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Conjugate gradient (CG) method is well-known due to efficiency to solve the problems
of unconstrained optimization because of its convergence properties and low computation
cost. Nowadays, the method is widely developed to compete with existing methods in term
of their efficiency. In this paper, a modification of CG method will be proposed under
strong Wolfe line search. A new CG coefficient is presented based on the idea of make use
some parts of the previous existing CG methods to retain the advantages. The proposed
method guarantees that the sufficient descent condition holds and globally convergent
under inexact line search. Numerical testing provides strong indication that the proposed
method has better capability when solving unconstrained optimization compared to the
other methods under inexact line search specifically strong Wolfe–Powell line search.
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1. Introduction

The conjugate gradient (CG) methods are capable to find the optimum solution for the nonlinear
unconstrained optimization problems. It is widely used due to relatively little memory required for
large-scale problems and no numerical linear algebra required, so each step is quite fast. For the
unconstrained optimization problem as

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable function, the CG method would construct iteratively
according to

xk+1 = xk + αkdk, (2)

where k = 0, 1, 2, . . . and dk is the search direction, described by

dk =

{

−gk, if k = 0,
−gk + βkdk−1, if k > 1,

(3)

where the current iterate point assigned as xk, αk is regarded as positive stepsize, gk denotes the
gradient coefficient and βk is a scalar which is the CG coefficient. Many conjugate gradient methods
have already been established including the Hestenes Stiefel (HS) method [1], the Fletcher–Reeves
(FR) method [2], the Polak–Ribiere–Polyak (PRP) method [3] and [4], the conjugate descent (CD)
method [5] and a lot of other recent methods where the corresponding coefficient beta βk of the
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mentioned methods are shown below

βHS
k =

gTk (gk − gk−1)

(gk − gk−1)
r
dk−1

βRR
k =

gTk gk

gTk−1gk−1
,

βPRP
k =

gTk (gk − gk−1)

gTk−1gk−1
,

βCD
k =

gTk gk

dTk−1gk−1
.

The important part in line search algorithm is a condition which is often called the sufficient descent
property, defined in the form:

gTk dk 6 −c ‖gk‖
2 , (4)

where the constant c plays a significant role which guarantees the global convergence of the nonlinear
conjugate gradient method.

The properties of conjugate gradient methods that have been explored greatly through its global
convergence properties. The global convergence of the FR method under the exact line has been
proved by Zoutendijk [6]. It was later countered in an example by Powell [7]. Then in 1986, Powell [8]
identified that the method is not able to possess global convergence properties. Before that in 1977,
Powell [9] also proved that other methods are not preferable methods compared to FR method. Further
research on FR method related to the global convergence was conducted by some researchers including
Al-Baali [10], Touati–Ahmed and Storey [11] and Gilbert and Nocedal [12]. The researchers ran the
FR method along with the inexact line search under a strong Wolfe condition. Strong Wolfe line
search also guaranteed that other methods turned to be a globally convergent ones. Nowadays, a
lot of attempts have been placed on proposing and structuring a modified formula from the existing
CG methods through improvising the performances of numerical which possessed global convergent
properties. In recent year, some researchers successfully did some modification on classical methods to
improve the performance. X. Jiang and J. Jian succeed in improving the performance of FR and DY
method [13] and P. Mtagulwa and P. Kaelo introduced modified PRP-FR hybrid conjugate gradient
which is more efficient [14]. All the past and recent research give us some motivation to improve CG
by modifying the βk. Thus, this research focuses on the modification of CG through the exploration of
new βk performance under line search and section 2 will give further explanation on its algorithm. In
the next section, we establish the sufficient descent condition with the global convergence proof of the
new method. For the section 4, we highlight the numerical experiment results and also the discussion.
Finally, we summed up and concluded them in section 5.

2. Methodology

Recently, Rivaie et al. [15] constructed a new coefficient βk that is useful for handling the problem of
non-convergence in which it is stated as the following:

βRMIL
k =

gTk (gk − gk−1)

dTk−1(dk−1 − gk)
. (5)

The proposed βk maintained the numerator as in the PRP, LS, and HS formula to deliver it restart
properties as observed by Pytlak [16]. This formula is special because of its simplicity and capable
to ensure that this method retained four important requirements of CG formula, global convergence
properties, the sufficient descent conditions, angle conditions and linear convergence rate.
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On the other hand, recently modification based on PRP method proposed recently by Hamoda et
al. [17], namely, HRM. The formula are shown below

βHRM
k =

gTk

(

gk −
‖gk‖

‖gk−1‖
gk−1

)

µ ‖gk−1‖
2 + (1− µ) ‖dk−1‖

2 . (6)

The value of parameter µ is in the range within 0 < µ < 1. In this research scope, arbitrary value will
be set as µ = 0.4, as applied by the HRM method to test our new method.

