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In this paper, we will study mathematically and numerically the dynamics of the hepatitis
C virus disease with the consideration of two fundamental modes of transmission of the
infection, namely virus-to-cell and cell-to-cell. In our model, we will take into account the
role of cure rate of the infected cells and the effect of the adaptive immunity. The model
consists of five nonlinear differential equations, describing the interaction between the
uninfected cells, the infected cells, the hepatitis C virions and the adaptive immunity. This
immunity will be represented by the humoral and cellular immune responses. This work
begins with proving the non-negativity and the boundedness of solutions and determining
the basic reproduction number. Secondly, five equilibria are established, the local stability
analysis for all the equilibria is demonstrated theoretically and numerically. Finally, we
have concluded that the numerical results are coherent with our theoretical postulations.
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1. Introduction

Hepatitis C virus (HCV) is a type of virus that causes liver disease by infecting the hepatocytes. The
HCV can generate both acute and chronic hepatitis. About 58 million people worldwide are infected
with the chronic HCV, while 1.5 million new infections occurring each year [1]. Neumann et al. [2]
affirm that liver cirrhosis can occur in 20% to 30% of people infected with chronic HCV; however, 13%
of those who have liver cirrhosis can develop liver cancer. In [2], there is an earlier model for HCV
viral dynamics incorporating the effect of antiviral treatment using interferon-α (IFN) and the authors
confirm that the IFN blocks the production of virions more than blocking new infections. Many works
dealing with viral dynamics [3–8], have taken into consideration the cure of infected cells assuming
the non-cytolytic mechanism, i.e. the removal of virus without destruction of infected cell. From a
biological point of view, it is assumed that infected cell can be cured or recovered and transformed
back into an uninfected cell. Taking into account the cure of infected cells, [9,10] present the dynamics
of HCV with a basic model that contains only three compartments, namely the uninfected cells, the
infected cells and the viral load. The mode of transmission the afore-mentioned works adopted is virus-
to-cell. That is why to better describe the infection, it is very important to consider another mode
of transmission, that of cell-to-cell transmission [11]. In fact, there is a model which have considered
both modes of transmission so as to describe the HCV dynamics with two therapies; namely interferon
and ribavirin [12]. Since the adaptive immunity plays an essential role in fighting the infection, many
mathematical models have included the adaptive immunity to study the viral dynamics. The adaptive
immunity is represented by the humoral immune response and the cellular immune response. Firstly,
the humoral immune response. As it is well known, represented by the antibodies or B cells, plays a
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crucial role in reducing the amount of free viruses. Recently, Pan et al. [13] proposed a model for HCV
infection, which integrates the both routes of transmission as well as the non-cytolytic cure of infected
cells. Their model have taken the following form
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dT

dt
= λ− β1TV − β2TI + αI − d1T,

dI

dt
= β1TV + β2TI − αI − d2I,

dV

dt
= kI − pVW − d3V,

dW

dt
= cV W − d4W.

(1)

Here T and I represent the density of susceptible hepatocytes and infected hepatocytes, respectively.
V is the viral load and W describes the antibody response. The susceptible hepatocytes are assumed
to be generated at a constant rate λ and die naturally at the rate d1. Each susceptible hepatocyte
becomes infected either by one free virus at rate β1 or by direct contact with an infected cell at rate β2.
Infected cells become cured through the non-cytolytic mechanism at rate α and they die naturally at
rate d2. Free virions are produced at rate k and they decay at rate d3. The humoral immune response
is induced by the formation of B cells at a rate c, and they are cleared at rate d4. The virions get
neutralized by the effect of B cells at a rate p. Secondly, the cellular immune response, represented by
cytotoxic T-lymphocytes (CTL) or T cells, is vital in reducing the amount of infected cells. Avendano
et al. [14] have formulated a model to describe the dynamics of HCV considering the effect of CTL
response and to analyze the effect of the treatment IFN from a theoretical point of view. Several
papers [15–19], have modeled the HCV dynamics by including both CTL and antibodies. For instance,
a model proposed by Wodarz [17] have explored the role of both humoral and cellular immune responses
in the dynamics of both acute and chronic HCV infection. Later, Yousfi et al. [19] have suggested a
mathematical analysis of the latter model. Similarly, Meskaf et al. [15], have explored global stability
analysis of the model [17]; they have included the effect of therapy. It will be more realistic to consider
the effect of both humoral and cellular immune response simultaneously, and so our contribution in
this paper is to study the model (1) along with the cellular immune response. Accordingly, our model
for HCV dynamics incorporates both virus-to-cell and cell-to-cell transmission, the possibility of cure
of infected cells, along with the effect of adaptive immunity. Our proposed model is governed by the
system of ordinary differential equations
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dT

dt
= λ− β1TV − β2TI + αI − d1T,

dI

dt
= β1TV + β2TI − qIZ − αI − d2I,

dV

dt
= kI − pVW − d3V,

dW

dt
= cV W − d4W,

dZ

dt
= gIZ − d5Z.

