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This paper presents a numerical simulation in the two-dimensional for a system of PDE
governing drug transport in tumors with random coefficients, which is described as a
random field. The continuous stochastic field is approximated by a finite number of random
variables via the Karhunen—Logve expansion and transform the stochastic problem into a
determinate one with a parameter in high dimension. Then we apply a finite difference
scheme and the Euler—-Maruyama Integrator in time. The Monte Carlo method is used to
compute corresponding simple averages. We compute the error estimate using the Central
Limits Theorem (CLT) and the error estimate for the finite difference method. Some
numerical results are simulated to illustrate the theoretical analysis. We also propose a
comparison between the stochastic and determinate solving processes of our system where
we show the efficiency of our adopted method.

Keywords: mathematical models of drug transport in tumors, Monte Carlo method, finite
difference method, uncertainty quantification.

2010 MSC: 93A30, 91G60, 65L12 DOI: 10.23939/mmc2022.03.567

1. Introduction

In the last two decades, there has been a large interest in the numerical analyses of the random and
stochastic differential equations, due to the increasing need for modeling the uncertainties that arise in
many research domains. These uncertainties appear for various reasons, such as the lack of knowledge
on the properties of the environments, errors in the measurements, or the lack and insufficiency of
measurements in the data, such as boundary conditions, model coefficients, forcing terms, the geometry
of the medium, etc. Therefore, many methods have seen a lot of activity to increase the precision of
the numerical predictions and to obtain fairly reliable pre-visions on the model at hand. For example
Stochastic Galerkin method (see [1-3]), the Multilevel Monte Carlo method (see [4-6]) and Stochastic
Collocation method (see [7-9]).

Monte Carlo (MC) method or one of its variants is one of the most commonly used method,
because of its simplicity in implementation. Moreover it is suitable for parallelization. Using a spatial
discretization of the partial differential equations, given for example by a finite volume method, finite
difference method or a Galerkin finite elements method, they generate a set of independent identically
distributed approximations of the solutions by sampling the random coefficients of the equation. Then
the sample averages of desired statistics can be computed through these approximations. The stochastic
Galerkin method is preferred if the noise is described by a small number of random parameters or if the
accuracy requirement is sufficiently strict; otherwise, an MC method still seems to be the best choice.

In this paper, we focus our study on the multi-compartment pharmacokinetics model, which is
capable of tracking the amount of drugs (Cisplatin) both spatially and temporally through the com-
partments. There are three compartments for Cisplatin corresponding to (1) Extracellular fluid /matrix,
(2) Cytosolic, and (3) DNA-bound drugs. The system of equations governing transport for Cisplatin
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568 Essarrout S., Mahani Z., Raghay S.

takes the following form,

a5, k)

W = D,AS] — 3251 + %527

a8

8—; = ]{712‘/051 — ]{72152 - ]{7252 - k23527
0853

T k93 Sa — k3S3,

for i = 1,2,3, S; represents the drug concentration in compartment ¢. The term D; is the diffusivity of
the drug through interstitial space, the parameters k;; represent a transfer rate from compartment ¢ to
7. The primed rates k:gj appearing in the first equation are related to their unprimed counterparts via
k! ;= kij/F', where F is the extracellular fraction of the whole tissue, V is the volume of a cell. The term
k; represents a rate of permanent removal from compartment i (more details can be found in [10-12]).
These parameters account for important phenomena, such as cell permeability, eflux pumps, and DNA
repair. Their values are obtained through experimental data and are not known with certainty. An
efficient and well-established way to deal with this problem is to adopt the probabilistic approach, i.e.,
consider these imputed parameters as random variables or stochastic processes rather than constants
or deterministic functions. Therefore, it is advantageous to consider the equations that describe such
models as stochastic rather than deterministic. And so, we aim in this note to analyze numerically
the above system of equations with random coefficients in 2D using the Monte Carlo method as an
attempt to predict the influence of the so-called incertitudes on the system.

