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Complex nonlinear oscillations in the elastic bodies are studied using a priori information
about the oscillations form and taking into account a refined mathematical model of the
second (other) form of oscillations. Application of existing methods or development of
the new ones for the analysis of received non-autonomous boundary value problems is
proposed. The effectiveness of the practical implementation of the discussed methodology
significantly increases in cases where the magnitude of the elastic body displacements
due to the one form of oscillations is much higher than the other one. To analyze the
problem one can use the well-known tested analytical methods for the systems with the
small nonlinearity. Torsional and bending oscillations of the elastic body are shown as
the example. It is also demonstrated that especially dangerous resonant processes can be
caused not only by the external perturbations but also by the internal influence between
some forms of oscillations. The obtained results allow to choose the basic technological and
operational parameters of the machine oscillating elements in order to avoid the resonance
phenomena.
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1. The statement of the problem

Operation of various types of machines and mechanisms, elastic elements of structures is accompanied,
usually, by the oscillations of their elements. Interacting between themselves, they can lead not only
to significant dynamic loads, but can also cause failure of the whole object. On the other hand,
mathematically, these processes are usually described by ordinary nonlinear differential equations or
boundary value problems for the system of partial differential equations. It is possible to integrate the
latter except by numerical methods. However, numerical simulation of these equations cannot answer
many important practical questions. First, these are the conditions for the existence of internal and
external resonances, features of their passage, stability of the process, etc. Therefore, the problem of
analytical study of complex oscillations, even for the one-dimensional models of elastic bodies, remains
open. In our view, even a approaching analytical study of such complex processes in elastic bodies
can give much more information about their dynamics than numerical integration. Therefore, the
article develops the main ideas of the methodology which was developed in [1] for the study of complex
oscillations in the case of a combination of torsional and bending oscillations. The methodology is based
on the idea of using a priori information about one form of oscillation and using it in the construction of
a mathematical model of another with the subsequent use or development of analytical methods for the
study of the obtained “refined” non-autonomous mathematical model. The methodology is particularly
effective for practical implementation when the displacements of elastic body points caused by one form
of oscillation are much smaller than the others. In this case, effective analytical methods for the study
of relevant mathematical models of elastic body dynamics have been developed for quasilinear or
nonlinear elastic body characteristics [2].
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2. Material and methods

The most effective analytical methods for the study of nonlinear oscillations of distributed parame-
ter systems are methods based on the idea of perturbation methods [3]. On the basis of them, in
conjunction with the principle of oscillation frequency in nonlinear mechanical systems, the theory of
asymptotic integration of quasilinear [2] and nonlinear [4–8] mathematical models of systems with dis-
tributed parameters has been developed, provided that the dynamic process in the respective systems
can be interpreted as simple (mono) oscillations (longitudinal, transverse, torsional, bending). Further,
the indicated methods have been developed for some classes of dynamic systems, characterized by the
speed of longitudinal movement, (rope lifts, belt and chain transmissions, belt extended mechanisms,
conveyor lines). However, mono oscillations are more the exception than the regularity of dynamic
processes, even in elastic bodies. Thus, columns for drilling oil and gas wells perform complex oscilla-
tions (a combination of torsional, bending, and in some cases also longitudinal) [9], turbine rotors —
a combination of torsional and bending [10, 11] etc. Separate studies show that these kinds of oscilla-
tions in elastic bodies interacting with one another can lead to such undesirable phenomena as internal
resonance. Therefore, the development of a methodology of studying of complex oscillations of elastic
bodies is an important applied problem. In order to partially solve it, it is proposed to:
a) with the aid of processing of empirical information for the one of the oscillations form describe

them by approximate analytic relations (the laws of their changes);
b) take the above laws into account in the mathematical model of other oscillations, which makes it

possible to reduce the number of differential equations that together with the boundary conditions
describe the dynamics of the object;

c) by the most accessible analytical methods to investigate non-autonomous mathematical models
that correspond to unknown oscillations.
A mathematical model of nonlinear torsional oscillations of a rectilinear one-dimensional body that

rotates about a fixed vertical axis OZ at an angular velocity Ω can serve (under certain boundary
conditions) a differential equation