(2)

Here our new variable Z represents the cellular immune response (CTLs). The CTL cells are activated
through the development of T cell at a rate g and get neutralized by the effect of T cells at a rate q.
Finally, d5 is the rate of the natural death of each T cell. The model (2) is represented graphically
in Figure 1. The initial conditions are taken as (T (0), I(0), V (0),W (0), Z(0)) ∈ R

5. It is worthy
summarizing the works already done in this field in Table 1.

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 579–593 (2022)



Dynamical analysis of an HCV model with cell-to-cell transmission and cure rate in the presence. . . 581

T V W

I Z

d1

d2

d3 d4

d5

β1 p c

β1

β2

α
k

q g

λ

Fig. 1. Schematic representation of the studied HCV infection.

Table 1. Comparison of the various previous HCV models.

Basic model Humoral response Cellular response Cell-to-cell Cure References

Yes No Yes No No [23]

Yes Yes Yes No No [4, 5, 8, 12, 13]

Yes No No Yes No [15]

Yes No No No Yes [16, 17]

Yes No No Yes Yes [18]

Yes Yes No Yes Yes [3]

Yes Yes Yes Yes Yes Present model

The paper is organized as follows. The next section deals with the non-negativity and boundedness
of solutions. In Section 3, we will present the basic reproduction number and the equilibria. Section 4 is
concerned with the local stability of each equilibrium, followed by Section 5 which gives some numerical
simulations. The last section is a conclusive summary of the present work.

2. Non-negativity and boundedness of solutions

Since the model (2) interprets the biological evolution of cells, only bounded positive solutions make
the system of equations valid. Hence, in this section, we will prove that our system has positive and
bounded solutions. First, the system (2) with non-negative initial condition has a unique local solution
(T (t), I(t), V (t),W (t), Z(t)), because the system right-hand side is a locally Lipschitz function. The
result of non-negativity and boundedness of solutions is given as follows.

Theorem 1. If S(0) > 0, I(0) > 0, V (0) > 0, W (0) > 0 and Z(0) > 0 then the solution of (2) are

positive and bounded for all t > 0. In addition, there exists an ε > 0 such that lim inf
t→∞

T (t) > ε.

Proof. To show the non-negativity and boundedness of solutions of the system (2), we will adopt the
same approach as in [13, 20]. Suppose that there exists the first time tV > 0 such that V (tV ) = 0 and
dV (tV )

dt
6 0. Accordingly from the third equation of (2) we have, dV (tV )

dt
= kI(tV ) 6 0.

In the same manner, we define the first time tI > 0 such that I(tI) = 0 and dI(tI )
dt

= T (tI)V (tI) 6 0.
Obviously, tI < tV . Now, consider that there exists a tT > 0 the first time such that T (tT ) = 0 and
dT (tT )

dt
= λ + αI(tT ) 6 0. It is easy to see that tT < tI < tV , consequently I(tT ) > 0. But we note

that dT (tT )
dt

= λ+ αI(tT ) > 0, which contradicts the definition of tT itself. Thus V is a non-negative
function. So, I(t) > 0 and then T (t) > 0.
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From the fourth equation of the system (2),

W (t) = W (0) exp

{∫ t

0
[cV (s)− d4] ds

}

> 0.

For the last equation of the system (2),

Z(t) = Z(0) exp

{∫ t

0
[gI(s) − d5] ds

}

> 0.

Therefore, T (t), I(t), V (t), W (t) and Z(t) are positive.
In order to demonstrate the boundedness of the solution, we can assume that there exist a function

X such as, X(t) = T (t) + I(t) + q
g
Z. From the equations of the system (2),

dX(t)

dt
= λ− d1T (t)− d2I(t)− d5

q

g
Z 6 λ− dXX(t), where dX = min {d1, d2, d5} .

Therefore, lim sup
t→∞

X(t) 6 λ
dX

.

In similar manner, it can be shown that for Y (t) = V (t) + p
c
W (t),

dY (t)

dt
= kI(t)− d3V (t)− d4p

c
Z(t) 6

kλ

dX
− dY Y (t), where dY = min {d3, d4} .

Hence, lim sup
t→∞

Y (t) 6 λk
dXdY

.

