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In this paper, we will study mathematically and numerically the dynamics of the hepatitis
C virus disease with the consideration of two fundamental modes of transmission of the
infection, namely virus-to-cell and cell-to-cell. In our model, we will take into account the
role of cure rate of the infected cells and the effect of the adaptive immunity. The model
consists of five nonlinear differential equations, describing the interaction between the
uninfected cells, the infected cells, the hepatitis C virions and the adaptive immunity. This
immunity will be represented by the humoral and cellular immune responses. This work
begins with proving the non-negativity and the boundedness of solutions and determining
the basic reproduction number. Secondly, five equilibria are established, the local stability
analysis for all the equilibria is demonstrated theoretically and numerically. Finally, we
have concluded that the numerical results are coherent with our theoretical postulations.

Keywords: cell-to-cell, cure rate, humoral immune response, cellular immune response,
adaptive immunity, stability.
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1. Introduction

Hepatitis C virus (HCV) is a type of virus that causes liver disease by infecting the hepatocytes. The
HCV can generate both acute and chronic hepatitis. About 58 million people worldwide are infected
with the chronic HCV, while 1.5 million new infections occurring each year [1|. Neumann et al. [2]
affirm that liver cirrhosis can occur in 20% to 30% of people infected with chronic HCV; however, 13%
of those who have liver cirrhosis can develop liver cancer. In [2], there is an earlier model for HCV
viral dynamics incorporating the effect of antiviral treatment using interferon-a (IFN) and the authors
confirm that the IFN blocks the production of virions more than blocking new infections. Many works
dealing with viral dynamics [3-8], have taken into consideration the cure of infected cells assuming
the non-cytolytic mechanism, i.e. the removal of virus without destruction of infected cell. From a
biological point of view, it is assumed that infected cell can be cured or recovered and transformed
back into an uninfected cell. Taking into account the cure of infected cells, [9,10] present the dynamics
of HCV with a basic model that contains only three compartments, namely the uninfected cells, the
infected cells and the viral load. The mode of transmission the afore-mentioned works adopted is virus-
to-cell. That is why to better describe the infection, it is very important to consider another mode
of transmission, that of cell-to-cell transmission [11]. In fact, there is a model which have considered
both modes of transmission so as to describe the HCV dynamics with two therapies; namely interferon
and ribavirin [12]. Since the adaptive immunity plays an essential role in fighting the infection, many
mathematical models have included the adaptive immunity to study the viral dynamics. The adaptive
immunity is represented by the humoral immune response and the cellular immune response. Firstly,
the humoral immune response. As it is well known, represented by the antibodies or B cells, plays a
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crucial role in reducing the amount of free viruses. Recently, Pan et al. [13| proposed a model for HCV
infection, which integrates the both routes of transmission as well as the non-cytolytic cure of infected
cells. Their model have taken the following form

ar
dt
dl
—_— = 51TV + ,BQTI —al — ng,

=A—BTV — BT1+ ol —diT,

av

O k- pVW — dyV,
7 pV 3V,
dW

— =cVW — d,W.

a € 4

Here T and I represent the density of susceptible hepatocytes and infected hepatocytes, respectively.
V' is the viral load and W describes the antibody response. The susceptible hepatocytes are assumed
to be generated at a constant rate A and die naturally at the rate d;. Each susceptible hepatocyte
becomes infected either by one free virus at rate 8; or by direct contact with an infected cell at rate (s.
Infected cells become cured through the non-cytolytic mechanism at rate o and they die naturally at
rate do. Free virions are produced at rate k and they decay at rate dz. The humoral immune response
is induced by the formation of B cells at a rate ¢, and they are cleared at rate dy. The virions get
neutralized by the effect of B cells at a rate p. Secondly, the cellular immune response, represented by
cytotoxic T-lymphocytes (CTL) or T cells, is vital in reducing the amount of infected cells. Avendano
et al. [14] have formulated a model to describe the dynamics of HCV considering the effect of CTL
response and to analyze the effect of the treatment IFN from a theoretical point of view. Several
papers [15-19], have modeled the HCV dynamics by including both CTL and antibodies. For instance,
a model proposed by Wodarz [17] have explored the role of both humoral and cellular immune responses
in the dynamics of both acute and chronic HCV infection. Later, Yousfi et al. [19] have suggested a
mathematical analysis of the latter model. Similarly, Meskaf et al. [15], have explored global stability
analysis of the model [17]; they have included the effect of therapy. It will be more realistic to consider
the effect of both humoral and cellular immune response simultaneously, and so our contribution in
this paper is to study the model (1) along with the cellular immune response. Accordingly, our model
for HCV dynamics incorporates both virus-to-cell and cell-to-cell transmission, the possibility of cure
of infected cells, along with the effect of adaptive immunity. Our proposed model is governed by the
system of ordinary differential equations

