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Abstract: The paper considers an approach to  

numerical modelling of the problem of electromagnetic 
plane waves scattering by an open arc with different 
boundary conditions on its sides. The corresponding 
mixed boundary value problem is reduced to a system of 
two singular and hypersingular integral equations. The 
method of collocation for numerical solutions to the 
equations obtained is proposed and analyzed. Numerical 
results of the radar cross-section for different values of 
arc curvatures are presented. 

Key words: Electromagnetic waves scattering, 
numerical modelling, collocation method, mixed boundary 
conditions. 

1. Introduction  
The problem of scattering field determination by a 

strip with different boundary conditions on its sides has 
attracted attention in the past decades [1] – [5]. In this 
paper, we consider the direct scattering problem for an 
open arc with mixed boundary conditions. This kind of 
problem is of fundamental importance in the modelling 
of many practical problems like antennas design, 
nondestructive control of the buried objects, etc. The 
solution to the Dirichlet, Neumann and impedance 
problems has only a square root singularity at the arc 
tips. This singularity can be eliminated from 
consideration using the cosine substitution [6] – [11] or 
with the introduction of the additional condition [12]. 
The purpose of this paper is to give an efficient 
computing method for the determination of the scattered 
waves for the open arc with different boundary 
conditions on its sides, using the collocation method 
without considering the different structure of the solution 
singularities at tips. 

2. Arc with mixed boundary condition  
The problem being considered here is shown in Fig. 

1 on the 1 3,x x  - plane. The arc occupies a domain 

( ) ( ) [ ]{ }2 2: , ,s s C s b a RG = Î Î Ìx x , where x = (x1; 

x3) are the Cartesian coordinates and ( ) ( ) 0J s s¢= ¹x  
is the Jacobean. The orientation of G  is assumed to be 
from the end point x(b) to the end point x(a). Further, 

we denote by +G  and -G  the upper and lower sides of 
G , respectively, n is the unit external normal vector to 

+G . 

 
Fig. 1. Geometry of the problem 

A plane wave  

( ) ( ) ( ),
0 0, sin , cosikiu e q q= = -l xx l  (1) 

impinges on the arc. The time factor i te w-  is omitted in 

the analysis. Here ( ). , .  is the scalar product, k is the 
wave number, and 0q  is the incident angle. 

The total field s iu u u= +  consists of the given 

incident wave iu  and the unknown scattered wave su . 
The scattered wave satisfies the Sommerfeld radiation 
condition at infinity that implies: 

( ) ( )
/4

2 2
1 3, , ,

8

ik ieu f k x x
k

p

p

+

= = + ® ¥
x

x l ν x
x

. (2) 

Here ( ), ,f k l ν  is the complex amplitude or far-
field pattern of the scattering wave and 

( )sin ,cosq q=ν  is the direction of observation. 
The mathematical modelling for the time-harmonic 

electromagnetic waves scattering from thin infinitely 
long cylindrical coated object leads to the following 
mixed boundary value problem for the Helmholtz 
equation in the exterior domain of the inhomogeneity: 
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( )2 0k uD + = ,   (3) 
with the following conditions along the boundary 

( ) ( ){ }0 / ,x b x aG = G  
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-

¶
= =

¶
x

x ,  (4) 

were  
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0
limu u
e

e- ®
= -x x n , 
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x
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u

n e
e+

®

¶
= Ñ +

¶
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n x n , 
( )

( )
3 1,

x
x x
J s
¢ ¢-

=n  

exists for all 0ÎGx   locally uniformly. 
Boundary conditions (4) admit several 

interpretations. For the electric field with E2-component, 
the upper side is a perfect magnetic conductor (PMC) 
and the lower side is a perfect electric conductor (PEC). 
On the other hand, for the magnetic field with H2-
component, the upper side is PEC while the lower side is 
PMC. 

By using Green’s theorem, the integral represent-
tation of the scattering field can be represented as 

( ) ( ) ( ) ( ) ( )1
3 1

,
,s

y
y
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u k k g d

n
-
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é ù¶
= F - F Gê ú

¶ê úë û
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( ) ( ) ( )
1

y y

u u
k

n n
+ -æ ö¶ ¶

F = -ç ÷ç ÷¶ ¶è ø

y y
y ,  (5) 

( ) ( ) ( )3 u u+ -F = -y y y , 

( ) ( ) ( ) ( )1
0 1 3, , .

4
ig H k y y= - =x y x y y . 

Herein ( )1
nH  is the Hankel function of the first kind 

of order n and g (x; y) is the fundamental solution to 
equation (3). 