We have established that the solution of our system (2) is bounded and positive for all t > 0.
Also, from the first equation of (2), we get

dT (t)

dt
> λ− β1T (t)V (t)− β2T (t)I(t)− d1T (t)

> λ− (d1 + β1Vu + β2Iu)T (t) for all t,

where, Iu = λ
dX

and Vu = λk
dXdY

are respectively the higher bounds of I(t) and V (t). Then we obtain,

lim inf
t→∞

T (t) > λ
d1+β1Vu+β2Iu

, this confirms that there exists an ε > 0 such that lim inf
t→∞

T (t) > ε. �

In what follows, we will study our HCV mathematical model (2) in the following closed region

D =

{

(T (t), I(t), V (t),W (t), Z(t)) ∈ R
5
+ : 0 6 T (t), I(t) 6

λ

dX
, 0 6 V (t) 6

λk

dXdY
,

0 6 W (t) 6
cλk

pdXdY
, 0 6 Z(t) 6

cλk

pdXdY

}

.

3. The basic reproduction number and the equilibria

In this section, we present the basic reproduction number associated to our model (2) as well as its
equilibria and the conditions that guarantee the existence of this equilibria.

3.1. The basic reproduction number

The proposed model (2) has one disease free equilibrium (DFE) defined by

E0 = (T0, I0, V0,W0, Z0) =

(

λ

d1
, 0, 0, 0, 0

)

.

We will look now for the basic reproduction number which measures the average number of new HCV
infected cells generated by a unique typical infected cell in a completely susceptible cells environ-
ment. This parameter is symbolized by R0. To calculate it, we will apply the next generation matrix
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approach [27, 29]. However, the associated equations with infection are

dI

dt
= β1TV + β2TI − d2I − qIZ − αI = F1 − V1,

dV

dt
= kI − d3V − pV Z = F2 − V2,

where F1 = β1TV + β2TI, V1 = qIZ + d2I + αI, F2 = 0, V2 = d3V + pV Z − kI.
Knowing that R0 = ρ(FV −1), where ρ(A) is the spectral radius of matrix A. In our situation we

have

F =





∂F1

∂I

∣

∣

∣

E0

∂F1

∂V

∣

∣

∣

E0

∂F2

∂I

∣

∣

∣

E0

∂F2

∂V

∣

∣

∣

E0



 =

(

λβ2

d1

λβ1

d1

0 0

)

,

V =





∂V1

∂I

∣

∣

∣

E0

∂V1

∂V

∣

∣

∣

E0

∂V2

∂I

∣

∣

∣

E0

∂V2

∂V

∣

∣

∣

E0



 =

(

d2 + α 0
−k d3

)

.

Therefore

R0 =
λ (β1k + β2d3)

d1d3 (d2 + α)
=

kβ1T0

d3 (d2 + α)
+

β2T0

d2 + α
= R01 +R02.

The basic reproduction number is the sum of two quantities R01 and R02, the first one is related to
virus-to-cell infection; while the second one is concerned with cell-to-cell transmission. Biologically,
R01 measures the average number of secondary infected cells caused by a free virus in a completely
susceptible cells environment. The second number R02 represents the average number of secondary
infected cells generated by one infected cell in a completely susceptible cells environment.

In the sequel of the paper, we will define some thresholds parameters. The humoral immune
reproduction number represented by RW = ckλ(β1k+β2d3)

ckd1d3(d2+α)+d2d3d4(β1k+β2d3)
, which represents the average

of secondary generated infected cells in the presence of the humoral immune response. The cellular
immune reproduction number is defined by RCTL = gλ(β1k+β2d3)

gd1d3(d2+α)+d2d5(β1k+β2d3)
, which represents the

average number of secondary generated infected cells in the presence of the cellular immune response.
Also, we define the threshold R

CTL,W
1 = gI2

d5
, as the average number of secondary generated infected

cells in the presence of both humoral and cellular immune responses in the case of CTL response
is more dominant [17]. Finally, the threshold R

CTL,W
2 = ckd5

gd3d4
, represents the average number of

secondary generated infected cells in the presence of both humoral and cellular immune responses with
the antibodies response is significantly more dominant.

3.2. The free equilibrium and the endemic equilibria

The model (2) admits five equilibrium points, namely

1. The disease-free equilibrium, E0 = (T0, I0, V0,W0, Z0), where T0 =
λ
d1

, I0 = V0 = W0 = Z0 = 0.

2. The immune response free equilibrium, E1 = (T1, I1, V1,W1, Z1), where T1 = d3(d2+α)
β1k+β2d3

, I1 =

d1T1

d2

[

λ(β1k+β2d3)
d1d3(d2+α) − 1

]

, V1 =
k
d3
I1, W1 = 0 and Z1 = 0. This endemic equilibrium exists if R0 > 1.