Based on the properties of RMIL and HRM methods, a new modified β which is known as βISL
k ,

where ISL denotes Izwan, Siti Mahani, and Leong was proposed as follows

βISL
k =

gTk (gk − gk−1)

µ ‖gk−1‖
2 + (1− µ)||dk−1‖2

. (7)

By incorporating the proposed βk (7), the new modified CG method algorithm is executed as:
Step 1: (Initialization). Given x0, choose k = 0.
Step 2: Compute βk, according to formula (7).
Step 3: Compute dk by formula (3).
Step 4: Compute αk by exact or inexact line search.
Step 5: Updating new point based on iterative formula (2).
Step 6: Convergent analysis test and stopping criteria: ‖gk‖ 6∈ then stop.

Or else go to Step 1 with k = k + 1.

3. Convergence analysis

In this section, we will show that our new modified CG guarantees the sufficient descent conditions
hold and globally convergent for both exact and inexact line searches. However, we use the inexact line
search or strong Wolfe–Powell line search to obtain the numerical results due to the fact that inexact
line search is more practical compared to the exact line search [18].

Sufficient descent condition of ISL method with exact line search. The exact line search
requires a condition as follows:

min
∞>0

f(xk + αdk). (8)

The next theorem asserts that the ISL direction with exact line search satisfies the sufficient descent
condition.

Theorem 1. Consider the sequences βk and dk established by the formula (3) and (7), and the step

length αk is generated by the exact line search (8) then the sufficient descent condition (4) holds true

for all k > 0.

Proof. Theorem 1 shall be proved through induction; if k = 0 as gT0 d0 = −C ‖g0‖
2. Then, consider

that condition (4) also holds true for some k > 0. For

gTk+1dk+1 = −‖gk+1‖
2 + βlSL

k+1g
T
k+1dk. (9)

Since the exact line search implies that gTk+1dk = 0, gTk+1dk+1 = −‖gk+1‖
2. Thus, the sufficient descent

condition holds, for all k > 0. �

Sufficient descent condition of ISL method with inexact line search. Based on the previous
research, the applicable and reliable inexact line search that commonly used is strong Wolfe–Powell
line search (SWP) which contains two conditions

f(xk + αkdk) 6 f(xk) + ραkg
T
k dk, (10)
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∣

∣g(xk + αkdk)
Tdk

∣

∣ 6 σ
∣

∣gTk dk
∣

∣ , (11)

where 0 < ρ < 1.
The subsequent theorem displays that the formula ISL with SWP line search will leads to the

sufficient descent condition.

Theorem 2. Suppose that the sequences {xk} and {dk} are generated by (2), (3) and (7), and the

step length αk is determined through the SWP line search (10) and (11). If gk 6= 0, then the sequence

{dk} satisfies the sufficient descent condition (4).

Proof. Firstly, note that

βISL
k =

gTk (gk − gk−1)

µ ‖gk−1‖
2 + (1− µ)‖dk−1‖2

=
‖gk‖

2 − gTk gk−1

µ ‖gk−1‖
2 + (1− µ)‖dk−1‖2

>
‖gk‖

2 −
∥

∥gTk gk−1

∥

∥

µ ‖gk−1‖
2 + (1− µ)‖dk−1‖2

>
‖gk‖

2 −
∥

∥gTk

∥

∥ ‖gk−1‖

µ‖gk−1 ‖2 + (1− µ)‖dk−1‖
2 > 0.

On the other hand,

‖gk‖
2 +

∥

∥gTk gk−1

∥

∥

µ‖gk−1 ‖2 + (1− µ)‖dk−1‖
2 6

‖gk‖
2 +

∥

∥gTk

∥

∥ ‖gk−1‖

µ‖gk−1 ‖2 + (1− µ)‖dk−1‖
2 6

‖gk‖
2

µ ‖gk−1‖
2 .

*Restart if
∣

∣gTk gk−1

∣

∣ > c‖gk‖
2, c ∈ [0, 1).

*Not restart if
∣

∣gTk gk−1

∣

∣ 6 c‖gk‖
2, c ∈ (0, 1).

