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This paper presents a numerical simulation in the two-dimensional for a system of PDE
governing drug transport in tumors with random coe Lciehts, which is described as a
random field. The continuous stochastic field is approximated by a finite number of random
variables via the Karhunen-Loéve expansion and transform the stochastic problem into a
determinate one with a parameter in high dimension. Then we apply a finite di[erence
scheme and the Euler-Maruyama Integrator in time. The Monte Carlo method is used to
compute corresponding simple averages. We compute the error estimate using the Central
Limits Theorem (CLT) and the error estimate for the finite dilerknce method. Some
numerical results are simulated to illustrate the theoretical analysis. We also propose a
comparison between the stochastic and determinate solving processes of our system where
we show the e Lciehcy of our adopted method.

Keywords: mathematical models of drug transport in tumors, Monte Carlo method, finite
di [erbnce method, uncertainty quantification.

2010 MSC: 93A30, 91G60, 65L12 DOI: 10.23939/mmc2022.03.567

1. Introduction

In the last two decades, there has been a large interest in the numerical analyses of the random and
stochastic di Lerkntial equations, due to the increasing need for modeling the uncertainties that arise in
many research domains. These uncertainties appear for various reasons, such as the lack of knowledge
on the properties of the environments, errors in the measurements, or the lack and insu Lciehcy of
measurements in the data, such as boundary conditions, model coe Lciehts, forcing terms, the geometry
of the medium, etc. Therefore, many methods have seen a lot of activity to increase the precision of
the numerical predictions and to obtain fairly reliable pre-visions on the model at hand. For example
Stochastic Galerkin method (see [1-3]), the Multilevel Monte Carlo method (see [4-6]) and Stochastic
Collocation method (see [7-9]).

Monte Carlo (MC) method or one of its variants is one of the most commonly used method,
because of its simplicity in implementation. Moreover it is suitable for parallelization. Using a spatial
discretization of the partial di [erkntial equations, given for example by a finite volume method, finite
di Lerknce method or a Galerkin finite elements method, they generate a set of independent identically
distributed approximations of the solutions by sampling the random coe [ciehts of the equation. Then
the sample averages of desired statistics can be computed through these approximations. The stochastic
Galerkin method is preferred if the noise is described by a small number of random parameters or if the
accuracy requirement is su Lciehtly strict; otherwise, an MC method still seems to be the best choice.

In this paper, we focus our study on the multi-compartment pharmacokinetics model, which is
capable of tracking the amount of drugs (Cisplatin) both spatially and temporally through the com-
partments. There are three compartments for Cisplatin corresponding to (1) Extracellular fluid/matrix,
(2) Cytosolic, and (3) DNA-bound drugs. The system of equations governing transport for Cisplatin
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takes the following form,

+
Bt = DsAS; — k 251 Ve Sz,
0S,
3t = Kk12VcS1 — k21S2 — KoSz — k23 Sy,
0S3
— = ky3S, — k3S3,
3t 2352 — K3S3

fori=1,2,3, Sj represents the drug concentration in compartment i. The term Dg is the di [udivity of
the drug through interstitial space, the parameters kjj represent a transfer rate from compartment i to
J. The primed rates kD appearing in the first equation are related to their unprimed counterparts via
k = kij/F, where F |s the extracellular fraction of the whole tissue, V. is the volume of a cell. The term
k. represents a rate of permanent removal from compartment i (more details can be found in [10-12]).
These parameters account for important phenomena, such as cell permeability, e Cuxlpumps, and DNA
repair. Their values are obtained through experimental data and are not known with certainty. An
e Lcieht and well-established way to deal with this problem is to adopt the probabilistic approach, i.e.,
consider these imputed parameters as random variables or stochastic processes rather than constants
or deterministic functions. Therefore, it is advantageous to consider the equations that describe such
models as stochastic rather than deterministic. And so, we aim in this note to analyze numerically
the above system of equations with random coe Lciehts in 2D using the Monte Carlo method as an
attempt to predict the influence of the so-called incertitudes on the system.