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical problem
and the main notations used throughout. In Section 3, we present the numerical method and analyze
the error. We illustrate the theoretical results by few numerical simulations in Section 4. Finally, we
make a conclusion to this work in Section 5.

2. The problem setting and notation

Let D be a convex bounded polygonal domain in R?, and let (Q, ,P) be a complete probability space.
Here ) is the set of outcomes, § is the o-algebra of events, and P: § — [0, 1] is a probability measure.
Consider the following stochastic system of equation governing transport for both drugs: find the
stochastic concentration S;: D x (0,7) x @ — R for i = 1,2,3 such that P-almost everywhere in €2,
i.e., almost surely (a.s.) satisfy the following equations:

851 B ’ kél(ajayaw)

aast = Ds(2,y,w)AS1 — k(2. y,w) 51 + Vo, yow) Y

8—152 = ko, y, w)Ve(x,y,w)S1 — (k21 + k2 + ko3)(, y, w)S2, (1)
oS

a—tg = k23(x7y7W)52 - k3(£7y7w)537

subject to random initial conditions

Si(z,y,t =0,w) = So1(x,y,w),

So(z,y,t = 0,w) = Sp2(x,y,w), (2)

Ss(x,y,t = 0,w) = Sps(z,y,w),
and boundary conditions

S;=0 on 0D for i=1,2,3. (3)

Where Sp; for i = 1,2,3 are some given functions. We assume that the parameters k;;, k:z’-j, ki, Ve
and D; are all stochastic functions with continuous and bounded covariance function, to account for

uncertainties about the problem data. Our goal is to compute for any (¢,w) € [0,7] x © the quantity
of interest (Qol):

Q(S;)(t,w) ::/ Si(z,y,t,w)dedy for i=1,23.
D
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Using the Karhunen—Loeve (KL) expansion [13] for each parameter of our problem considered as
stationary random field with continuous covariance function. The solution corresponding to the system
of stochastic partial differential equation (1) can be described by just a finite number of random
variables, that is, S;(z,y,t,Z) = Si(z,y,t, Z1(w), Z2(w), ..., Zn(w)) where the random vector Z =
(Z1(w), Z2(w), ..., Zn(w)) has a joint probability density function p: I' — R4 that factorizes p(Z) =
ngl pn(Zy) for all Z € T' € RN with I' = I'; x I'yx,...,I'y, where T',, is the bounded image set of
the random variables Z,(€2). Then we can rewrite our problem with an N-dimensional parameter as
follows:

851 . _ . / . kél(‘rvyaz) .

aaé (‘Tayata Z) - Ds(xuyuz)Asl(x7y7t7 Z) k12($7% Z)Sl(xayata Z) + V;(-Z',y, Z) 52($7y7t7 Z)7
8t2 (:E Y, t; Z) - k12($ y,Z)Vc(x,y, Z)Sl(x,y,tZ) - (k21 + k2 + k‘gg)(ﬂf,y, Z)SQ(:Evyvta Z)7 (4)
oS

8t3 (‘T yat Z) - k23($ Y, )52(%%75; Z) - k3(x7yaz)s3(x7y7t; Z)a

subject to random initial conditions

Sl($7y7t:07z) :SOI(:Evva)v
52($7y7t = 07Z) = 502($7y7Z)7
S3(%?Jat = Ovz) = 503(‘T7y7Z)7

and boundary conditions

S;i=0 on 9D for i=1,23.

3. Numerical method and error analysis

We consider the partition of space domain D and time interval [0, 7] as a uniform grids

x;=1Ax, 1=0,1,..., N+ 1,

y; =JjAy, j=0,1,....,N,+1,

"=nAt, n=0,1,...,Ny+1,
with Az, Ay, and At are respectively the mesh sizes along the x, y directions and the time step size,
N, Ny, and N; are three integers.
Denote by S77 i SZ fj and S;z ’Z-Z’j the approximation of the extra-cellular concentration field
S1(t", x4, 4, Z), cytosolic concentration field S»(t",x;,y;j,7Z), and the nuclear concentration field
S3(t", x;,y4, Z) respectively. We denote also k;;jz = k. (zi,v5,2), kli];j’z = ki(zi, v, Z), kli’j’z =
ki(xi,y5, Z), D* = Dy(x4,y4,Z) and Vi = Ve(w4,y4, Z) for any fixed random vector Z.