Thus, by setting µ = 0.4 we get

0 6 βISL
k 6

2.5‖gk‖
2

‖gk−1‖2
. (12)

Using (7) and (11),
∣

∣

∣
βlSL
k+1g

T
k+1dk

∣

∣

∣
6

2.5‖gk+1‖
2

‖gk‖2
σ
∣

∣gTk dk
∣

∣ . (13)

By (3), dk+1 = −gk+1 + βk+1dk

gTk+1dk+1

‖gk+1‖
2 = −1 + βk+1

gTk+1dk

‖gk+1‖
2 . (14)

We prove the descent property of dk by induction. Since gT0 d0 = −‖g0‖
2 < 0, if g0 6= 0, now assume

that di, l = 1, 2, . . . , k, are all descent directions, that is gτi di < 0.
By (13),

∣

∣βISL
k+1g

T
k+1dk

∣

∣ 6
2.5‖gk+1‖

2

‖gk‖2
σ
(

−gTk dk
)

. (15)

That is,

βlSL
k+1g

T
k+1dk 6 −

‖gk+1‖
2

‖gk‖
2 −

‖gk+1‖
2

‖gk‖
2 2.5σgTk dk (16)

(12) and (14) deduce

−1 +
5σgTk dk

2 ‖gk‖
2 6

gTk+1dk+1

2 ‖gk+1‖
2 6 −1−

5σgTk dk

2 ‖gk‖
2 .
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By repeating this procedure and the theory where gT0 d0 = −‖g0‖
2, we have,

−

k
∑

j=0

(2.5σ)j 6
gTk+1dk+1

2 ‖gk+1‖
2 6 −2 +

k
∑

j=0

(2.5σ)j . (17)

Since
k

∑

j=0

(2.5σ)j <
∑

j=0

(2.5σ)j =
1

1− 2.5σ

(12) can be written as

−
1

1− 2.5σ
6

gTk+1dk+1

2 ‖gk+1‖
2 − 2 +

1

1− 2.5σ
. (18)

By setting the restriction σ ∈ (0, 0.1), we get gTk+1dk+1 < 0. Thus, by induction, gTk dk < 0 holds for
all k > 0.

Denote c = 2− 1
1−2.5σ then 0 6 c < 1, and (18) can be expressed as

(c− 2) ‖gk‖
2
6 gTk dk 6 −‖gk‖

2
. (19)

Then, it is indicate that the sufficient descent condition holds. Thus, the theorem is proved. �

4. Results and discussion

This section reveals the numerical results involving 20 different functions with different variable and
initial point [19] coded on MATHLAB program version R2015b. We plotted some comparison graphs
of the new modified conjugate gradient method with other classical and modified methods under
strong Wolfe–Powell line search. We selected ε = 10−6 and established the gradient value to act
as stopping criteria which is ‖gk‖ < ε suggested by Hillsterm [20]. Thus, the termination of all
computational experiments is active where ‖gk‖ 6 10−6. Table 1 showed the problem functions used in
the computational experiment. The experiment was performed on a PC with CPU processor specifically
Intel (R) Core (TM) i5 2450M (2.50GHz) under RAM capacity, 8GB. For some problems, under
consideration, numerical results are not available due to breakdown of the line search to compute the
positive step size, then the process assumed as a failure. Numerical results are exploited in term of the
CPU time and number of iteration. The result of the comparative experimental are shown in Figure 1
and Figure 2 respectively, applying a performance profile established by Dolan and More [21]. The
performance profile is a bench-marking to analyze the performance of optimization methods.
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Fig. 1. Performance profile relative to the CPU time. Fig. 2. Performance profile relative to the number of
iterations.
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Table 1. A list of problem functions.