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical problem
and the main notations used throughout. In Section 3, we present the numerical method and analyze
the error. We illustrate the theoretical results by few numerical simulations in Section 4. Finally, we
make a conclusion to this work in Section 5.

2. The problem setting and notation

Let D be a convex bounded polygonal domain in R?, and let (Q, F, P) be a complete probability space.
Here Q is the set of outcomes, F is the g-algebra of events, and P: F - [0, 1] is a probability measure.
Consider the following stochastic system of equation governing transport for both drugs: find the
stochastic concentration Sj: D < (0,T) x Q — R for i = 1, 2, 3 such that P-almost everywhere in Q,
i.e., almost surely (a.s.) satisfy the following equations:

0S1 _ e M
aat - DS(X;y!o‘))Asl klZ(X1y1(‘O)S + VC( VY, (A))
S
0t2 = k12 (X, y, 0)Ve(X, Y, 0)S1 — (ka1 + ka + ka3)(X, Y, )S2, )
0S
a—t3 = kos(X, Y, 0)S2 — k3(X, Y, 0)Ss,

subject to random initial conditions

S1(X,y,t=0,0) = Sp1(X,y,w),

S2(X, Yy, t=0,0) = Sp2(X, Y, w), @3]

S3(X,y,t=0,w) = Sp3(X, Yy, ),
and boundary conditions

Si=0 on oD for i=1,2,3. 3)

Where Spj for i = 1,2,3 are some given functions. We assume that the parameters kij;, ku, ki, Ve
and Dg are all stochastic functions with continuous and bounded covariance function, to account for

uncertainties about the problem data. Our goal is to compute for any (t,w) [Jd, T] < Q the quantity
of interest (Qol):

Q(SHt,w) = Sj(x,y,t,w)dxdy for i=123.
D
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Using the Karhunen-Loéve (KL) expansion [13] for each parameter of our problem considered as
stationary random field with continuous covariance function. The solution corresponding to the system
of stochastic partial dilerkntial equation (1) can be described by just a finite number of random
variables, that is, Si(x,y,t,Z) = Si(X,y,t,Z1(w), Z2(w), ..., Zn(w)) where the random vector Z =
(Z1(w), Z2(w),...,ZNn(w)) has a joint probability density function p: ' - R that factorizes p(Z) =

wzl pn(Zn) for all Z T CRN with T =My x Mx,..., [N, Where I, is the bounded image set of
the random variables Z,(Q). Then we can rewrite our problem with an N-dimensional parameter as
follows:

951y yt:z) = 7Y — kO 7y 4 KBy, 2) .
aast X, y,t,Z) = Ds(X,y,Z)AS1(X, Y, ; Z) — K (X, ¥, Z2)S1(X,y, 4, Z) + Ve(x.y.2) So(x,y, 4, 2),
2

W(x,y,t; Z) = ki2(X, Y, Z)Ve(X, Y, Z)S1(X, Y, t; Z) — ko1 + ko +kog (X,Y,2Z)S2(%,y,t;2), (4

0S
6—:’(x,y,t; Z) = Koz(X,y¥,Z2)S2(x,y,t,Z) — ks(X,y,2)S3(X,y,t; Z),
subject to random initial conditions

S1(x,y,t=0;Z) = Sp1(X,y,2Z),
Sa2(x,y,t =0;Z) = Sp2(%,y, Z),
S3(x,y,t =0;Z) = Sp3(X,y, Z),

and boundary conditions
Si=0 on 0D for i=1,2,3.

3. Numerical method and error analysis

We consider the partition of space domain D and time interval [0, T] as a uniform grids

Xi=IAX, 1=0,1,...,Nxy+1,

yj =14y, 3J=0,1,...,Ny+1,

t"=nAt, n=0,1,...,N¢+1,
with Ax, Ay, and At are respectively the mesh sizes along the X, y directions and the time step size,
Nx, Ny, and Nt are three integers.