3. The infected equilibrium with humoral immune response, E2 = (T2, I2, V2,W2, Z2), where T2 =
(d2+α)I2
β1V2+β2I2

, I2 =
−m2+

√
m2

2
+4m1m3

2m1
, V2 = d4

c
, W2 = d3

p

(

ck
d3d4

I2 − 1
)

and Z2 = 0, with m1 = β2cd2,

m2 = β1d2d4 + cd1 (d2 + α)− λβ2c, m3 = λβ1d4.
Here, R1 = ck

d3d4
I2 represents the viral reproduction number in the chronic stage of infection with

the effect of humoral immune response. Obviously, E2 exists if R1 > 1.
4. The infected equilibrium with cellular immune response E3 = (T3, I3, V3,W3, Z3), where T3 =

λ+αI3
β1V3+β2I3+d1

, I3 = d5
g

, V3 = k
d3
I3, W3 = 0 and Z3 =

(

d2+α
q

)(

(β1V3+β2I3)T3

(d2+α)I3
− 1
)

. Here, R2 =
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(β1V3+β2I3)T3

(d2+α)I3
represents the viral reproduction number in the chronic stage of infection with the

effect of cellular immune response to infected cells. In fact, E3 exists if R2 > 1.
5. The infected equilibrium with both humoral and cellular immune response E4 = (T4, I4, V4,W4, Z4),

where T4 = λ+αI4
β1V4+β2I4+d1

, I4 = d5
g

, V4 = d4
c

, W4 = d3
p

(

kI4
d3V4

− 1
)

, and Z4 =
(

d2+α
q

)

×
(

(β1V4+β2I4)T4

(d2+α)I4
− 1
)

. Here, R3 = (β1V4+β2I4)T4

(d2+α)I4
represents the viral reproduction number in the

chronic stage of infection with the effect of both humoral and cellular immune response and in-
fected cells. If R3 > 1 and R

CTL,W
2 > 1 then E4 exists.

4. Local stability analysis

In this section, we will study the local stability analysis of the equilibria by applying Routh–Hurwitz
Theorem [24]. First, we linearize the system (2), we have the following Jacobian matrix













−β1V − β2I − d1 −β2T + α −β1T 0 0
β1V + β2I β2T − qZ − d2 − α β1T 0 −qI

0 k −d3 − pW −pV 0
0 0 cW cV − d4 0
0 gZ 0 0 gI − d5













.

Additionally, we will need to the arithmetic and geometric means inequality, which states that the
geometric mean of n positive real numbers x1, x2, . . . , xn is less than their arithmetic mean

1

n

(

n
∑

i=1

xi

)

>

(

n
∏

i=1

xi

) 1

n

.

This inequality becomes equality if all the real numbers x1, x2, . . . , xn are equals. Besides, we can see
that if

∏n
i=1 xi = 1, then the inequality becomes

∑n
i=1 xi > n.

Theorem 2. The disease-free equilibrium E0 is locally asymptotically stable when R0 < 1 and

unstable when R0 > 1.

Proof. The characteristic equation at E0 is identified by

(x+ d1) (x+ d4) (x+ d5)
(

x2 +A1x+A2

)

= 0,

where

A1 = d2 + d3 + α− λβ2

d1

= d3 + (d2 + α) (1−R0 +R01) ,

A2 = d3 (d2 + α)− λ

d1
(β1k + β2d3)

= d3 (d2 + α) (1−R0) .

The characteristic equation, has five eigenvalues, three of them are obviously negative x1 = −d1,
x2 = −d4, and x3 = −d5. Observing that if R0 < 1, then A1 > 0 and also A2 > 0. Hence,
the remaining other eigenvalues will have negative real parts. In conclusion, the DFE E0 is locally
asymptotically stable when R0 < 1 and unstable when R0 > 1. �

Theorem 3. The immune response free equilibrium E1 is locally asymptotically stable when R0 > 1,
RW < 1 and RCTL < 1 and unstable when RCTL > 1 or RW > 1.

Proof. The characteristic equation at E1 is identified by

(x+ d4 − cV1) (x+ d5 − gI1)
(

x3 +B1x
2 +B2x+B3

)

= 0,
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where

B1 = d1 + d2 + d3 + α+ β1V1 + β2I1 − β2T1

= d1 + d3 + (d2 + α)
R01

R0
+

d1

d2
(d2 + α) (R0 − 1) ,

B2 = (d2 + d3) (β1V1 + β2I1) + d1 (d2 + d3 + α− β2T1)

= d1d3 + d1 (d2 + α)
R01

R0
+

d1

d2
(d2 + d3) (d2 + α) (R0 − 1) ,

B3 = d2d3 (β1V1 + β2I1)

= d1d3 (d2 + α) (R0 − 1) .

Two first eigenvalues are cV1 − d4 and gI1 − d5, which can be rewritten as

cV1 − d4 =
λck

d2d3RW

(

RW − 1
)

negative when RW < 1,

gI1 − d5 =
gλ

d2RCTL

(

RCTL − 1
)

negative when RCTL < 1.

The other eigenvalues are the roots of the cubic equation x3 +B1x
2 +B2x+B3 = 0.