θtt −
G

ρ
θzz =

1

I
Q(x, t, θ, θt, θx, ϕ). (1)

In (1) by θ(x, t) we denote the angle of rotation of the elastic body, by I = ρJp — its running
moment of inertia relative to the axis of rotation, by G — the shear modulus (modulus of elasticity of
the second kind), by ρ — the density of the material of the body. Jp denotes the equatorial moment
of the cross-section (the moment of inertia of the cross-section), Q(x, t, θ, θt, θx, φ) is nonlinear with
respect to the set of variables, periodic for φ = µ t + φ0 function that describes the distribution of
the moments of external forces relative to the axis of rotation along the length of the body (including
moments of resistance), and µ denotes the frequency of periodic perturbation.

If, in addition, the body makes the bending oscillations of small amplitudes in the moving plane
XOZ, then for each element of the length dz there exist the inertia forces of relative motion and
Coriolis inertia force [12]. To determine them, we assume that:
a) the running body mass is equal to m;
b) the deflection of an arbitrary element with the applique z in the above plane is determined by the

function u(z, t);
c) there is no deplanation of flat normal section.

In this case, the inertia force of the relative motion dΦr of the specified element (caused by
bending oscillations) is determined by the dependence dΦr = −mutt(z, t) i dz. Similarly it is de-
termined the Coriolis inertia force dΦcor of the specified element: dΦcor = −2mΩk × ut(z, t) i dz =
−2mΩut(z, t) j dz.

From the above, it follows that the inertia force of relative motion does not affect the torsional
oscillations of the body, because their moment relative to the axis of rotation is equal to zero. As for
the Coriolis inertia force of the specified element, its moment relative to the axis of rotation is equal
to dM cor

z = dΦcoru(z, t) = 2mΩut(z, t)u(z, t) dz.
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Thus, the “refined” differential equation of the torsional oscillations of the body, taking into account
its small transverse oscillations, has the form

θtt −
G

ρ
θzz = ε {Q(x, t, θ, θt, θx, ϕ) + 2mΩut(z, t)u(z, t)} , ε =

1

I
. (2)

Our aim is to obtain basic relations that describe the main parameters of the torsional oscillations
of the investigated elastic body under condition that the bending oscillations are described by a known
analytical function or a discrete set of amplitude values and oscillation periods. In [12] it is shown
that for the simplest forms of oscillations a discrete set of values of amplitudes and periods of bending
oscillations of an elastic body can also lead to an analytical dependence. Thus in the below the bending
oscillations will be described by dependence

us(z, t) = ϑ(z,Ξst+ ϑ0s) = bs sin
sπx

l
cos

(

Ξs(Ω)t+ ϑ0s
)

,

where Ξs(Ω)t+ϑ0s, Ξs(Ω), ϑ0s denote the phase of bending oscillations, their frequency and the initial
phase respectively.

Solving procedure. It is known [2], that not only the acting forces determine the dynamic process
of mechanical systems with distributed parameters, but also by the initial and boundary conditions.
So we will investigate the basic differential equation (2) under boundary conditions that are consistent
with the rotation of the elastic body in ideal bearings, that is

θ(x, t)
∣

∣

x=0
= θ(x, t)

∣

∣

x=l
= 0. (3)

The restrictions imposed on the right-hand side of the differential equation (1) and the amplitude
of the bending oscillations allow to use the main relations of Krylov–Bogolyubov–Mitropolsky method
and the principle of the frequency of oscillations for “weakly nonlinear” systems of hyperbolic type [7]
for construction of the solution of the boundary value problem (2), (3). According to them, the first
approximation of the one frequency asymptotic solution of boundary value problem (2), (3) can be
represented in the form

θ(z, t) = a sin
kπz

l
sinψk + εU(a, z, ψk , γ, φs), φs = Ξs(Ω)t+ ϑ0s, ψk = ωkt+ ψ0k. (4)