Denote by Sy'7;, Sy;j and Si7; the approximation of the extra-cellular concentration field
S1(t", xi,yj,Z), cytosolic concentration field So(t", x;,yj,Z), and the nuclear concentration field
S3(t", xi,yj, Z) respectively. We denote also ki3? = ki (xi,Vj,Z), kiJ? = ki(Xi,yj, Z), kj1? =
ki(i,Yj» Z), D& = Ds(xi,j, Z) and V¢I? = Ve(xi, yj, Z) for any fixed random vector Z.

For any fixed random vector Z, the explicit finite dilerence (FD) scheme for the system (4) is
defined as follows

n+lz _ mj,z 2 2 n,z At n,z n,z

Siij T = 1-At k" +Dd s+ Ay Sua T Dol e Stieri ~Siimy O

llj,z
i,j At n,z n,z k21 n,z
* Dé'J’ZAyz Suije 7T Suijm FALTES

C

Spiit = 1-at kol + kg il S) + Atk VIS, ®)

1z _ iz en, ijzan,
Sai; = 1—AOtkgh® S+ Atkl?S). (7

The boundary values for scheme (5)—(7) can be derived explicitly using boundary conditions as,
S0 = Skiwrij = Skio = s{j;ﬁ,\,yﬂ =0 for k=1,2,3.
The initial values ngf’j for k = 1,2, 3 are given as

Spti = Sok(Xi, Yi, Z).
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For grid functions M := {M;;, i =0,1,... ,Nx +1,J =0,1,...,Ny + 1}, we introduce the following
norm
Nx+1Ny+1 172

M Lelp)y = (Mij)*AxAy
i=0 j=0
Throughout the rest of this work, in particular for the theoretical analysis, we will assume that

the solution of the system (1)-(3) acquires the following regularity property: for any fixed random
vector Z,

S, it [0,T],C3(D) for k=1,2,3. (8)
Theorem 1. Let Z be a fixed random vector and
S,’Q:—{Sklj,lzo,l,...,Nx+1,j=O,1,...,Ny+1} for k=1,2,3 and n OO0 (9)

the solution of the FD scheme (5)—(7).
Suppose that the exact solutions Si1, S, and Sz satisfy the regularity property (8). For any 0 [
i CNL +1and 0 CJICNI, + 1, if we assume the following inequalities to hold true

2 - -
kzvl'.,’zz + 208k [? LA,

c

: . e 2
1— At K7 + k2 + k7 ° 4 gar?

2 2 2
@j, 2 2 At ijz At ij.zy iz 2
1—At kig? + DLz NN +8 D'JZAX2 + 16 D;JZA—yZ + 2 Atkydv e

1— Atkliz 2 E]EJ At I:%

Then, for any fixed T > 0 there exists a positive constant Ct independent on Ax, Ay and At such

that

3 ) 172
ny _ ch
max Sk(t") — Sy 12(D)

k=1

[CF At+AX2 + Ay?

Proof. Let
LT,i,j == Sl(tn,xi,)/j,z) S:[l|zjy Lg,i,j = SZ(tn’thj!Z) - Sgyyizdﬂ Lgl,i,j = 53(tn’xi’yj’z) - Sg,]zd
Subtracting (5)-(7) from three equations of (1), we obtain the following error equations

1 lilj,z 2 2 At
Liij = 1—-At k" —Dgl”? et Ay? n:; + D&k ZA 5 Lliv1j —LTic1
Eﬂjz
NEVAN
"'DQ'J’ZA—yg LTij+1— LTij—1 +AtV|JzL2|j+AtTllj’

Lol = 1-at kl? +igh +il? LDy + Atk VALY + A,
Lot} = 1-Atkg?? LY + Atk ?LE,  + Aty

Where 11 ;, 17 j and 13 ; are the truncation errors which can be written as

At 0%S AX? 0%S Ay? 9*S

T{],i,j - 2 atzl(al I’luxlvyjlz) 4| aX4l(tn B.,yj, )_ —)( l(tn X|,VJ,Z)
At 0%S

T2n,|,j - 2 atZ(az n’thj,Z)