Clearly B1, B3 > 0 if R0 > 1. Furthermore

B1B2 −B3 = d1d3 (d1 + d3) + d1 (d1 + d3) (d2 + α)
R01

R0
+

d21
d22

(d2 + d3) (d2 + α)2 (R0 − 1)2

+
d21
d2

(d2 + α)2
R01

R0
(R0 − 1) +

d1

d2

(

d1d2 + 2d1d3 + d23
)

(d2 + α) (R0 − 1)

+
d1

d2

(

d2d3 + d2(d2 + α)
R01

R0

)

R01

R0
(d2 + α)

+
d1

d2

(

d2d3 + d22 + α (d2 + d3)
) R01

R0
(d2 + α) (R0 − 1) .

Therefore, whenever R0 > 1 we have B1B2 − B3 > 0 then the Routh–Hurwitz criterion implies that
three roots of the cubic equation are negative when R0 > 1. Additionally, if RW > 1 or RCTL > 1, then
E1 has at least one positive eigenvalue. So, we can state that the immune response free equilibrium
E1 is locally asymptotically stable when R0 > 1, RW < 1 and RCTL < 1 and unstable if RW > 1 or
RCTL > 1. �

Theorem 4. The infected equilibrium with humoral immune response E2 is locally asymptotically

stable when R1 > 1 and R
CTL,W
1 < 1 and unstable when R

CTL,W
1 > 1.

Proof. The characteristic equation at E2 is determined by

(x+ d5 − gI2)
(

x4 + C1x
3 + C2x

2 + C3x+ C4

)

= 0.

Where

C1 = d1 + β1V2 + β2I2 +
kI2

V2
+

β2T2V2

I2
,

C2 = (d1 + β1V2 + β2I2)
kI2

V2
+ d2 (β1V2 + β2I2) + cpV2Z2 +

d1β1T2V2

I2
,

C3 = (d1 + β1V2 + β2I2) cpV2Z2 + d2 (β1V2 + β2I2)
kI2

V2
+

(

β1T2V2

I2

)

cpV2Z2,

C4 = d2 (β1V2 + β2I2) cpV2Z2 + d1

(

β1T2V2

I2

)

cpV2Z2.

The first observed eigenvalue is gI2−d5 = d5(R
CTL,W
1 −1), which is negative when R

CTL,W
1 < 1. Also,

C1, C4 > 0 whenever T2, I2, V2,W2 and Z2 are all positive when R1 > 1. We have,
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C1C2 − C3 = (d1 + β1V2 + β2I2)

[

(d1 + β1V2 + β2I2)
kI2

V2
+ β1kT2 +

(

kI2

V2

)2
]

+ d2 (β1V2 + β2I2)

[

d1 + β1V2 + β2I2 +
β1T2V2

I2

]

+
β1T2V2

I2

[

d1 (d1 + β1V2 + β2I2) + d1

(

kI2

V2

)

+ d1

(

β1T2V2

I2

)]

+ ckpI2Z2.

Hence, C1C2 − C3 > 0 when R1 > 1.

(C1C2 − C3)C3 − C2
1C4 = ckpI2Z2 (d1 + β1V2 + β2I2)

2

[

d1 +
β1V2T2

I2
+

kI2

V2

]

+
kI2

V2
(d1 + β1V2 + β2I2)

2 (β1V2 + β2I2)

[

d2kI2

V2
+ cpV2Z2

]

+ β1kT2 (d1 + β1V2 + β2I2) (β1V2 + β2I2) (d1d2 + cpV2Z2)

+
d2kI2

V2
(d1 + β1V2 + β2I2) (β1V2 + β2I2)

[

β1kT2 +

(

kI2

V2

)2
]

+
β1T2V2

I2
(β1V2 + β2I2) (d1d2 + cpV2Z2)

[

β1kT2 +

(

kI2

V2

)2
]

+ β1d2 ck p (β1V2 + β2I2)T2V2Z2

[

d2 (β1V2 + β2I2)

cpV2Z2
+

cpV2Z2

d2(β1V2 + β2I2)
− 2

]

+ d2ckp (d1 + β1V2 + β2I2) (β1V2 + β2I2) I2Z2

[

d2 (β1V2 + β2I2)

cpV2Z2
+

cpV2Z2

d2 (β1V2 + β2I2)
− 2

]

.

As a result of the arithmetic and geometric means inequality, it follows that

d2 (β1V2 + β2I2)

cpV2Z2
+

cpV2Z2

d2 (β1V2 + β2I2)
− 2 > 0.