(4T
=7 = ATV = BTT+al —diT,
% — BTV + BoTI — gl Z — al — dol,
% = kI —pVW —d3V, 2)
% =cVW — d,W,
% =glZ — dsZ.

Here our new variable Z represents the cellular immune response (CTLs). The CTL cells are activated
through the development of T cell at a rate g and get neutralized by the effect of T cells at a rate q.
Finally, d5 is the rate of the natural death of each T cell. The model (2) is represented graphically
in Figurel. The initial conditions are taken as (7(0),1(0),V (0),W(0),Z(0)) € R5. It is worthy

summarizing the works already done in this field in Table 1.
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do ds
Fig. 1. Schematic representation of the studied HCV infection.

Table 1. Comparison of the various previous HCV models.

Basic model Humoral response Cellular response  Cell-to-cell Cure References

Yes No Yes No No [23]

Yes Yes Yes No No [4,5,8,12,13]
Yes No No Yes No [15]

Yes No No No Yes [16,17]
Yes No No Yes Yes [18]

Yes Yes No Yes Yes 3]

Yes Yes Yes Yes Yes  Present model

The paper is organized as follows. The next section deals with the non-negativity and boundedness
of solutions. In Section 3, we will present the basic reproduction number and the equilibria. Section 4 is
concerned with the local stability of each equilibrium, followed by Section 5 which gives some numerical
simulations. The last section is a conclusive summary of the present work.

2. Non-negativity and boundedness of solutions

Since the model (2) interprets the biological evolution of cells, only bounded positive solutions make
the system of equations valid. Hence, in this section, we will prove that our system has positive and
bounded solutions. First, the system (2) with non-negative initial condition has a unique local solution
(T(t),I(t),V(t),W(t),Z(t)), because the system right-hand side is a locally Lipschitz function. The
result of non-negativity and boundedness of solutions is given as follows.

Theorem 1. IfS(0) >0, I(0) > 0, V(0) >0, W(0) > 0 and Z(0) > 0 then the solution of (2) are
positive and bounded for all t > 0. In addition, there exists an € > 0 such that litm infT'(t) > e.
—00

Proof. To show the non-negativity and boundedness of solutions of the system (2), we will adopt the
same approach as in [13,20]. Suppose that there exists the first time ¢y > 0 such that V(¢y) = 0 and
dVC%V) < 0. Accordingly from the third equation of (2) we have, dvcg") =kI(ty) <0.

In the same manner, we define the first time ¢; > 0 such that I(¢;) = 0 and % =T(tr)V(tr) <0.
Obviously, t; < ty. Now, consider that there exists a ¢t > 0 the first time such that T'(¢7) = 0 and

% = A+ al(tr) < 0. It is easy to see that tp < t; < ty, consequently I(t7) > 0. But we note
that % = A+ al(t7) > 0, which contradicts the definition of ¢r itself. Thus V is a non-negative

function. So, I(¢) > 0 and then T'(¢) > 0.
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From the fourth equation of the system (2),

W (t) = W(0)exp {/Ot [cV (s) — d4] ds} > 0.

For the last equation of the system (2),

Z(t) = Z(0)exp {/Ot [gI(s) — ds] ds} > 0.

Therefore, T'(t), I(t), V(t), W(t) and Z(t) are positive.
In order to demonstrate the boundedness of the solution, we can assume that there exist a function
X such as, X(t) =T(t)+ I(t) + %Z. From the equations of the system (2),

X
dd—ft) =A— le(t) — ng(t) - d5gZ < A — dxX(t), where dX = min {dl, dg, d5} .
g
Therefore, limsup X (t) < %
t—o00
In similar manner, it can be shown that for Y'(t) = V (t) + 2W(t),
ay(t d kA
ay(t) =kI(t) —dsV(t) — ipZ(t) < — —dyY(t), where dy =min{ds,ds}.
dt c dx
: Ak
Hence, hﬁilolp Y(t) < giar-