At 02 S3
3ij = > e (az,n, Xi, Yj, 2).
Where t" [Caj,, LI for | [f1,2,3}, xi CRil CXilq and yj [yl Cyjle1. Notice that
t 6251 + AX2 6481 + Ay2 6451

n 2 2
IT2i e TR v TRl v M At + Ax° + Ay

(oo} (oo}
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t 0282
1351 é T [M At + Ax? + Ay?

oo

t 0%S
I3l 5 lé "S5 At + AX? + Ay?

ot _
With
Mommp L 051 10%; 10% 1 0d%s 1 9%
' 2 or _'2 o _'2 ot _'4 oxt 4l oyt
We have
i i 2 2 At
LI EO= At da* + D 25+ 1 LI+ D LTl + ILDia
i,j.z At EI.J ‘ n n
+ Dy Ay? ILTijeal + LT j—a] + At .Jz Lyij + At (10)
C
Squaring both sides of the inequality (10) and by means of the inequality (a +b)? [2(b? + b?)
2 2 2 N
ILTT5P 201 - At kizh? + D= m"‘A—yz L?,ij +38 D'JZAXZ ILE i+ LT 517
|zAtz n 2 n 2 2k£ﬂ'1j,22n 2 21N |2
+16 DM Ay ILT i jal® + LT joal? + 164t VE: Lyij ~+ A%, (1)
Cc
Similarly,
ILOTH? 201 — At kb + kP + kgl |L2,J|2+4At2 K2V HZRILD s 2+ an 1 0 (12)
and
L0t ? C2m— Atk PILY 2+ 4n kgl 2 LD P ane oy 2 (13)

Adding up the inequalities (11), (12), and (13) then multiplying by AxAy and summing up on {i, j} [
[1,....Nx] ><[1,...,Ny], we get

2
I:I]-l |2(D) + Lg 12(D) + L3 |2(D)

2 2 2
+ At T{] |2(D)+ T2 |2(D)+ T?? 12(D) ° (14)

where the hypothesis of the theorem has been used. The inequality (14) and the estimates of truncation
errors conclude the proof. —

Given a number of realization M, we can compute discretization solution S;n at(Z(0m)) for
eachm =1,2,...,M and i = 1,2,3, by the scheme (5)-(7). Then we can compute the empirical
mean and variance estimators by the Monte Carlo method Em(Sinhat) = ﬁ mzl Sinat(Z(m)),
EMQGinad) = @& me QSinatlZ©m), VarmSina) = g e [SinalZ©m) —
Em(Sinadl? and Varm (Q(Sina) = g me1Q(Sina)(Z(@m)) — Em(Q(Sinan)I? to approxi-
mate respectively E(S;), E(Q(Si)), Var(S;) and Var(Q(Si)).

In the rest of this section, we fixed the time at t = T. Using the triangular inequality the compu-
tational error is then separated into two parts:

Ll’l+l 2

n+l 2
12(D) + L3

n+l 2
+ L 12(D)

12(D)

M
E Q@) — - QSinar Z(Om) B QSHZ) —E QSinad@)
m=1 . M
+ EQGinad@) =y QSinat Z(Wm)
m=1

= &nhat + &s,

where the size of the spatial and temporal discretization h := (Ax, Ay) and At controls the discretiza-
tion error &, A While the number of realizations M of S; h at controls the statistical error &s.
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3.1. Discretization error

Since the measure of D is assumed to be finite, there are C; and C, positive constants such that:
Cld ey CC1EIM ) CC Clelp), (15)
using this inequality we have any Z [Tl

Qi) — QGina)(Z) = S Si(x,y, T,Z) = Sinat(X,y, T,Z) dxdy
C Si(x,y, T,Z) = Sinat(X,y,T,Z) dxdy
D

LCh Si(T,Z) = SinadlT.2) ooy
by the inequality (15) together with Theorem1

&h.at = |[E(Q(Si)(Z)) — E(Q(Sinan)(2)I
= |E(Q(Si(Z) — Q(Sinan(2))|
CCHISi(T, Z) = Sihat(T, 2)llizp)
CCICr (At + AX? + Ay?).