In the formula (4) ωk =
kπ
l

√

G
ρ

and U(a, z, ψk , γ, φs) is the 2π periodic with respect to phase ψk, γ, φ

function that does not contain the oscillation mode k. It means that it satisfies the conditions
∫

2π

0

U(a, z, ψk, γ, φ)

{

sinψk
cosψk

}

dψk = 0. (5)

As for the parameters a and ψk, than for the perturbed motion, they, as a function of time, are
determined not only by the right-hand side of differential equation (2), but also by the relations between
frequencies ωk, µ; Ξs(Ω), ωk that is, by the frequency of its own torsional oscillation ωk and the forced
µ or by the frequency of the bending oscillations Ξs(Ω). If between these parameters there is a rational

relation of the form pkπ
l

√

G
ρ
≈ qµ or pkπ

l

√

G
ρ
≈ qΞs(Ω) (p, q are relatively simple numbers), then such

cases will be called resonant, with the first caused by external periodic perturbation and the second
by bending oscillations (“internal” resonance).

Let us dwell in more detail on the resonant oscillations caused by the bending oscillations of the
elastic body. The spectrum of the own frequency of bending oscillations of an elastic body rotating
about a fixed axis with an angular velocity Ω under the condition of a quasi-linear oscillation model
(this is the model of the system considered), as shown in [2], is determined by the relation conditions

Ξs(Ω) =

√

(

sπ
l

)4 El
m

− Ω2. Such an internal resonance in the elastic body will exist if the condition

q

√

(sπ

l

)4 El

m
− Ω2 = p

kπ

l

√

G

ρ
(6)

hold.
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The relation (6) determines the angular velocity of rotation of the body at which resonant oscilla-
tions occur at frequencies close to the frequency spectrum of the bending oscillations. We will call this
value the resonant angular velocity of rotation. Therefore, the value of the resonant angular velocity
is determined by the relation

Ωsk =
p

q

√

(sπ

l

)4 El

m
−

(

kπ

l

)2 G

ρ
. (7)

We proceed to the definition of the law of change of the basic parameters of torsional oscillations
of an elastic body in the form close to one of the forms of “dynamic equilibrium” in the nonresonant
case that is under conditions

Ωsk 6=
p

q

√

(sπ

l

)4 El

m
−

(

kπ

l

)2 G

ρ
and p

kπ

l

√

G

ρ
6= qµ.

In this case, to find the relations that determine the laws of change of the defining parameters of
torsional oscillations for the first approximation of the asymptotic solution, we obtain

∂2U

∂ψ2
k

ω2
k +

∂2U

∂γ2
µ2 +

∂2U

∂φ2s
Ξ2
s(Ω) + 2

∂2U

∂ψk∂γ
ωk µ+ 2

∂2U

∂ψk∂φs
ωk Ξs(Ω) +

∂2U

∂γ∂φs
µΞs(Ω)−

G

ρ

∂2U

∂x2

= F (a, x, ψk, γ) −mΩΞs(Ω)b
2
s sin 2φs sin

2 sπ

l
x

− 2
da

dt
ωk cosψs sin

kπ

l
x− 2a

(

dψs
dt

− ωs

)

sinψs sin
kπ

l
x. (8)

In the formula (8) F (a, x, ψk, γ) is a known function that corresponds to the value of the right-hand
side of equation (1), provided that θ(x, t) and its derivatives take the main values, which are consistent
with (4). The conditions imposed on the function U(a, x, ψk, γ, φ) allow obtaining basic relations for
determining da

dt
and dψk

dt
:

da

dt
= −

ε

4ωklπ2

∫ l

0

∫

2π

0

∫

2π

0

F (a, x, ψk, γ) sin
kπx

l
cosψk dγ dψk dx,

dψk
dt

= ωk −
ε

4ωkalπ2

∫ l

0

∫

2π

0

∫

2π

0

F (a, x, ψk, γ) sin
kπx

l
sinψk dγ dψk dx.