For any fixed random vector Z, the explicit finite difference (FD) scheme for the system (4) is

defined as follows

2 2 At
Si—itjl"z = < — At <k7/m * + Dw ” <Aa:2 + Ay2>>> SLZJ + Dm Zsz (SIL,’;—!—IJ o SIL,?—LJ’) (5)

At n,z n,z kll’] ” n,2
+ Db ZA 2 <51,z’,j+1 - 5171'73'—1) + At-2 Vi 2
S;::Jl * = ( — At <k27j ” + kQJ ” + k27] Z)) ngzj + At k2172] Z‘/Z’] 25?1237 (6)
Sty = (1= Ay ) sy + Atk (7)

The boundary values for scheme (5)—(7) can be derived explicitly using boundary conditions as,
n,z _ n,z _ n,z n,z _ _

Sk,o,j = Sk,Nz+1,j = Sk,i,o = Sk7i7Ny+1 =0 for k=1,2,3.
The initial values Sg’fj for k =1,2,3 are given as

0,
Sk ZZ] = SOk($i7yi7 Z)
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For grid functions M := {M; ;,i =0,1,..., N, + 1,7 =0,1,..., Ny + 1}, we introduce the following

norm
Ng+1 Ny+1 1/2
Ml = (S Y 0nyaeay)

=0 j5=0

Throughout the rest of this work, in particular for the theoretical analysis, we will assume that
the solution of the system (1)—(3) acquires the following regularity property: for any fixed random
vector Z,

S, € C' ([0,7],C*(D)) for k=1,2,3. (8)
Theorem 1. Let Z be a fixed random vector and

S,?::{Szfj,izo,l,...,Nx—i—l,j:O,l,...,Ny—i—l} for k=1,2,3 and n=0 (9)

the solution of the FD scheme (5)—(7).
Suppose that the exact solutions S1, So and Ss satisfy the regularity property (8). For any 0 <
i < Ny+1and 0<j <N, +1, if we assume the fol]owing inequalities to hold true

2 / . .
1— At(k5)% + k577 + k57) | + 8At? le.’.j’z +2A82 kS < 1/2
VZ7.]7Z ’
Cc
2 2 \\|° ia At s At a2 1
/27-]2 7 1 1 Z7J7Z W
oot (e ) oo 5 el ] s
Atk P <t arc L
2 16

Then, for any fixed T' > 0 there exists a positive constant Cr independent on Ax, Ay and At such
that

3 1/2
ma, (k) Sty ) < Or(ars act+ ap)
k=1

OéngNT

Proof. Let
L?,i,j :Sl(t",:ni,yj,Z) _S?,Zj? Lg,i,j = Sg(t",xi,yj,Z) —S;’;j, g,i,j = Sg(t",xi,yj,Z) —ng]
Subtracting (5)—(7) from three equations of (1), we obtain the following error equations

(2 2 At
nal ,J5% 1,7,2 )% T
o = (1- a0 (45" - 245 (G + 2z ) ) M+ 0 By = B

At ki
©,7,2 n n
+D] A 2( 1i,j+1 17i7j_1)+AtVZjZ 2ZJ+Atleg7
L) = (1= At (K77 + K5 + k%) ) L3, + ALKTVIILY,  + Aty .
Lgﬁ (1— Atky?) 32]+Atsz hij+ Aty .

Where 77, o Ty j and 73, ; are the truncation errors which can be written as
7. 7. bAS?