3.2. The statistical error

To analyze the statistics error, we first recall the following theorem for its reasonable use in our
demonstration.
Theorem 2 (CLT). Assume &, k=1,2,... are i.i.d and E(&) =0, E(E,E) =1 then

M

J< rx (16)
k=1 M

where A is N(0,1) and [_dehotes the weak convergence; that is, the convergence (16) means that the
following limit holds as M - +co:

M

E g N TN (17)
k=1 M
for all bounded and continuous function g.
Proof. See [14], page 23. (-
We have fori =1,2,3
1 M
M) = E QGinad(@) = Q Sinat Z(¥m)
m=1
1 M
=M E QGSina)(Z) —Q Sinat Z(wm)

m=1

then E({s(M)) = 0 and Var(¢s(M)) = %Var(Q(Si,h,At)) and we can estimate

Var(Q(Sin.at) = E(Q(Sin.at)?)
2

=E Sihat(X,y, T,Z)dxdy
D
[CFE [S]naciio
2
[CF Sinat L3(rL2(D))
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2
1 [S] I:|_ip(r,|_2(|:))) + [S] — Si,h,At I:|2%(r’|_2(|:)))
C2C} 151G ooy + C5 At+Ax"+Ay* °

< +o0,
where I:S:”Db(r;LZ(D)) = r [SIZ)L‘.Z_J(D)p(z)dz 2 \We conclude that
Var &(M) If% -0, M 5 +oo, (18)

with the constant C uniformly bounded with respect to At, Ax, and Ay. Since Var(Q(Si hat)(Z)) [CC]
by this result and using the Chebyshev inequality we have for any given € > 0:

r&(M))
P [&(M)| > € éaT lé

Let Y = Q(Siatn)(Z), Yj = Q@Siath)(Z(wj)), Yj, J = 1,2,3,... be i.i.d random variable with
M= E(Yj) < +oo and 0 := Var(Yj) < +oo. We have
M M
1 Y — E(Y
sM)= = Y —E(v) = SO
M o M
j=1 j=1

let §; = (Y; —Ww)/o, then ¢, j =1,2,3,..., are i.i.d, and E({j) =0, E(ij) = 1. Then by Theorem 2,

v_ v Moy v
ME&M)= M Yi —E(Y)
] M
j=1
M
= YigEM)
=1 M
M
= N
=1 M
M
_ S s
L M
j=1
Moz
= V2L [CaN
=1 M
where A is N (0, 1), ij/sing this result and the Central Limits Theorem (CLT), that is
Mé&s(M
P % [CC) =P(A CCH) B 2¢(Cp)—1, as M B +oo,
with ¢(x) = :.% X _e7¥/2dt. We can write the statistical error for i = 1,2,3 as
1 M o)
GM)= EQeinad@ — 1 Qinad Zon) T
m=1
where exact variance o is in practice approximated by the sample variance
M M 2
A 1 Ym
= __ Y _m 19
M . ] B M ] ( )
j=1 m=1

thus we have the following (CLT) error bounded
0
(M) T

where Cg is an appropriate constant.
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4. Results and discussion

To justify our theoretical analysis and show the e [ciehcy of the proposed method, we will perform
in this section two numerical tests with the deterministic initial condition, Sp1(X,y) = 0.05kg/m?,
So2(X,y) = 0.05kg/m® and Sg3(x,y) = 0.05kg/m?3, the parameters ki, ko1, ki3, k51, Kz, k3, V¢ and
Dg are chosen as follow:

Ve(X,y,Z) =520 - 107° + 107" - sin((Zy + Z; + Z3)X — (Z4 + Zs + Ze)Y)|,
Ki2(X,y,Z) =[1.48 = 0.1 -sin((Zy + Z2 + Z3)X — (Z4 + Zs + Zg)y),
KS(X, Y, Z) = kiz(X,y, Z)/0.48,
ko1(X,y,Z) =[0.071 + 0.1 - cos((Z1 + Z» + Z3)X — (Z4 + Zs + Zp)y)|,
K51 (X, Y, Z) = ka1(X,y, Z)/0.48,
ko(X,y,Z) =|1.55+ 0.5 sin((Z1 + Z» + Z3)X + 2(Z4 + Z5 + Zg)y)|,
koz(X,y,Z) = [11.8 + 0.1 - sin((Zy + Zo + Z3)X — 2(Z4 + Zs + Zg)Y)|,
ka(X,y,Z) =10.95+0.2-sin((Z1 + Zo + Z3)X — (Z4 + Zs + Zs)y)|,
Ds(X,y, Z) = [0.003 + 1072 - sin((Z1 + Zz + Zg)Xx — (Zs + Zs + Zg)y)\,
where (X,y) D = [0,1] < [0,1] and Zx (0 [KILB) is a uniform independent random variable on
[0,1]. To guarantee the hypotheses of theorem 1 and the stability of the FD scheme applied to our

system of equation (4), we use the partition size in x and y direction h = Ax = Ay = 0.01 and we set
the time partition At = 10~2h.

4.1. Test 1

In this part, the influence of the number of realizations M is discussed. We define the random variables
X, fori=1,2 and 3 by

X =Q(Si) Z(m) = Si XY, T,Z(wm) dxdy,
D

for each realization m we calculate X! using the same scheme (Simpson, etc.), the series
{X%}{mﬂlzygm,\ﬂ} is independently and identically distributed.

We denote by [ and 62 the corresponding expectation and variance respectively. By the Central
Limit Theorem :

1 M i 0 z
= X —_
P —z[M M1 s e %2dt, z [R and i=123.
GZ/M AL —7
The confidence interval of the expectation p at the level 1 —p is given by:
1 M 1 M =
11(M), I,(M) = M X — Zp 62/M,m X +zp 02/M  for i=1,23,
where the unknown variance 62 is approximated as in (19) by:
M M oi 2
_ - 1 ; X}
2 M iy .— i m
=Var''(X') = — Xi— —n
o Y=g ¢ YL
j=1 m=1

and z, is such that L f'; e 2t = 1 — p. If we choose 95% the confidence level, which corre-
sponds to zg o5 = 1.96; then we obtain the foIIowmg result in Figure 1 in which the confidence interval
[1.(M), 1,(M)] and the average Ep (X') := M m:1 X! are plotted as function of M.

In Figure 1 it is clear that if we chose the number of realization M larger enough the confidence
interval begin small enough as shown in the left hand of the figure, in right hand the first 100 realization

is shown for three-compartment concentration of drug.
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Fig. 1.

Next, to check the convergence of the proposed method, we solve the following system

3S; Kz

ot = DeASI kS S +hy,

dS

a—t2 = Kk12VcS1 — ko1S2 — koSy — ko3S, + hy,
0S3

2 =k —k +h

ot 2352 353 3

where the functions h{, hy, and hs are the added source terms used to construct exact solutions. The
exact solutions are given by

S1(x,y,t,Z) = xy(1 —=x)(1 —y)exp Ds+ (kip +K5)(x,y,Z) exp (—Ve(x,y,Z)t),
S2(X, Y, 1, Z) = xy(1 = x)(1 —y) exp ((ki2Ve — ka1 — k2)(X, Yy, Z)) exp (—ka3(X,y, Z)1)
Ss(X,y,t,Z) = xy(1 = x)(1 —y)exp (kaz(X,y, Z) + X +y) exp (—Ks(X,y, Z)t),

the error for the mean and the variance of the solution for diLerkent values of number realization M

and di[erent values of the parameter of the dilerknce scheme Ax and Ay are given in the following
tables.

