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Abstract: The paper considers an approach to
numerical modelling of the problem of electromagnetic
plane waves scattering by an open arc with different
boundary conditions on its sides. The corresponding
mixed boundary value problem is reduced to a system of
two singular and hypersingular integral equations. The
method of collocation for numerical solutions to the
equations obtained is proposed and analyzed. Numerical
results of the radar cross-section for different values of
arc curvatures are presented.
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1. Introduction

The problem of scattering field determination by a
strip with different boundary conditions on its sides has
attracted attention in the past decades [1] — [5]. In this
paper, we consider the direct scattering problem for an
open arc with mixed boundary conditions. This kind of
problem is of fundamental importance in the modelling
of many practical problems like antennas design,
nondestructive control of the buried objects, etc. The
solution to the Dirichlet, Neumann and impedance
problems has only a square root singularity at the arc
tips. This singularity can be eliminated from
consideration using the cosine substitution [6] — [11] or
with the introduction of the additional condition [12].
The purpose of this paper is to give an efficient
computing method for the determination of the scattered
waves for the open arc with different boundary
conditions on its sides, using the collocation method
without considering the different structure of the solution
singularities at tips.

2. Arc with mixed boundary condition
The problem being considered here is shown in Fig.

1 on the X, X; - plane. The arc occupies a domain
G ={x(s) :x(s)TC?, sT[b,a]} T R?, where x = (xy;
|x¢ | 0

is the Jacobean. The orientation of G is assumed to be
from the end point X(b) to the end point x(a). Further,

X3) are the Cartesian coordinates and J

we denote by G, and G_ the upper and lower sides of

G, respectively, n is the unit external normal vector to
G,.
X3
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Fig. 1. Geometry of the problem
A plane wave
u'(x) =", 1=(singy, - cosq,) (1)

impinges on the arc. The time factor e ™ s omitted in

the analysis. Here ( ' ) is the scalar product, k is the
wave number, and (|, is the incident angle.

The total field u=u®+u' consists of the given

incident wave U' and the unknown scattered wave U°.
The scattered wave satisfies the Sommerfeld radiation
condition at infinity that implies:

|k\x\+|p/4

u(x k,I, X +X2 ®¥. (2
(x)=° T b ) X[ =+ )

Here f (k,1,v) is the complex amplitude or far-
field pattern of the scattering wave and
= (sing,cosq ) is the direction of observation.
The mathematical modelling for the time-harmonic
electromagnetic waves scattering from thin infinitely
long cylindrical coated object leads to the following

mixed boundary value problem for the Helmholtz
equation in the exterior domain of the inhomogeneity:
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(D+k2)u:0, 3)

with the following conditions along the boundary

G, :G/{x(b), x(a)}

ﬂu‘|]+n(XX) =0, u_(x)=0, (4)
u_(x):!i(ggu(x—en),
fu, (x) (x4, - x)

Lo, fufen). .-

exists for all X’I‘G0 locally uniformly.

Boundary  conditions  (4)  admit  several
interpretations. For the electric field with E,-component,
the upper side is a perfect magnetic conductor (PMC)
and the lower side is a perfect electric conductor (PEC).
On the other hand, for the magnetic field with H,-
component, the upper side is PEC while the lower side is
PMC.

By using Green’s theorem, the integral represent-
tation of the scattering field can be represented as

. € To (x, !
o () =i, 7 () 00V () g xy)has,
] 1Tny ]
& qu, Tu_(y)0
() =gl bl
fin, finy 5

Fa(y)=u (y)-u(y).

g(xy) =%H§”(kl><-yl), y=(yy3)-

Herein Hr(ll) is the Hankel function of the first kind
of order n and g (X; y) is the fundamental solution to
equation (3).

For scattering amplitude (2) from (5) we have

f(k,1,v)=

- NG
ki §F1 () +i(vn, ) Fs (y)ie™de ©

y

The following system of integral equations for
Fp, (%), b =1,3 are obtained from Egs. (1), (2) and (5)

.k
F.(x)+ IEOG F,(y)G (x,y)dG, =
=-2i(l,n, )¢ (1)

. ()

= 2¢™ (%), xTG,

Fs(x)

k
+IEOG F.(y)Gs (x.y)dG,

Tix-y Tjx-y
(k|X y|) | | |ﬂn |
Ny y

HY (k|x -
+M(”X'“v)"%<w)=Hé”(k|x—y|)-

G,(xy)=H

Considering that

4i i
0= )
when z =|x -y|®0, from (7) we get

e i
G NPT
() + Ky ().

y)=a, +i—iln(k|x—y|)+ Ks(x,y),

In(k|x—y|)+

Gs (x,

%i 1 iz 1
=1+ (g -In2), by ==+ E_ >
% +p(g n2) 2 pi 2"’

-2t

§
-In2:,
)

i
=b, -—K?
bl 0 pkz
where ¢ is the Euler constant, K is the curvature of the
curve G, at the point s, K, (x,y),b =13 are the

x)=0. Thus, the kerels of

integral equations (7) can be split into singular and
regular parts. The integral with the unknown function

F4(y) must be understood in the Hadamard sense and

regular functions: K, (X,

the integral with Fl(y) has a logarithm singularity.