At 6251 A:E2 8451 Ay2 6451

n

Tl,i,j:7W(al,mxiayjyz)_ T (t", Bisyj, 2) — — 1 o (t", 2,74, 2),
" At 025,

T2 = 77(@2%%7%‘,2)7

n At 8253

T35 = TW(alrnxiayﬁz)'
Where t" < g, < <t for 1 € {1,2,3}, 2; < B; < w441 and y; < vj < ¥Yj+1- Notice that
At "6251 Ax? 8451 6451

il < 5 || 5 4 || ozt 41 || oyt

< M (At + Az® + Ay?),

[e.e] o0
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At || 928
LESFIRS 7“ 8t22 < M (At + Az® + Ay?),
At || 9%
‘7'371'73" B 7 ‘ 8—1523 < M(At+ sz + Ayz)
Moe e d L][2250 ) 0*Ss||  L||9'Si|| 1 |[o's,
o 2o || 2 o || A || axt || Al oyt || S
We have
n 1,7,2 1,7,2 2 At n
L < ‘1—At <kua L pid (sz . 2))‘; il 4 Dary (I gl + 122, )
DWZ—At L LY A klwz Ly At|r{ 10
+ Ag? (LY il + 1LY 1) + At ”Z| i + At Sl (10)

Squaring both sides of the inequality (10) and by means of the inequality (a + b)? < 2(a® + b?)

2 2 At
+1)2 14,3,% ,
|L?,i,j| <2 ‘1—At<k‘ + Dz]z( y2>>

|L} z,]| +8 (DWZA > (IL7 z+1,]|2 + |L?,i—1,j|2)
1,5,2 T At ? 2 n 2
+16 | Dy A (|L1,z,j+1| + L7 -1l %) +16At

/7,,] ¥4

2
L5 5" + Al 42 (11)

Vz 72
Similarly,

2 .. ..
Ly 51* + 4At2|k’1§*zvgw\2yL?,i,j\2 + 4At2|7'2"’2-’j‘2 (12)

L3P <2 ‘1 — AL(kSDF + k57 + ky))

and

L5 P <2t — Atk RILE |+ aae kb P Ly, P+ aa8 |, (13)

Adding up the inequalities (11), (12), and (13) then multiplying by Ax Ay and summing up on {i,j} €

[1,...,Ng] x[1,...,Ny], we get
n+1](2 2 n+112 nl2 nl2 nl2
L3 2y + (123 o) FIEE e py < LTy + 11£8 2oy + 12512
n|2 n||2 n|2

+ At (|| Hl2(D) + |7 Hﬂ(D) +||7 HIZ(D))’ (14)

where the hypothesis of the theorem has been used. The inequality (14) and the estimates of truncation

errors conclude the proof. ]

Given a number of realization M, we can compute discretization solution S;j at(Z(wm,)) for

each m = 1,2,..., M and i = 1,2,3, by the scheme (5)—(7). Then we can compute the empirical
mean and variance estimators by the Monte Carlo method En(S;nAt) = % Zn]\fle Sinat(Z(wm)),

Ev(@Q(Sinat) = 1M  Q(SinaiZ(wn), Varm(Sinar) = 1w [Sinai(Z(wn)) —
En(Sinan)? and Vara (Q(Sinar) = 47 ey [Q(Sin a0 (Z(wm)) — Ex(Q(Sinar))? to approxi-
mate respectively E(S;), E(Q(S;)), Var(S;) and Var(Q(S;)).

In the rest of this section, we fixed the time at t = T". Using the triangular inequality the compu-
tational error is then separated into two parts:

M
E(Q(S:)(Z)) — % > Q(Sinar) (Z(wm))
m=1

<|E(Q(S)(2)) —E(Q(Sina)(2))]

+ [E(Q(Sinat)(Z

= &n,at + s,

where the size of the spatial and temporal discretization h := (Az, Ay) and At controls the discretiza-
tion error &, A while the number of realizations M of S; j a; controls the statistical error .

z hAt Wm))

M:

m=1
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3.1. Discretization error

Since the measure of D is assumed to be finite, there are Cy and Cs positive constants such that:

|- 1lzrpy < Cill - lz2py < Coll - [li2(py

using this inequality we have any Z € I':

|Q(Si)(Z) — Q(Si7h,At)(Z)| = ‘/D (S,-(x,y,T, Z) = Sinaclz,y, T, Z))da: dy

g/ |Si($7y7T7 Z) _Si,h,At(x7y7T7 Z)|d$dy
D

< Co||SiT, Z) = Sinae(T, Z) Hl2(D
by the inequality (15) together with Theorem 1
Enat = E(Q(Si)(Z)) — E(Q(Sin,at)(2))]
= [E(Q(S:)(Z) — Q(Sinat)(2))]
Col|Si(T, Z) = Sinai(T, Z)i2(p)

<
< CoCr(At + Ax? + Ay?).