First, we consider the case where M = 100 with di [Lerknt values of Ax and Ay.

Table 1. The error at time T = 1 (h).

mesh (Ax = Ay) 1/10 17100 171000
IE(Q(S1)) —E(Q(S!)|  0.951205 0.901005  0.894203
[Var(Q(S1)) — Var(Q(Sh))| 0.914287 0.900119  0.863578
IE(Q(S2)) —E(Q(S!)|  0.967211 0.920312  0.900531
[Var(Q(Sz)) — Var(Q(S9))| 0.898208  0.880701  0.810739
IE(Q(S3)) —E(Q(S!))|  0.971215  0.948019  0.902060
[Var(Q(S3)) — Var(Q(SD))| 0.911235 0.8891508 0.811951

Next, we consider the case where M = 1000 with di [erent values of Ax and Ay.
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Table 2. The error at time T = 1 (h).

mesh (Ax = Ay) 1710 17100 1/1000

IE(Q(S1)) —E(Q(SM))|  0.856082 0.414461 0.116250
IVar(Q(S1)) — Var(Q(Sh))| 0.822850 0.411057  0.112267
IE(Q(S2)) —E(Q(S))|  0.870497 0.423345 0.118076
IVar(Q(S,)) — Var(Q(Sh))| 0.808386 0.405129  0.105494
IE(Q(S3)) — E(Q(S}))|  0.873991 0.436080 0.117274
[Var(Q(Ss)) — Var(Q(S))| 0.820115 0.409016 0.106553

Finally, the result for the case where M = 10000 with diLerknt values of Ax and Ay.

Table 3. The error at time T =1 (h).

mesh (Ax = Ay) 1/10 17100  1/1000

IE(Q(S1)) —E(Q(SI))|  0.214023 0.065591 0.007871
[Var(Q(S1)) — Var(Q(S)| 0.205718 0.065225  0.007653
IE(Q(S2)) —E(Q(S))|  0.217662 0.066573 0.008016
[Var(Q(S2)) — Var(Q(SP))| 0.202178 0.064567  0.007759
IE(Q(S3)) —E(Q(S}))|  0.218451 0.067973  0.008164
[Var(Q(S3)) — Var(Q(SI))| 0.209013 0.064995 0.007813

These results allow us to conclude that the estimated approximation errors decreases exponentially

as the partition size decreases and the number of realization M non-decreasing, which confirms our
theoretical result.

4.2. Test 2

Now, we will try to solve our problem using two diLerknt sets of determinate parameters presented in
Table 4 and we compared it with the obtained result by the proposed method as illustrated in Figure 2.

Table 4. Valued of parameter for Cisplatin (from Sinek et al., Troger et al.,
Lavasseur et al. and associated references).

— Case 1 Case 2
Parameter Description
value reference value reference

Ve Cell volume (fL cell™%) 520 Sinek et al. [11] 520 Sinek et al. [11]
F Interstitial Fraction 0.48 — 0.48 —

Ds Drug di [divity (um?min™1) | 30E3 — 30E3 —

ko Inactivation rate (min~?!) 1.7 — 1.7 —

P Drug uptake (min™1) 0.043 | Troger et al. [15] | 0.00545 | Lavasseur et al. [16]
Kot Drug e [uxI(min™1) 0.00197 — 0.0004 —

ko3 Drug-DNA binding (min~!) | 0.00337 — 0.06242 —

k3 Drug-DNA repair (min™%) | 0.00785 — 0.02402 —

The value of ki, and ky; are obtained using the formula kjj = kij/F for i,j [{1,2}.

As shown in Figure 2 the behavior variation’s of Cisplatin concentration in three compartments
with respect to time-variable for two determinate cases in Table 4 the best-fit parameters are not
reasonable which is seen from the non-accuracy of the obtained results. To overcome this issue, we
have considered the stochastic version of the problem, then we manipulated Monte Carlo method;
which gives us the result represented in Figure 2.
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Fig. 2. Comparison of the stochastic and the determinate results. The concentration-versus—time curve for

Cisplatin. The curves represent the concentration of Cisplatin using the Monte Carlo method with M = 10°

(blue) and the parameters are given in case 1 (red) and case 2 (yellow) of Table 4.