No Function Dimension Initial points

1 Booth 2 (10),(25),(50),(100)
2 Matyas Function 2 (1),(5),(10),(15)
3 Extended Freudenstem and Roth 2 (1),(2),(3),(7)
4 Extended Powell 2 (2),(10),(15),(50)
5 Extended Quadratic Penalty QP1 (0, 0,. . . ) 2 (5),(7),(8),(30)
6 Extended Quadratic Penalty QP1 (1, 1,. . . ) 2 (5),(7),(8),(30)
7 Power Function 2 (1),(10),(30),(50)
8 Sphere 2 (1),(10),(30),(50)
9 Ex-Penalty 2 (10),(30),(50),(80)
10 Hager 2 (1),(5),(7),(10)
11 Quadratic QF1 2, 4, 10 (3),(5),(8),(10)
12 Diagonal 4 2, 4, 10, 100, 500,1000 (1),(3),(6),(12)
13 Ex-Tridiagonal 1 2,4,10,100,500,1000,10000 (6),(12),(17),(20)
14 Perturbed Quadratic 2, 4, 10, 100, 500,1000 (1),(3),(5),(10)
15 Extended Denschnb 2,4,10,100,500,1000,10000 (8),(13),(30),(50)
16 Generalized Quartic 2,4,10,100,500,1000,10000 (1),(2),(5),(7)
17 Quadrtic QF2 2,4,10,100,500,1000 (5),(20),(50),(100)
18 Diagonal 2 2,4,10,100,500,1000 (1),(5),(10),(15)
19 Sum Squares 2,4,10,100,500,1000 (1),(3),(7),(10)
20 Generalized Tridiagonal 1 2,4,10,100 (7),(10),(13),(21)

The performance profile function is defined as,

ρs(t) =
1

np

size
(

p : 1 6 s 6 np, log(rs,p 6 t)
)

, (20)

where

rs,p =
fs,p

min (fs,p : 1 6 s 6 ns)
, (21)

ρs(t) is the probability for solver s which the performance ratio rs,p is inside the range of factor t. When
t = 1, the probability of the solver to be superior to the other solvers is very high. For the better
comparison between the results, the value of ps(1) needs to be considered by the experimentalist.

Figure 1 and Figure 2 exposed that the performances of all experimental methods were constructed
according to the number of iterations and CPU time. For both figures, we generated each graph
from the overall problem used to compare ISL, HRM, FR and AMRI method to find out the best
solver method. Figure 1 is analyzed based on CPU times in seconds. The analysis was carried out to
estimate the duration needed to generate search direction with specific end goal to execute line search
and convergence test. Figure 1 showed that the performance of ISL utilizes a shortest time to converge
compared to HRM, FR and AMRI. Meanwhile, Figure 2 showed that our proposed method have a
better performance in term of number of iteration where it just consumed less number of iteration
loops as compared to HRM, FR and AMRI.

Based on the analysis, ISL is obviously better than the other experimental existing methods under
strong Wolfe–Powell line search in terms of number of iterations and CPU time. Overall, ISL method
shows that it performed well under inexact line search compared to the other existing methods.

5. Conclusion

This paper explores a new coefficient on conjugate gradient method solely to solve unconstrained
optimization problems with the assists from inexact line search. Based on this paper, we executed the
new method along with inexact line searches and compared with other methods. This new method
possesses the global convergence condition under the line search used. Numerical experiment results
show that our method is better under inexact line search, namely strong Wolfe–Powell line search
compared to the other method. For further study, we apply spectral on the ISL method under the
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strong Wolfe–Powell line search and form spectral conjugate gradient method. This method takes on
idea combining two methods which are, conjugate gradient method and spectral gradient method in a
certain way.
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Новий модифiкований метод спряженого градiєнта при сильному
лiнiйному пошуку Вульфа для розв’язання проблеми необмеженої

оптимiзацiї

Iшак М. I., Маржуги С. М., Джун Л. В.

Кафедра математики, Унiверситет Путра Малайзiя,

43400 Серданг, Селангор, Малайзiя

Метод спряженого градiєнта (СГ) добре вiдомий своєю ефективнiстю для вирiшення
проблем необмеженої оптимiзацiї через його збiжнi властивостi та низьку вартiсть
обчислень. На сьогоднiшнiй день цей метод широко розроблений, щоб конкурувати з
iснуючими методами за їх ефективностями. У цiй статтi пропонується модифiкацiя
методу СГ при сильному лiнiйному пошуку Вульфа. Новий коефiцiєнт СГ подано на
пiдставi iдеї використання деяких частин попереднiх iснуючих методiв СГ, щоб збе-
регти їхнi переваги. Чисельне тестування однозначно вказує на те, що запропонований
метод має кращу можливiсть для розв’язання необмеженої оптимiзацiї у порiвняннi
з iншими методами при неточному сильному лiнiйному пошуку Вулфа–Пауелла.

Ключовi слова: спряжений градiєнт, глобальна збiжнiсть, неточний лiнiйний

пощук, сильний лiнiйний пошук Вульфа–Пауелла, необмежена оптимiзацiя.
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