3. Method of collocation

All integrals with the regular functions can be
computed by the standard trapezoidal quadrature,
however for hypersingular and weakly singular integrals
the improved integration procedure must be applied.
Consider the following hypersingular integral

a dt
(s,)= 0, Y(t)——,
[$n
where Y (t) is a Holder function on [b, a] , and the set
of N nodes are used:
t, =b+(m

-1)h,m=1,..,N +1

a-b

sy, =b+(n-1/2)h,n=1..,N+1, h==
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The integral I(sm) can be replaced by the
quadrature sum:

N
| = 3 Y = -
(Sm) ?1 (Sn )Snm' Snm Sm _tn+1 Sm -t

>

that converges uniformly to the value of I(s;,) when

N ®¥ and for the discrete approximation of the
logarithmic integral, we get [4]:

—y(t)\gdt =

iy <) =¥ (t)

s, -t|

a

0, F(t)lnéx‘x s,

dt +

9
+, F(t)In[s, -t|dt = ©

€ - u

_ gF(sm)éhlnx|X(sn) X(Sm)| fL, 0,

m=1 B 155 = Sn i

an :(tm+l - Sm)(|n|tm+1 _Sm| _1) -
~(t, - sn)(Inft,, -5,/ -1)

Thus, using quadrature formulae (8) and (9), from
(7) we have the following system of algebraic equations:

i, 8
Flm +EkaF3n'Ahm‘] (Sn) =
n=1

2i (o)
:_m(llxgm 3)%) {1 xn) ’
E +ik§F B J = aik(1x)
3n E aF By (Sm)_ e !
m=1
) 2
A]mz— 2| (Sm_sn) S
K* Ix(s,) - X(sm)l
g X=Xl
—hlnk +L, —+h + Ksom )
Ik L (by + K )
|X ~ X 0 9
BT A e i R
Flm_Fl(Xm)’F3n: 3(Xn)’
Kbnm_K (Xn,Xm) Xn:X(S”)’
nm=.2,.,N.
Here

|X(S) - X(t )| - (S),

[s-1]

when t =s and it means that singularities of equations
(7) have been removed.

The difference between the solutions to linear
algebraic system (10) and the solutions of integral
equations (7) tends to zero when the truncation
parameter N tends to infinity. Finally, the scattering

amplitude relates to the coefficients F,,, and F;, as
follows:
8 -ik(v.xp)
f(k,1,v)=-khaFe """ (s, ) -

m=1
—ikhg Fan 004 (s, ) -nax (s, )He'"‘(v"‘“).
n=1

3. Numerical examples

In this section, we will demonstrate our numerical
method through some examples. The numerical results
of the backscattering cross-section

£ (k,1,-1)
S

s (g,) = 20log,,

for x=kd, =3p are presented in Figs. 2-4 and accuracy
of one percent is obtained when the truncation parameters
N, M = 4x. In the first example, G, is an ellipse arc:

G, =d, (coss,esins), sT[0,p], dy, e =const.

o
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Fig.2. s (qo) versus (], for astrip

In Fig. 2, the scattered characteristic S (qo) for a

strip (e =0) is shown. It should be noted that the

obtained curve is in a good coincidence with the
previously obtained one by using the method of
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moments [2] and with the curve obtained on the base of
high frequency asymptotic [4]. Analogously, the results
for the two different arcs with e =1 and e =-1/4 are
shown in Fig. 3. As it can be observed, the tips of the arc
and the boundary conditions on its sides are not much
affected on the backscattering field if they are in the
shadow domain. This feature can be observed also in the
second example, shown in Fig. 4, where

Gy =d, (s,sinhs), sT[—l, 1] . As could be expected,
the backscattering far-field take the maximum values

when the backscattering directions are close to the
directions of the external normal vector to the arc.

(¢)

0 /4 /2 3n/4 %
Fig.3. S (qo) versus (], foranarc (COSS, esin S) ,

ST[O,p] with € =1 and e =-0.25.
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Fig. 4. S (qo) versus Jg for an arc (S,Sinh S),
sT[-11]
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4. Conclusion

The numerical solution in modelling of the
scattering problem from an open arc with the mixed
boundary condition on its sides is constructed. The
problem is reduced to a system of the hyper and weak
singular integral equations. In order to solve the obtained
integral equations, the collocation method is developed.
The numerical examples are presented for the radar
cross-sections as the functions of the incidence angles
and the different curvature values of arcs.
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PO3CISIHHS IIVIOCKUX XBUJIb
BIAKPUTOIO IYI'OIO I3 PI3BHUMHA
I'PAHUYHUMU YMOBAMU
HA Ii CTOPOHAX

BoJsiogumup €mens

Y  po6oTi pO3MIAHYTO  MiAXiA A0  YHCEIBHOTO
MOJCNIOBaHHS  NPOOJEMH  pO3CISHHSA  €IeKTPOMArHiTHUX
IDIOCKUX XBHIJIb Ha HE3aMKHYTIH Iy31 i3 PI3HUMHU I'paHAYHHMHU
yMOBaMH Ha Ti cTopoHax. BiamosinHa 3Mimana kpaiioBa 3agaya
3BOJMTBCS /IO CHCTEMH JBOX CHHIYJIAPHHX 1 Timep-

CHHTYJSIDHUX IHTETpaJbHUX pIBHSAHb. 3allpOIIOHOBAHO Ta

MPOAHATI30BAaHO METOJ KOJIOKAIlil 11 OTPUMAHHS YHCIOBHX
PO3B’SI3KiB OTPHMaHUX PIBHIHb. HaBeoeHO XapaKTepHCTUKH
MOMEPEYHOro Tepepidy pO3CIAHHS Ui PIi3HUX 3HAYCHb
KPHUBU3HH JIyTH.
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