We have established that the solution of our system (2) is bounded and positive for all ¢ > 0.
Also, from the first equation of (2), we get

djc;—it) 2 A= BT OV(E) = BT (OI(t) — diT (1)
> A= (dy+ B1Vu + B2l) T(t) for all ¢,

where, I, = ﬁ and V, = 5 ;\Zy are respectively the higher bounds of I(t) and V(¢). Then we obtain,

.. A . . L.
htIE,;EfT(t) 2 I VoA, this confirms that there exists an € > 0 such that hmt1—n>£0 T(t) > e. |

In what follows, we will study our HCV mathematical model (2) in the following closed region

A Ak
0SSV s o0

cAk cAk }
< .

D:%ﬂmumvwﬂwyﬂmeRiogTwag

0<W(t) < 0<
®) pdxdy

Z(t) <

= pdxdy

3. The basic reproduction number and the equilibria

In this section, we present the basic reproduction number associated to our model (2) as well as its
equilibria and the conditions that guarantee the existence of this equilibria.
3.1. The basic reproduction number

The proposed model (2) has one disease free equilibrium (DFE) defined by

A
Ep = (T07 IO) Vv(]a WOv ZO) = <d_17 0,0,0, 0) .
We will look now for the basic reproduction number which measures the average number of new HCV
infected cells generated by a unique typical infected cell in a completely susceptible cells environ-
ment. This parameter is symbolized by Rg. To calculate it, we will apply the next generation matrix
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approach [27,29|. However, the associated equations with infection are

dl

% :,BlTV—l-BQT[—dQI—qIZ—Oé[:fl—Vl,
av

ﬁ:kl—d3v—pVZ:]:2_V2,

where Fiy = 81TV + BoTI, Vi = qlZ +dol +l, Fo =0, Vo =dsV +pVZ — kI
Knowing that Rg = p(FV 1), where p(A) is the spectral radius of matrix A. In our situation we
have

Q
S

(YA 971 Y
F=| 2im 2 lg :<d_12 d—f>
9F2 OFy 0 0 ’
a |g, 9 |g,
| o
v gy, Vg, | _ do+a 0
| ko dy )
o g, Vg,
Therefore \ L J AT T
Ro = (Bik + Bad3) B1To n B2To — Rot + Roo.

dyds (d2 + Oé) ds (d2 + Oé) do + «

The basic reproduction number is the sum of two quantities Rg; and Rgo, the first one is related to
virus-to-cell infection; while the second one is concerned with cell-to-cell transmission. Biologically,
Ro1 measures the average number of secondary infected cells caused by a free virus in a completely
susceptible cells environment. The second number R represents the average number of secondary
infected cells generated by one infected cell in a completely susceptible cells environment.

In the sequel of the paper, we will define some thresholds parameters. The humoral immune
reproduction number represented by RV = i d;_’:igii;f 55&21 FiBady)” which represents the average
of secondary generated infected cells in the presence of the humoral immune response. The cellular
immune reproduction number is defined by R¢TL = A dfﬁgfggjg Bi)k )’ which represents the
average number of secondary generated infected cells in the presence of the cellular immune response.
Also, we define the threshold RCTL W %, as the average number of secondary generated infected
cells in the presence of both humoral and cellular immune responses in the case of CTL response
is more dominant [17]. Finally, the threshold RCTLW = 053%4, represents the average number of
secondary generated infected cells in the presence of both humoral and cellular immune responses with

the antibodies response is significantly more dominant.

3.2. The free equilibrium and the endemic equilibria

The model (2) admits five equilibrium points, namely

1. The disease-free equilibrium, Ey = (Ty, Io, Vo, Wo, Zo), where T = d—/\l, Ip=Vo=Wy=2y=0.

2. The immune response free equilibrium, Fy = (T, 11, Vi, W1, Z1), where T7 = d(dz +a) I, =

B1k+B2d3”
da—gl % -1}, V1 = %I 1, W1 =0 and Z; = 0. This endemic equilibrium exists if Rg > 1

3. The infected equilibrium with humoral immune response, Fy = (Tb, I3, Vo, Wa, Z5), where Tp =

(d2+a)I _ —mat+y/mi+dmims _ d: _ ; —
m, I = “metye Vo=t Wy = (1) and Zy = 0, with my = Bycds,