3.2. The statistical error

(15)

To analyze the statistics error, we first recall the following theorem for its reasonable use in our

demonstration.

Theorem 2 (CLT). Assume &, k= 1,2,... are i.i.d and E(§;) = 0, E(¢§?) = 1 then

Z—A)\

(16)

where X is N(0,1) and — denotes the weak convergence; that is, the convergence (16) means that the

following limit holds as M — +o00:

E ("(ij_M)) — E(g).

for all bounded and continuous function g.

Proof. See [14], page 23.
We have for i = 1,2,3

M
&(M) = |E(Q(Sipat)(Z Z Sinat) Wm))‘
1 U N
= |27 Z {E(Q(Sinat)(Z)) — Q(Sinat) (Z(wm))}',
m=1

then E(&;(M)) = 0 and Var(&,(M)) = 77 Var(Q(S;,n,at)) and we can estimate
Var(Q(Sin,ar)) = E(Q(Sinar)?)

2
:E ((/ Si,h,At(x7y7T7 Z)dl’dy) )
D
<

Cle(HSi,h,AtH%Q(D))
2
< CF[|Sinatll o 2y
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< 2012(”52'”%3(F,L2(D)) + 1S = Si,thtH%g(F,LQ(D)))
2
< 2C12(”SZ”%%(I‘7L2(D)) + 022 (At + sz + Ay2) )

< +o00,
1/2
where [|S|z2(r,r2(p) = (Jrl5(z) LQ(D p(z)dz) /2. We conclude that
Var(fs(M)) < % — 0, M — +o0, (18)

with the constant C uniformly bounded with respect to At, Az, and Ay. Since Var(Q(S; n.at)(Z)) < C,
by this result and using the Chebyshev inequality we have for any given € > 0:

P(le, (M) > ¢) < e O

g2 S oe?
Let Y = Q(Siatn)(2), Y; = Q(Siath)(Z(wj)), Yy, 7 = 1,2,3,... be iid random variable with
p:=E(Y}) < 400 and o := Var(¥j) < +oo We have

E(Y

M
—E(Y)
Y; — E( = —_
-l 2 -m]- |55
let (; = (Y; — p)/o, then ¢;, j =1,2,3,..., are i.i.d, and E(¢;) =0, (Cjz) = 1. Then by Theorem 2,

VT () = VT S S

&<

)

where X is AV(0,1), using this result and the Central Limits Theorem (CLT), that is

‘\/M ‘ < C’o> ~P(IA < Cph) — 2p(Co) —1, as M — +oo,

with ¢ fxoo et /2dt. We can write the statistical error for i = 1,2,3 as

§\~ -

M
) = [B(Qs:4.20(2) ~ 7 3 Qsinan) (Zlem)| <
=1

%\%3

where exact variance ¢ is in practice approximated by the sample variance

e (-2 ) )

m=1

thus we have the following (CLT') error bounded
& (M) <

AR

where (Y is an appropriate constant.
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4. Results and discussion

To justify our theoretical analysis and show the efficiency of the proposed method, we will perform
in this section two numerical tests with the deterministic initial condition, So1(z,y) = 0.05kg/m3,
So2(z,y) = 0.05kg/m?® and Sp3(z,y) = 0.05kg/m3, the parameters ki, ko1, kg, kb, k2, k3, Ve and