For scattering amplitude (2) from (5) we have 

( )
( ) ( ) ( ) ( ),

1 3

, ,

, ik
y y

f k

k i e d-
G

=

é ù- F + F Gë ûò ν y

l ν

y ν n y
. (6) 

The following system of integral equations for 
( )1 , 1, 3xb bF =  are obtained from Eqs. (1), (2) and (5) 
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Considering that 

( ) ( )
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0 0 0 2

2 2ln , ln
H zi i iH z a z b z

z zp pp
= + = - + , 
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when 0z = - ®x y , from (7) we get 
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where g  is the Euler constant, K is the curvature of the 

curve 0G  at the point s, ( ), , 1, 3Kb b =x y  are the 

regular functions: ( ), 0Kb =x x . Thus, the kernels of 

integral equations (7) can be split into singular and 
regular parts. The integral with the unknown function 

( )3F y  must be understood in the Hadamard sense and 

the integral with ( )1F y  has a logarithm singularity. 

3. Method of collocation 
All integrals with the regular functions can be 

computed by the standard trapezoidal quadrature, 
however for hypersingular and weakly singular integrals 
the improved integration procedure must be applied. 
Consider the following hypersingular integral  

( ) ( ) 2

a

m b
m

dI s
s

t
t

t
= Y

-ò , 

where ( )tY  is a Hőlder function on [ ],b a , and the set 

of N nodes are used: 

( )1 , 1,..., 1,m b m h m Nt = + - = +  

( )1 / 2 , 1,..., 1, .n
a bs b n h n N h

N
-

= + - = + =  
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The integral ( )mI s  can be replaced by the 

quadrature sum: 

( ) ( )
1 1

1 1,
N

m n nm nm
n m n m n

I s s S S
s st t= +

= Y = -
- -

å , (8) 

that converges uniformly to the value of ( )mI s  when 

N ® ¥  and for the discrete approximation of the 
logarithmic integral, we get [4]: 
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Thus, using quadrature formulae (8) and (9), from 
(7) we have the following system of algebraic equations: 
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( ) ( )1 1 3 3,m m n nF = F F = Fx x , 

( ) ( ), ,nm n m n nK K sb b= =x x x x , 

, 1,2,...,n m N= . 
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when st =  and it means that singularities of equations 
(7) have been removed. 

The difference between the solutions to linear 
algebraic system (10) and the solutions of integral 
equations (7) tends to zero when the truncation 
parameter N tends to infinity. Finally, the scattering 
amplitude relates to the coefficients 1mF  and 3nF  as 
follows: 
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3. Numerical examples 
In this section, we will demonstrate our numerical 

method through some examples. The numerical results 
of the backscattering cross-section 

( )
( )

0 10

, ,
20log

4
f k

x
s q

-
=

l l
 

for 0 3x kd p= =  are presented in Figs. 2-4 and accuracy 
of one percent is obtained when the truncation parameters 
N, M = 4x. In the first example, 0G  is an ellipse arc:  

( ) [ ]0 0 0cos , sin , 0, , ,d s s s d conste p eG = Î = . 

 
Fig. 2. ( )0s q  versus 0q  for a strip 

In Fig. 2, the scattered characteristic ( )0s q  for a 

strip ( )0e =  is shown. It should be noted that the 
obtained curve is in a good coincidence with the 
previously obtained one by using the method of 
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moments [2] and with the curve obtained on the base of 
high frequency asymptotic [4]. Analogously, the results 
for the two different arcs with 1e =  and 1/ 4e = -  are 
shown in Fig. 3. As it can be observed, the tips of the arc 
and the boundary conditions on its sides are not much 
affected on the backscattering field if they are in the 
shadow domain. This feature can be observed also in the 
second example, shown in Fig. 4, where 

( )0 0 ,sinhd s sG = , [ ]1, 1s Î - . As could be expected, 
the backscattering far-field take the maximum values 
when the backscattering directions are close to the 
directions of the external normal vector to the arc. 

 
Fig. 3. ( )0s q  versus 0q  for an arc ( )cos , sins se , 

[ ]0,s pÎ  with 1e =   and 0.25e = - . 

 
Fig. 4. ( )0s q  versus 0q  for an arc ( ),sinhs s , 

[ ]1,1sÎ -
 

4. Conclusion 
The numerical solution in modelling of the 

scattering problem from an open arc with the mixed 
boundary condition on its sides is constructed. The 
problem is reduced to a system of the hyper and weak 
singular integral equations. In order to solve the obtained 
integral equations, the collocation method is developed. 
The numerical examples are presented for the radar 
cross-sections as the functions of the incidence angles 
and the different curvature values of arcs. 
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РОЗСІЯННЯ ПЛОСКИХ ХВИЛЬ 
ВІДКРИТОЮ ДУГОЮ ІЗ РІЗНИМИ 

ГРАНИЧНИМИ УМОВАМИ  
НА ЇЇ СТОРОНАХ 

Володимир Ємець 

У роботі розглянуто підхід до чисельного 
моделювання проблеми розсіяння електромагнітних 
плоских хвиль на незамкнутій дузі із різними граничними 
умовами на її сторонах. Відповідна змішана крайова задача 
зводиться до системи двох сингулярних і гіпер-
сингулярних інтегральних рівнянь. Запропоновано та 

проаналізовано метод колокації для отримання числових 
розв’язків отриманих рівнянь. Наведено характеристики 
поперечного перерізу розсіяння для різних значень 
кривизни дуги. 
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