Now, we can state that (C1C2 − C3)C3 − C2
1C4 > 0 whenever T2, I2, V2,W2 and Z2 are positive

when R1 > 1. By the Routh–Hurwitz criteria E2 is locally asymptotically stable when R1 > 1 and
R

CTL,W
1 < 1 and unstable when R

CTL,W
1 > 1. �

Theorem 5. The infected equilibrium with cellular immune response E3 is locally asymptotically

stable when R2 > 1 and R
CTL,W
2 < 1 and unstable when R

CTL,W
2 > 1.

Proof. The characteristic equation at E3 is given by

(x+ d4 − cV3)(x
4 +D1x

3 +D2x
2 +D3x+D4) = 0.

Where

D1 = d1 + d3 + β2I3 + β1V3 +
β1V3T3

I3
,

D2 = d1d2 + d1d3 + d2d3 + d1α+ d3α+ d1qZ3 + qd3Z3 + qd5Z3 − d1β2T3 − d3β2T3 + d2β1V3

+ d3β1V3 − kβ1T3 + qβ1V3Z3 + d2β2I3 + d3β2I3 + qβ2I3Z3,

D3 = d1d2d3 + d1d3α− d1d3β2T3 + d2d3β1V3 − d1kβ1T3 + d1d3qZ3 + d1d5qZ3 + d3d5qZ3 + d2d3β2I3

+ d5qβ2I3Z3 + d3qβ1V3Z3 + d5qβ1V3Z3 + d3qβ2I3Z3,

D4 = qd1d3d5Z3 + d3d5β2qZ3I3 + qβ1d3d5Z3V3.

One of the eigenvalues is, cV3 − d4 = d4(R
CTL,W
2 − 1), which is negative when R

CTL,W
2 < 1. Also,

D1, D4 are positive whenever T2, I2, V2,W2 and Z2 are all positive, that is, when R2 > 1. Obviously,
if R

CTL,W
2 > 1 then there exists one positive eigenvalue. Thus, according to the Routh–Hurwitz

Theorem, the immune response free equilibrium E3 is locally asymptotically stable when R2 > 1 and
R

CTL,W
2 < 1 and unstable when R

CTL,W
2 > 1. �
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Theorem 6. The infected equilibrium with both humoral and cellular immune response E4 is locally

asymptotically stable when R3 > 1 and R
CTL,W
2 > 1.

Proof. The characteristic equation at E4 is

x5 + F1x
4 + F2x

3 + F3x
2 + F4x+ F5 = 0.

Where

F1 = d1 + d3 + pW4 + β1
V4

I4
T4 + β2I4 + β1V4,

F2 = d1d2 + d1d3 + d2d3 + d1α+ d3α+ d1pW4 + αpW4 + d2pW4 + d4pW4 + d1qZ4 + d3qZ4 + d5qZ4

− d1β2T4 − d3β2T4 − kβ1T4 − pβ2W4T4 + d2β1V4 + d3β1V4 + d2β2I4 + d3β2I4 + pqW4Z4

+ qβ1Z4V4 + β2pI4W4 + qβ2Z4I4 + pβ1V4W4,

F3 = d1d2d3 + d1d3α− d1d3β2T4 − d1kβ1T4 + d1αpW4 + d4αpW4 + d1d2pW4 + d1d4pW4 + d2d4pW4

+ d1d3qZ4 + d1d5qZ4 + d3d5qZ4 + d2d3β2I4 + d2d3β1V4 + d1pqZ4W4 + d4pqZ4W4 + d5pqZ4W4

+ d4pβ1V4W4 + d2d4pβ1V4W4 + d5qβ2I4Z4 + d3qβ2I4Z4 − d1pβ2T4W4 − d4pβ2T4W4 + d3qβ1V4Z4

+ d5qβ1V4Z4 + d2pβ2I4W4 + d4pβ2I4W4 + pqβ1V4W4Z4 + pqβ2I4W4Z4,

F4 = d1d2d4pW4 + d1d4pαW4 + d1d3d5qZ4 + d1d4pqW4Z4 + d1d5pqW4Z4 + d4d5pqW4Z4

+ d2d4pβ1V4W4 + d3d5qβ2I4Z4 − d1d4pβ2T4W4 + d2d4pβ2I4W4 + d3d5qβ1V4Z4 + d4pqβ1V4W4Z4

+ d5pqβ1V4W4Z4 + d5pqβ2I4W4Z4 + d4pqβ2I4W4Z4,

F5 = pqd4d5β1V4W4Z4 + pqd5β2I4W4Z4 + pqd1d4d5W4Z4.

It is evident that F1 and F5 are positive whenever T4, I4, V4, W4 and Z4 are all positive, that is true
when R3 > 1 and R

CTL,W
2 > 1. By the Routh–Hurwitz theorem, we have that the immune response

free equilibrium E4 is locally asymptotically stable when R3 > 1 and R
CTL,W
2 > 1. �

5. Numerical simulations

In order to clarify numerically the stability of each equilibrium to the model (2), we will present in
this section several numerical results using Matlab software. In five figures below (a) represents the
uninfected cells, (b) the infected cells, (c) virions, (d) B cells and finally (e) T cells. The parameters of
our numerical tests are shown in Table 3 and their units in Table 2 and also the taken initial condition
is as follows (T (0), I(0), V (0),W (0), Z(0)) = (30, 10, 2, 500, 400).