Dy are chosen as follow:

|0 954+ 0.2 Sln((Zl + Zo + Zg)ﬂj‘ — (Z4 + Z5 + Z6) )|
= |0003 + 1072. Sln((Zl + Zy + Zg)ﬂj‘ - (Z4 + Zs + Zﬁ)y)|,

k3xy7

Ve(z,y, Z) = 1520 - 107 + 107 - sin((Z1 + Zo + Z3)x — (Z4 + Zs5 + Zs)y)|,
k‘lg(l‘ y,Z) =11.48 — 0.1 - sin((Z1 + Za + Z3)x — (Zs + Z5 + Zs)y)|,
12(2,y, Z) = kia(2,y, Z2) /048,
kgl(x y,Z) =10.071 4+ 0.1 - cos((Z1 + Za2 + Z3)x — (Zs + Zs + Zs)y)|,
ko (2,y, Z) = ki (2,y, Z) /048,
ko(z,y,Z) = [1.55 + 0.5 - sin((Z1 + Z2 + Z3)x + 2(Zs + Zs + Zs)y)|,
kos(z,y,Z) = |11.8 4 0.1 - sin((Z1 + Zo + Z3)x — 2(Zs + Zs + Zs)y)],
(z,y,2) =
Z)

Dy(z,y,

where (z,y) € D = [0,1] x [0,1] and Z (0 < k < 6) is a uniform independent random variable on
[0,1]. To guarantee the hypotheses of theorem 1 and the stability of the FD scheme applied to our
system of equation (4), we use the partition size in x and y direction h = Az = Ay = 0.01 and we set
the time partition At = 1072 h.

4.1. Test 1

In this part, the influence of the number of realizations M is discussed. We define the random variables
Xt fori=1,2and 3 by

X! = Q(Si)(Z(wm)) = / Si(x,y,T, Z(wm)) dzx dy,

D
for each realization m we calculate X! wusing the same scheme (Simpson, etc.), the series
{Xﬁn}{m:LZg’m’ ay is independently and identically distributed.
We denote by fi and &2 the corresponding expectation and variance respectively. By the Central
Limit Theorem :

M _

X’l

P —zéMZ <z —>— _t/2dt z€R and :=1,2,3.
02/M -

The confidence interval of the expectation i at the level 1 — p is given by:

M M
[L(M), L(M)] = [% > X5, — /02 M, % > X5+ Zp\/52/M:| for i=1,2,3,
m=1 m=1

2 is approximated as in (19) by:

1 U Moxi\ 2
~2 M AN ) m
° ~ Var (X).—M;<Xj—ZM>,

m=1

where the unknown variance &

and z, is such that \/% f_zip e C2dt = 1 — p. If we choose 95% the confidence level, which corre-
sponds to zg.o5 ~ 1.96; then we obtain the followmg result in Figure 1 in which the confidence interval
[I1 (M), I(M)] and the average En(X?) == 57 L SM_ Xi are plotted as function of M.

In Figure 1 it is clear that if we chose the number of realization M larger enough the confidence
interval begin small enough as shown in the left hand of the figure, in right hand the first 100 realization
is shown for three-compartment concentration of drug.
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Fig.1. The confidence interval of fi at level 0.95 and the (Qol) of the drug concentration in the three-

compartment versus time for the first M = 100 realizations.

Next, to check the convergence of the proposed method, we solve the following system

/
% = DsAsl — k,12S1 + %SQ + h17
05 ’
8—132 = k12VcSI — k‘21S2 — k252 - k2352 + h2’
oS
8_;” = k352 — k3Ss + hs,

where the functions hq, ho, and hg are the added source terms used to construct exact solutions. The
exact solutions are given by

Si(@,y.t,Z) = xy(1 — 2)(1 — y) exp (Ds + (Kip + ki) (2,9, Z)) exp (—Ve(@,y, Z)t)
Sa(x,y,t,Z) = xy(l — x)(1 — y) exp ((k12Ve — ka1 — k2)(@,y, Z)) exp (—kas(z,y, 2)) ,
S3(@,y,t,Z) = xvy(1 — 2)(1 — y) exp (kas(v,y, Z) + = + y) exp (ks (z, y, Z)t) ,
the error for the mean and the variance of the solution for different values of number realization M
and different values of the parameter of the difference scheme Az and Ay are given in the following

tables.
First, we consider the case where M = 100 with different values of Az and Ay.