(9)

Thus, in the nonresonant case for the first approximation, the determining parameters of torsional
oscillations do not depend on bending oscillations. Resonant oscillations are more complex. Consider
the main resonance at the frequency of external periodic perturbation. As shown in [3,4], the amplitude
of oscillations during the resonance significantly depends on difference between phase of own and forced
oscillations, that is ϑ1 = ψ1 − γ. Introducing the indicated parameter into differential equations (8),
after averaging with respect to the linear variable and the phase of the coercive force for the case of
the main resonance (π/l

√

G/ρ ≈ µ), we obtain

da

dt
= −

ε

2ωklπ

∫ l

0

∫

2π

0

F (a, x, ϑ1 + γ, γ) sin
kπx

l
cos(ϑ1 + γ) dγ dx

dϑ1
dt

= ω1 − µ−
ε

2ωkalπ

∫ l

0

∫

2π

0

F (a, x, ϑ1 + γ, γ) sin
kπx

l
sin(ϑ1 + γ) dγ dx.

(10)

For the resonance caused by bending oscillations (similarly to the case of resonance at the frequency
of external periodic perturbation), entering in equation (8) the phase difference ϑks = ψk − 2ϕs, after
simple transformations we obtain
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da

dt
= −

ε

4ωklπ2

{
∫ l

0

∫

2π

0

∫

2π

0

F (a, x, ψk, γ) sin
kπx

l
cosψk dγ dψk dx−mb2sΩskΞs(Ωsk)δ

s
k sinϑks

}

,

dϑks
dt

= ωk − 2Ξs(Ωsk)−
ε

4ωkalπ2

{
∫ l

0

∫

2π

0

∫

2π

0

F (a, x, ψk, γ) sin
kπ

l
x sinψk dγ dψk dx

+mb2sΩskΞs(Ωsk)δ
s
k cos ϑks

}

,

(11)

where δsk =
∫ l

0
sin kπx

l
sin2 sπx

l
dx.

As for the first improved approximation of the solution (finding the function U(a, z, ψk , γ, φ)), it
can be easily found by decomposing the unknown function and the right-hand side of equation (8) into
series, followed by equating the coefficients at the same harmonics.

As an example, consider the complex oscillations of an elastic body taking into account:

a) nonlinear-elastic properties of its material, which are described by a nonlinear technical law [8];
b) the force of resistance, which depends on the velocity;
c) harmonious external periodic perturbation;
d) empirical information regarding the bending oscillations of the shaft, from which it follows that

they can be described with a sufficient degree of accuracy by the relation ϑ(z,Ξ1(Ω)t + ϑ01) =
b1 sin

πx
l
cos(Ξ1(Ω)t + ϑ01). In this case the right-hand side of the differential equation (2) takes

the form

Q(x, t, θ, θt, θx, ϕ)− 2mΩut(z, t)u(z, t)

= λ θ2z θzz − δ θ2r+1
t + h sinϕ+mΩΞs(Ω)b

2
s sin 2φs sin

2 sπx

l
, (12)

where λ, δ, h are the known constants. As for the nonresonance case the differential equations (9)
imply that the amplitude frequency characteristics of the damping oscillations is described by the
relations

da

dt
=

εΓ2
(

2r+3

2

)

2πΓ2 (r + 2)

(

G

ρ

)r

a2r+1,
dψ1

dt
=
π

l

√

G

ρ
−

3λ ε a2

64

√

ρ

G

(π

l

)3

. (13)

For the resonance case at a frequency close to the main frequency of own torsional oscillations, the
main parameters of the dynamic process are determined by the above form of the right-hand side of
the differential equation (2) by the dependencies

da

dt
=

εΓ2
(

2r+3

2

)

2πΓ2(r + 2)

(

G

ρ

)r

a2r+1 +
h

2

√

ρ

G
cos ϑ1,

dϑ1
dt

=
π

l

√

G

ρ
− µ+

3λ ε a2

64

√

ρ

G

(π

l

)3

−
h

2a

√

ρ

G
sinϑ1.