5. Conclusion

In this work, we have used Karhunen-Loéve expansion of the coe [ciehts for a system of PDE governing
drug transport in tumors. We transform the initial stochastic problem into a deterministic one albeit
with the parameter in high dimensions. We design finite di Lerknce method in the physical space, which
is e Lcieht and has reasonable accuracy, and we use Monte Carlo method in random space. Moreover,
we established the error estimate using the Central Limits Theorem as well as the error estimate
for space discretization by finite dilerence method. Some numerical simulations are illustrated the
theoretical analysis where we also compared the stochastic and determinate solving processes. Finally,
it is worth mentioning that this proposed method can be used to quantifying the uncertainty of similar
problems.
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KinbkKicHa oLjiHKa HeBU3HAUYEHOCTI MaTeMaTu4Hoi mogeni
TPaHCNOPTYBaHHA NIKiB y NMyX/INHAX

EccappyT C.1, Maxani 3.1, Parai1 C.?

LYHisepcuTeT 16H 30p,
Kahefpa HayKoBUX obumcneHb, Aragip, Mapokko
2YHisepcuTeT Kagi Alisig, kadegpa MaTeMaTUKK,
MappakeLu, Mapokko

Y Uili po6oTi NpeACTaBNEHO YMCE/TbHE MOAE/HOBAHHS B ABOBMMIPHOMY PEXKUMI A1 CUCTEMU
AndhepeHLiaNibHNX Y YaCTUHHUX NOXiAHUX, L0 Perysoe TPaHCNOPTyBaHHA NiKiB Yy NyXiu-
HaxX i3 BUNagKoBnMKM KoedpiLlieHTamu, L0 OMMCYETLCA SIK BUNagKoBe nose. HenepepsHe cTo-
XaCTUYHe MoJIe anpPOKCMMYETBLCS CKIHYEHHOK KiNbKICTHO BUMagKOBMX BE/IMYMH 3a 4OMOMO-
roto posknagaHHsa KapxyHeHa—/1oeBa i NepeTBOPHOE CTOXaCTUYHY 3aady B AeTEPMiHOBaHY
3 NapaMeTpoOM BEe/IMKOT BUMIPHOCTI. IMicns Ub0Oro 3aCTOCOBYEMO CKiHUEHHY Pi3HULEBY CXe-
My Ta iHTerpaTop Ennepa—Mapysmu B yaci. MeTtog MoHTe-Kapnio BUKOPUCTOBYETbLCA A/
064UMCNIEHHS BIANOBIAHNX NPOCTMX cepefHiX. O6UMUCNIOEMO OLIHKY MOXUOKU, BUKOPUCTOBY-
H0YM LEHTPa/IbHY FPaHNYHy TEOpPeMY Ta OLiHKY MOXMOKM A1 METOAY CKIHYEHHMX Pi3HNLb.
[esaki uncnosi pesynbTaTy CUMYNIOIOTLCA A1 iN0CTpaLil TeOPeTUUHOro aHanizy. Takox
NPOMNOHYEMO MOPIBHAHHSA MiXK CTOXaCTUYHUM i AeTePMiHOBaHMM MPOLIECaMK PO3B’SA3yBaHHS
HaLOT cMCTeMW, Ae NOKa3yeMO eqDEKTUBHICTb MPUIAHATOrO HaMn MeToAy.

KniouoBi cnosa: mMaTeMaTWU4YHI Mogeni TpaHCNopTy MiKiB Yy NyxInMHax, MeToj
MoHTe-Kapno, MeT0/ CKIHYEHHUX Pi3HULb, KiflbKiCHA OLiHKa HEBU3HAYEHOCT .
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