Table 1. The error at time 7' =1 (h).

mesh (Az = Ay) 1/10 1/100 1/1000
IE(Q(S1)) —E(Q(SH)|  0.951205  0.901005  0.894203
[Var(Q(S1)) — Var(Q(S¥))| 0.914287  0.900119  0.863578
IE(Q(S2)) —E(Q(SH)|  0.967211  0.920312  0.900531
|Var(Q(Sz2)) — Var(Q(S%))] 0.898208  0.880701  0.810739
IE(Q(S3)) —E(Q(S%))|  0.971215 0.948019  0.902060
|Var(Q(S3)) — Var(Q(S%))] 0.911235 0.8891508  0.811951

Next, we consider the case where M = 1000 with different values of Az and Ay.
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Table 2. The error at time 7' = 1 (h).

mesh (Az = Ay) 1/10 1/100 1/1000
IE(Q(S1)) —E(Q(Sh)|  0.856082 0.414461 0.116250
[Var(Q(S1)) — Var(Q(SP))| 0.822850 0.411057  0.112267
IE(Q(S2)) —E(Q(SH))|  0.870497 0.423345 0.118076
[Var(Q(S2)) — Var(Q(S%))| 0.808386 0.405129  0.105494
IE(Q(S3)) —E(Q(SE)|  0.873991 0.436080 0.117274
[Var(Q(S3)) — Var(Q(S%))| 0.820115 0.409016  0.106553

Finally, the result for the case where M = 10000 with different values of Ax and Ay.

Table 3. The error at time 7' = 1 (h).

mesh (Az = Ay) 1/10 1/100 1/1000
IE(Q(S1)) —E(Q(Sh))|  0.214023 0.065591 0.007871
[Var(Q(S1)) — Var(Q(S}))| 0.205718 0.065225  0.007653
IE(Q(S2)) —E(Q(SH)|  0.217662 0.066573  0.008016
[Var(Q(Ss)) — Var(Q(S%))| 0.202178 0.064567  0.007759
IE(Q(S3)) —E(Q(S%))|  0.218451 0.067973  0.008164
[Var(Q(S3)) — Var(Q(S%))| 0.209013  0.064995 0.007813

These results allow us to conclude that the estimated approximation errors decreases exponentially

as the partition size decreases and the number of realization M non-decreasing, which confirms our
theoretical result.

4.2, Test 2

Now, we will try to solve our problem using two different sets of determinate parameters presented in
Table 4 and we compared it with the obtained result by the proposed method as illustrated in Figure 2.

Table 4. Valued of parameter for Cisplatin (from Sinek et al., Troger et al.,
Lavasseur et al. and associated references).

- Case 1 Case 2
Parameter Description
value reference value reference

Vo Cell volume (fL cell 1) 520 Sinek et al. [11] 520 Sinek et al. [11]
F Interstitial Fraction 0.48 — 0.48 —

D, Drug diffusivity (um?min~!) | 30E3 — 30E3 —

ko Inactivation rate (min~—1) 1.7 — 1.7 —

k12 Drug uptake (min~!) 0.043 | Troger et al. [15] | 0.00545 | Lavasseur et al. [16]
ka1 Drug efflux (min—!) 0.00197 — 0.0004 —

ka3 Drug-DNA binding (min=!) | 0.00337 — 0.06242 —

ks Drug-DNA repair (min~!) | 0.00785 — 0.02402 —

The value of kj5 and kj; are obtained using the formula kj; = k;;/F for 7,5 € {1,2}.