(14)

Slightly more complex relations describe resonant torsional oscillations caused by bending oscillations
of the shaft (internal resonance). Then from the differential equation (11) we obtain

da

dt
=

εΓ2
(

2r+3

2

)

2πΓ2(r + 2)

(

G

ρ

)r

a2r+1 +
4

3
mb21Ω11

√

ρ

G

√

(π

l

)4 EI

m
− Ω2

11
sinϑ11,

dϑ11
dt

=
π

l

√

G

ρ
− 2

√

(π

l

)4 EI

m
− Ω2

11
+

3λεa2

64

√

ρ

G

(π

l

)3

−
4

3a
mb21Ω11

√

ρ

G

√

(π

l

)4 EI

m
− Ω2

11
cos ϑ11.

(15)
Below, at different values of the lengths of the elastic body and the angular velocities of its rotation,

the change of the amplitude of resonant torsional oscillations caused by external periodic perturbation
(Fig. 1) and bending oscillations (Fig. 2) is presented.
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Fig. 1. Changing of the amplitude of torsional oscil-
lations of the shaft during the transition through reso-
nance at the first own frequency at different values of

the angular velocity.

Fig. 2. Changing of the amplitude of torsional os-
cillations of the shaft during the transition through
resonance at the frequency of bending oscillations at

different values of the running body mass.

3. General conclusions

The basic principles of the methodology of research of complex oscillations of elastic bodies (torsional
and bending) are stated in the paper. The analysis of the main results implies:

1) the rotation of an elastic body around the vertical axis affects the frequency of its bending oscilla-
tions, namely for the larger values of the angular velocity the frequency of bending oscillations is
lower;

2) even small bending oscillations of an elastic body rotating around a vertical axis, at the some
relation between the frequencies of torsional and bending oscillations, affect the basic parameters
of torsional oscillations;

3) for the case of complex oscillations of the elastic body, resonant oscillations are possible due not only
to the external periodic forces (moments), but also to their mutual influence (internal resonances);

4) the amplitude of torsional oscillations in the “fast” transition through resonance at the frequency
of external or internal perturbation is less than in the “slow”.

The obtained results can serve as a basis to choose the main technological and operational param-
eters of the machine oscillating elements in order to avoid the resonant phenomena.
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Про зовнiшнi та внутрiшнi резонанснi явища у пружних тiлах, якi
здiйснюють складнi коливання

Гузик Н.1, Пукач П.2, Сокiл Б.1, Сокiл М.2, Вовк М.2

1Нацiональна академiя сухопутних вiйськ iменi гетьмана Петра Сагайдачного,

вул. Героїв Майдану, 32, Львiв, 79012, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Складнi нелiнiйнi коливання в пружних тiлах вивчаються з використанням апрiорної
iнформацiї про форму коливань та з урахуванням уточненої математичної моделi дру-
гої (iншої) форми коливань. Запропоновано застосування iснуючих або розроблення
нових методiв для аналiзу отриманих неавтономних граничних задач. Ефективнiсть
практичної реалiзацiї методологiї суттєво зростає у випадках, коли величина перемi-
щень пружного тiла, зумовлена однiєю iз форм коливань, значно перевищує iншi. Для
аналiзу такої задачi можна використати вiдомi перевiренi аналiтичнi методи дослiд-
ження систем iз малою нелiнiйнiстю. Як приклад розглянуто крутильнi та згинальнi
коливання пружного тiла. Показано, що особливо небезпечнi резонанснi процеси мо-
жуть бути зумовленi не тiльки зовнiшнiми збуреннями, але й внутрiшнiм впливом
мiж деякими формами коливань. Отриманi результати дозволяють вибрати основнi
технологiчнi та експлуатацiйнi параметри елементiв машин, якi здiйснюють складнi
коливання, щоб уникнути у них явищ резонансу.

Ключовi слова: нелiнiйне пружне тiло, асимптотичнi методи, амплiтуда, резо-

нанс, складнi коливання.
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