Table 2. The list of parameter units for the different numerical simulations.

Parameters Descriptions Units

λ Source rate of uninfected cell cells ml−1 day−1

β1 Virus-to-cell infection rate ml virion −1 day−1

β2 Cell-to-cell infection rate ml cell −1 day−1

d1 Death rate of uninfected cell day−1

d2 Death rate of infected cell day−1

d3 Death rate of virus day−1

d4 Death rate of B cell day−1

d5 Death rate of T cell day−1

q Neutralization rate of infected cell by T cell day−1

α Cure rate of infected cell day−1

k Production rate of virus virions cell−1 day−1

p Neutralization rate of virus by B cell ml cell−1 day−1

c Development rate of B cell ml virion−1 day−1

g Development rate of B cell ml virion−1 day−1
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Table 3. The list of parameter values for the different numerical simulations.

Parameter Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Sources

λ 1 1 1 10 10 [17, 18]
β1 0.01 0.01 0.01 0.01 0.01 [17, 18]
β2 0.001 0.01 0.01 0.01 0.01 [13]
d1 0.01 0.01 0.01 0.01 0.01 [22]
d2 1 1 1 1 1 [22]
d3 6 6 1 1 1 [17, 18, 22]
d4 0.3 0.3 0.1 0.3 0.1 [17, 18, 28]
d5 0.05 0.05 0.05 0.05 0.1 [17, 18, 28]
q 5.4 · 10−4 5.4 · 10−4 5.4 · 10−4 5.4 · 10−4 5.4 · 10−4 [16]
α 0.01 0.01 0.01 0.01 0.01 [23]
k 2.9 2.9 2.9 2.9 2.9 [22]
p 0.006 0.006 0.006 0.006 0.006 [28]
c 0.1 0.1 0.1 0.01 0.01 [28]
g 0.015 0.015 0.015 0.015 0.015 [28]
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Fig. 2. The infection dynamics illustrating the stability of DFE equilibrium E0.

In order to illustrate the stability of DFE equilibrium E0, we will use the parameter values from
Table 3 which leads to R0 = 0.5776. Hence, the basic reproduction number is less than unity which
predicts theoretically the stability of the DFE equilibrium E0. We clearly see from Figure 2 that the
number of the uninfected cells increases progressively to reach their maximal level λ

d1
= 100. Besides,

the concentration level of the infected cells, free virions, B cells and T cells is decreased towards zero.
This simulation concludes that the solutions of the system (2) converge to the disease-free equilibrium
E0 = (100, 0, 0, 0, 0). Therefore, our first numerical simulations support the theoretical result already
mentioned in Theorem2.
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Fig. 3. The infection dynamics illustrating the sta-
bility of the first endemic equilibrium E1.

Fig. 4. The infection dynamics illustrating the sta-
bility of the second endemic equilibrium E2.

Within the parameters indicated in Table 3, we can calculate the following thresholds R0 = 1.4686,
RW = 0.1608 and RCTL = 0.2491, which means R0 > 1, RW < 1 and RCTL < 1, this predicts the
theoretical stability of the first disease equilibrium E1. We can remark from Figure 3 that the unin-
fected, infected cells and virions show a damped oscillatory behavior and converge to their respective
coordinates of the equilibrium point E1 = (68.1599, 0.3220, 0.1556, 0, 0). We also observe that the
concentrations of B cells and T cells converge towards zero. Consequently, the simulation is in good
agreement with the theoretical result already stated in Theorem3.

The following thresholds can be calculated using the parameters listed in Table 3, R1 = 1.7843 and
also RCTL,W

1 = 0.1846. Which means that R1 > 1 and RCTL,W
1 < 1, this reflects the stability of E2 as

already pointed out in Theorem4. Indeed, Figure 4 shows the behavior of the infection corresponding
to the stability of the disease equilibrium E2, we notice that after some periods of oscillations, the
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functions that describe uninfected cells, infected cells, virions, antibodies and CTL cells are approaching
respectively to their own coordinates of the infected steady state E2 = (38.4721, 0.6153, 1, 130.7182, 0).
Also, we can see easily that when the quantities of virions increase, the antibody response is activated
in order to neutralize them.

