value of the resonant angular velocity

is determined by the relation
P sm\4 El kr\? G
Qo =4/[—) = - —] —.
sk q\/< l > m < l p Q

We proceed to the definition of the law of change of the basic parameters of torsional oscillations
of an elastic body in the form close to one of the forms of “dynamic equilibrium” in the nonresonant
case that is under conditions

1 2
Qo # = \/< ) o <k—ﬂ> ¢ and pkj\/g#qu-
l m l P l 0

In this case, to find the relations that determine the laws of change of the defining parameters of
torsional oscillations for the first approximation of the asymptotic solution, we obtain

o’U 62U 2 02U _, 02U 92U 02U .
(02 Wk Zs(2 —— =2 () — ———
OV} Wi T3 +8¢§ () +2 D0y AWk b+ 2 FIE Y s ( )+878¢3M Q) Py
= F(aawawlm’y) - mQES(Q)bz Sin2¢5 sin2 %Z’
da km di)s ok
_ZEwkCOST,ZJSSIH l$—2a< L —ws> SmwssmT:E' (8)

In the formula (8) F(a,z,¢y,7) is a known function that corresponds to the value of the right-hand
side of equation (1), provided that 8(z,t) and its derivatives take the main values, which are consistent

with (4). The conditions imposed on the function U(a,x, 1y, y, @) allow obtaining basic relations for
da

determining % and %:
d 2 2 L
= :_L/ / F(CL)xﬂpka’y)Sinﬂcoswkd7d¢kd$v
dt 4Wkl7T2 0o Jo 0 l (9)
dipy, € o kx|
e :wk—m/ / ; F(a,az,i/)k,y)smT51n1,bkd7d1,bkd:n.

Thus, in the nonresonant case for the first approximation, the determining parameters of torsional
oscillations do not depend on bending oscillations. Resonant oscillations are more complex. Consider
the main resonance at the frequency of external periodic perturbation. Asshown in [3,4], the amplitude
of oscillations during the resonance significantly depends on difference between phase of own and forced
oscillations, that is 91 = ¥; — 7. Introducing the indicated parameter into differential equations (8),
after averaging with respect to the linear variable and the phase of the coercive force for the case of

the main resonance (7 /l\/G/p =~ 1), we obtain

2
Z_j = — 2wil7r / F(a,z,91 +~,7)sin kﬂ;—:p cos(V + ) dydx
(10)
ddy

2 . kmx |
o WM Soaln / / F(a,z,91 4+ ,7)sin - sin(¥q + ) dy dz.

For the resonance caused by bending oscillations (similarly to the case of resonance at the frequency
of external periodic perturbation), entering in equation (8) the phase difference Jxs = 1y — 2, after
simple transformations we obtain
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d I pr2mw p2m k
d—ctl = —LM:W {/0 /0 /0 F(a,,y,y) sin %ﬂj cos ¥ dy dipy dw — mb2 Qg Es(Qsr,) 57 sin ﬁks} ,
dﬁks _ € I 27w p2m ) kT )
p = wi — 255(Qsr) — W{ /0 /0 /0 F(a,x,r,v)sin TIE sin ¢y, dy dypy dx (11)

+ msz kEs(st)(SZ COS ﬂks},

where 05 = fo sin 472 sin? 572 ;.

As for the first 1mproved approximation of the solution (finding the function U(a, z, Y%, v, ¢)), it
can be easily found by decomposing the unknown function and the right-hand side of equation (8) into
series, followed by equating the coefficients at the same harmonics.

As an example, consider the complex oscillations of an elastic body taking into account:

a) nonlinear-elastic properties of its material, which are described by a nonlinear technical law [8];

b) the force of resistance, which depends on the velocity;

c) harmonious external periodic perturbation;

d) empirical information regarding the bending oscillations of the shaft, from which it follows that
they can be described with a sufficient degree of accuracy by the relation ¥(z, =1 (Q)t + Yo1) =
by sin TF cos(Z1(2)t + Yo1). In this case the right-hand side of the differential equation (2) takes
the form

Q(ﬂj‘,t, 07 0t79m7 90) - 2mQut(zvt)u(Z7t)
= X020, — 602 + hsin o + m QZ,(Q)b? sin 2¢, sin # (12)

where A, 0, h are the known constants. As for the nonresonance case the differential equations (9)
imply that the amplitude frequency characteristics of the damping oscillations is described by the

relations
da _ T2 (357) (G’ a2, d¢1 T |G 3)\Ea (z):a 13)
dt  2al2(r+2) \ p P )

For the resonance case at a frequency close to the main frequency of own torsional oscillations, the
main parameters of the dynamic process are determined by the above form of the right-hand side of
the differential equation (2) by the dependencies