As shown in Figure 2 the behavior variation’s of Cisplatin concentration in three compartments
with respect to time-variable for two determinate cases in Table 4 the best-fit parameters are not
reasonable which is seen from the non-accuracy of the obtained results. To overcome this issue, we

have considered the stochastic version of the problem, then we manipulated Monte Carlo method;
which gives us the result represented in Figure 2.
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Fig. 2. Comparison of the stochastic and the determinate results. The concentration—versus—time curve for
Cisplatin. The curves represent the concentration of Cisplatin using the Monte Carlo method with M = 10°

(blue) and the parameters are given in case 1 (red) and case 2 (yellow) of Table 4.

5. Conclusion

In this work, we have used Karhunen—Loéve expansion of the coefficients for a system of PDE governing
drug transport in tumors. We transform the initial stochastic problem into a deterministic one albeit
with the parameter in high dimensions. We design finite difference method in the physical space, which
is efficient and has reasonable accuracy, and we use Monte Carlo method in random space. Moreover,
we established the error estimate using the Central Limits Theorem as well as the error estimate
for space discretization by finite difference method. Some numerical simulations are illustrated the
theoretical analysis where we also compared the stochastic and determinate solving processes. Finally,
it is worth mentioning that this proposed method can be used to quantifying the uncertainty of similar
problems.
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KinbkicHa ouiHKka HeBM3Ha4YeHOCTi MaTemMaTU4yHoI Moaeni
TPaHCNOPTYBAHHA NiKiB Yy NyXJIMHAX

Eccappyr C.!, Maxani 3., Parait C.?

! Vinieepcumem I6n 3op,
xagedpa naykosux obyucaens, Azadip, Mapokko
2 Vuisepcumem Kadi Atiad, xagedpa mamemamuru,
Mapparew, Mapoxko

V 1iit poboTi mIpeICTaABICHO YNCETbHE MOJIETIOBAHHS B IBOBUMIPDHOMY PEXKUMI JIJTsT CHCTEME
JudepeHIiaIbHIX ¥ YaCTUHHUX TTOXITHUX, 10 PEry/Ii0€ TPAHCIIOPTYBAHHS JIKIB Y MyXJIH-
HaX i3 BUMIAIKOBUMHE KOedilieHTaMu, 110 OMUCYEThCH STK BUIaIKoBe mojie. Hemepepsae cTo-
XAaCTUYIHE TI0JIE€ allPOKCUMYEThHCSI CKIHIEHHOIO KUIBKICTIO BUIAIKOBUX BEJIMYWH 38 JIOITOMO-
roio po3kaamanag Kapxynena—Jloesa i mepeTBOpIO€ CTOXaCTUIHY 3319y B JeT€PMiHOBAHY
3 mapaMeTpoM BesuKol BuMipHOCTI. [lics mporo 3acToCOBYEMO CKiHYEHHY PI3HHIIEBY CXe-
My Ta inTerparop Eitmepa—Mapysamu B gaci. Meton Moure-KapJsio BUKOpUCTOBYETHCS 115t
o0YnCIeHHS BiOBIIHUX TpocTuX cepeaix. OOUmnc/r0eMo OIiHKY TOXUOKYM, BUKOPUCTOBY-
(09U EHTPAJIbHY TPAHIIHY TEOPEMY Ta OIHKY ITOXUOKM /It METOLy CKIHUEHHUX Pi3HUIb.
JesKi 9ucaoBl pe3yJIbTaTH CUMYIIOIOTHCS I 1TIOCTPAIil TEOPETHIHOrO aHasi3y. Takoxk
MIPOITOHYEMO TTOPIBHAHHS Mi’K CTOXaCTHIHUM 1 JeTePpMiHOBAHUM ITPOTIECAME PO3B’ I3y BAHHS
HAIIIOl CUCTEMH, JIe TIOKa3yeMO e(PeKTUBHICTh PUAHATOIO HAMU METO/LY.

Knw4osi cnoBa: wmamemamuyuni modeai mpancnopmy AlKi6 Y NYTAUHRAT, MEMOJ
Monme—Kapao, memod cKiHuweHHUT PidHuUb, KIALKICHA 0UIHKG HEBUSHAUEHOCTII.
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