0 50 100 150 200 250 300
0

20

40

60

80

a

0 50 100 150 200
0

4

8

12

16

b

0 50 100 150 200
0

10

20

30

40

c

0 20 40 60 80 100
0

100
200
300
400
500
600

d

0 50 100 150 200 250 300
0

1000

2000

3000

4000

e

0 20 40 60 80 100
0

15
30
45
60
75
90

a

0 20 40 60 80 100
0

5

10

15

20

b

0 50 100 150 200
0

5

10

15

20

c

0 50 100 150 200
0

100

200

300

400

500

d

0 50 100 150 200
0

250

500

750

e

Fig. 5. The infection dynamics illustrating the sta-
bility of the third endemic equilibrium E3.

Fig. 6. The infection dynamics illustrating the sta-
bility of the fourth endemic equilibrium E4.

After several days of the infection, we observe from Figure 5 that the humoral immune response
is the only component that converges towards zero while the other four problem variables converge
towards their respective values of the infected equilibrium E3 = (71.7, 3.3, 9.7, 0, 3308.6). While, based
on Table 3, we have R2 = 2.7673 and RCTL,W

2 = 0.0290, that is to say R2 > 1 and RCTL,W
2 < 1, the

simulation supports the theoretical result stated in Theorem5. Indeed, we can notice that because
there exists sufficient amount of infected cells then CTL cells are mobilized to destroy them.
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Our last numerical simulations deal with the stability of the last endemic equilibrium. Using Table 3,
we get R3=1.4104 and RCTL,W

2 =0.0193. In other terms R3 > 1 and RCTL,W
2 <1, which demonstrates

the stability of E4 as previously stated in Theorem6. Indeed, it can be observed from Figure 6 that
all the curves converge toward the endemic equilibrium E4 = (56.9811, 6.6667, 10, 155.5556, 767.6450).

6. Conclusions

In this work, we have presented a mathematical model that describes the dynamics of HCV infection by
considering two essential modes of transmission, virus to cell and cell to cell. We have also taken into
account the cure of infected cells. The model has included the role of CTL and antibody responses in
our suggested hepatitis C virus dynamics. Moreover, we have presented some mathematical analysis,
including the existence, positivity, and the boundedness of the unique solution. We have determined
the basic reproduction number R0. Besides, we have found the expressions of reproduction number of
the humoral immune, the cellular immune respectively noted by RW and RCTL. Also, the threshold
parameters that describe the average number of secondary generated infected cells in the presence of
both humoral and cellular immune are noted respectively by R

CTL,W
1 and R

CTL,W
2 . Then, the local

stability of one disease-free equilibrium and four endemic equilibria are established in terms of the
different conditions on the key thresholds R0, RW , RCTL, R

CTL,W
1 and R

CTL,W
2 . The paper ends

by some numerical simulations illustrating the behavior of infection by the HCV during the days of
observation. Results indicate that the immunity system represented by antibodies and CTL cells
reduces the infection under some appropriate conditions. More precisely, we have established that B
cells do not stimulate themselves to destroy the virions unless there are sufficient levels of virions.
Likewise, T cells do not neutralize the infected cells unless there exist sufficient amounts of infected
cells.
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Динамiчний аналiз моделi HCV з мiжклiтинною передачею та
швидкiстю одужання за наявностi адаптивного iмунiтету

Садкi М.1, Харрудi С.2, Аллалi К.1

1Лабораторiя математики, iнформатики та застосункiв,

факультет наук i технiки Мохаммедiа, Унiверситет Хасана II Касабланки,

PO Box 146, Мохаммедiа, Марокко
2Нацiональна школа торгiвлi та управлiння Касабланки, Унiверситет Хасана II,

Касабланка, Марокко

У цiй роботi дослiджується математично та чисельно динамiку захворювання вiрусом
гепатиту С з урахуванням двох основних шляхiв передачi iнфекцiї, а саме: вiд вiрусу
до клiтини та вiд клiтини до клiтини. У нашiй моделi враховується роль швидкостi
одужання iнфiкованих клiтин та ефект адаптивного iмунiтету. Модель складається
з п’яти нелiнiйних диференцiальних рiвнянь, що описують взаємодiю мiж неiнфi-
кованими клiтинами, iнфiкованими клiтинами, вiрiонами гепатиту С та адаптивним
iмунiтетом. Цей iмунiтет подано через гуморальний i клiтинний iмуннi вiдповiдi. Ця
робота починається з доведення невiд’ємностi та обмеженостi розв’язкiв i визначення
основного вiдтворювального числа. Далi встановлено п’ять рiвноважних положень,
теоретично та чисельно продемонстровано аналiз локальної стiйкостi для всiх рiв-
новажних положень. Нарештi, доходимо висновку, що чисельнi результати узгоджу-
ються з нашими теоретичними положеннями.

Ключовi слова: мiжклiтинний, швидкiсть одужання, гуморальна iмунна вiдпо-

вiдь, клiтинна iмунна вiдповiдь, адаптивний iмунiтет, стiйкiсть.

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 579–593 (2022)