F2 2r+43 r
da _ ¢ (#32) G a2r+1+h pcos191,
dt — 27l2(r+2) \ p G

14
N X (e "
a1\ P e Ve \a 2\ ¢

Slightly more complex relations describe resonant torsional oscillations caused by bending oscillations
of the shaft (internal resonance). Then from the differential equation (11) we obtain

da eT3(ZF) /@
+ = 727_‘{,2(743_2) <—> r+l + = mb2 Qll 11 51111911,

dt
d1911 \/ 02 3ea? [p (77)3 4 5 p\/ ™4 EI
= — — /= =) — =—mbiQ —(—)——92 I11.
\/p Yt Ve \7) T aamithny gy (7)) Sy~ facesin
(15)
Below, at different values of the lengths of the elastic body and the angular velocities of its rotation,

the change of the amplitude of resonant torsional oscillations caused by external periodic perturbation
(Fig. 1) and bending oscillations (Fig.2) is presented.
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Fig.1. Changing of the amplitude of torsional oscil- Fig.2. Changing of the amplitude of torsional os-

lations of the shaft during the transition through reso- cillations of the shaft during the transition through

nance at the first own frequency at different values of resonance at the frequency of bending oscillations at
the angular velocity. different values of the running body mass.

3. General conclusions

The basic principles of the methodology of research of complex oscillations of elastic bodies (torsional
and bending) are stated in the paper. The analysis of the main results implies:

1) the rotation of an elastic body around the vertical axis affects the frequency of its bending oscilla-
tions, namely for the larger values of the angular velocity the frequency of bending oscillations is
lower;

2) even small bending oscillations of an elastic body rotating around a vertical axis, at the some
relation between the frequencies of torsional and bending oscillations, affect the basic parameters
of torsional oscillations;

3) for the case of complex oscillations of the elastic body, resonant oscillations are possible due not only
to the external periodic forces (moments), but also to their mutual influence (internal resonances);

4) the amplitude of torsional oscillations in the “fast” transition through resonance at the frequency
of external or internal perturbation is less than in the “slow”.

The obtained results can serve as a basis to choose the main technological and operational param-
eters of the machine oscillating elements in order to avoid the resonant phenomena.
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Mpo 30BHIWHI Ta BHYTPILLHI PE30HAHCHI SIBULLA Y NPY>XXHUX Tinax, Ski

30IACHIOIOTb CKJ1aAHI KOJIMBaHHSA

I'yzux H.', ITykau I1.2, Coxin B.!, Coxin M.2, Bosk M.?

! Haujonarvha axademia cyronymuux eiticok imeni cemvmana IHempa Cazatidaurozo,
eya. I'epois Matidany, 32, Jlveis, 79012, Yxpaina
2 Hawionarvnuti yrisepcumem “/Ivsiscora nosimexmixa”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

CkaiHi HeJTiHIRHI KOJIMBAHHS B MPY?KHUX TLIAX BUBYAIOTHCH 3 BUKOPUCTAHHSIM AIPiOPHOL
indopmariii mpo popMy KOJMBAHD Ta 3 YPAXyBaHHIM yTOUYHEHOT MATEMATUIHOI MOJIETL JIPY-
rol (irmoi) dhopMu KoaMBaHb. 3aIpPOIOHOBAHO 3aCTOCYBAHHS ICHYIOUNX 400 PO3POOIIEHHST
HOBUX METO/IiB ISl aHAJI3y OTPUMAHMX HEABTOHOMHUX I'DaHUYHUX 33/1a4. EdekTuBHiCTH
MIPAKTUYIHOI peasti3ariil MeTO0JIOTII CYTTEBO 3POCTAE Y BUMA IKAX, KON BEJIUINHA IepeMi-
IIIEHB TIPYKHOTO Ti/Ia, 3yMOBJIEHA OJTHIEIO i3 (DOPM KOJUBAHD, 3HAYHO IIepeBUIILye iummi. s
aHaJI3y TaKol 3aJa9l MOYKHA BUKOPUCTATH BiJIOMi IIepeBipeHi aHAJJITUYHI METOIU JTOCJIIiJI-
JKEHHsI CUCTEM i3 MaJIOI0 HeJiHIHHICTIO. K MPUKIaI PO3TJISHYTO KPYTH/IbHI Ta 3ruHaIbHI
KOJIMBaHHsA Tpy2kHoro Tifa. [lokazano, mo ocob/mBo HeOE3MEeTHI pe30HAHCHI TPOIeCH MO-
KyTh OyTH 3yMOBJIEHI HE TLJIbKU 30BHIMIHIMA 30ypeHHSME, ajie i BHYTPIMIHIM BILTHBOM
MixK geskuMu opmamMu KosmBaHb. OTpuMaHi pe3ysIbTaTh JO3BOJISIOTH BUOPATH OCHOBHI
TEXHOJIOTIYHI Ta eKCIUTyaTalliifHi mapaMeTpHu eJeMeHTIB MaIliH, AKi 311HCHIOIOTh CKJIaTHI
KOJINBAHHH, 11100 YHUKHYTH Y HUX SIBUII PE3OHAHCY.

Knto4oBi cnosa: neainitine npyscHe mino, acumnmomusmi memoou, amnaiimyoa, pe3o-
HAHC, CKAAOHT KOAUBAHHA.
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