51d2d4 —|— Cd1 (d2 + Oé) /\526 ma = )\ﬁld4
Here Ry = d d I represents the viral reproduction number in the chronic stage of infection with
the effect of humoral immune response. Obviously, F» exists if Ry > 1.
4. The infected equilibrium with cellular immune response E3 = (T3, I3, Vs, W3, Z3), where T3 =

Mol _ ds _ k _ _ [ dot (81V3+B213)T3 _
ﬁ1V3+Ba2[§+d17 I3 - g ‘/E} - d—3[3, W3 = 0 and Zg = ( zqa) ( Dol _ 1) :[—Iere7 R2 =
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% represents the viral reproduction number in the chronic stage of infection with the

effect of cellular immune response to infected cells. In fact, E3 exists if Ro > 1.
5. The infected equilibrium with both humoral and cellular immune response Ey = (Ty, I4, Vi, Wy, Z4),

— __Ataly — 4 — 4 — dy (kI _ = (dzta
where Ty = o5ty I = 2, Vo = ¢, Wy = § <d3v4 1), and Zy = ( 7 >><
(% _ 1>_ Here, R3 = % represents the viral reproduction number in the

chronic stage of infection with the effect of both humoral and cellular immune response and in-
fected cells. If R3 > 1 and R2CTL’W > 1 then E, exists.

4. Local stability analysis

In this section, we will study the local stability analysis of the equilibria by applying Routh—Hurwitz
Theorem [24]. First, we linearize the system (2), we have the following Jacobian matrix

=1V — Bl —dy =BT + « —bT 0 0
BV + B2l BT —qZ —dy — BT 0 —ql
0 k —d3 —pW  —pV 0
0 0 cW cV —dy 0
0 qZ 0 0 gl — ds
Additionally, we will need to the arithmetic and geometric means inequality, which states that the
geometric mean of n positive real numbers x1, x2, ..., x, is less than their arithmetic mean
1
1 n n n
H(2e) - (=)
=1 i=1
This inequality becomes equality if all the real numbers z1,xo, ..., z, are equals. Besides, we can see

that if [[;" , 2; = 1, then the inequality becomes Y "' | z; > n.
Theorem 2. The disease-free equilibrium FEy is locally asymptotically stable when Ry < 1 and
unstable when Ry > 1.

Proof. The characteristic equation at Fjy is identified by
(z+di) (z+ds) (x+ds) (2% + Ajz + Ag) =0,

where G
Ay =dy+ds+a— 2
dq
:d3+(d2+a)(1—Ro+R01),
A
Ag =ds(do + o) — d_l (Brk + Bad3)
:dg(dg—i-a)(l—Ro).
The characteristic equation, has five eigenvalues, three of them are obviously negative r1 = —dj,
To = —dy, and x3 = —ds. Observing that if Rg < 1, then A7 > 0 and also A, > 0. Hence,
the remaining other eigenvalues will have negative real parts. In conclusion, the DFE Ej is locally
asymptotically stable when Ry < 1 and unstable when Ry > 1. ]

Theorem 3. The immune response free equilibrium Ej is locally asymptotically stable when Ry > 1,
RW <1 and R¢Tl < 1 and unstable when R > 1 or RW > 1.

Proof. The characteristic equation at Fy is identified by
(l’ +dy — CV1) (JE + ds — gIl) (l’g + Bl$2 + Box + Bg) =0,
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where

By =di +dy +d3 + o+ 1 Vi + Bl — B2T1
Ryr  dy

=di+ds+ (dya+a)—+ —(de+a)(Ry— 1),
Ry doy
By = (dy +d3) (B1Vi + Bolh) + dy (da + ds + o — 52T7)
Ror  dy

:d1d3+d1(d2+a)—+—(d2+d3)(d2+0¢)(R0—1),

Ry do
B3 = dads (51 Vi + p211)
= dyds (dg + a) (R() — 1) .

Two first eigenvalues are cV; — d4 and gl; — ds, which can be rewritten as

Vi —dy= Bds RV (RW — 1) negative when R"W < 1,
A .
gli — ds = dglhgw (RCTL — 1) negative when RCTE < 1.

The other eigenvalues are the roots of the cubic equation z3 + B2 + Byx + Bz = 0.
Clearly B1, Bg > 0 if Ry > 1. Furthermore

R d?
B1By — Bs = dyids (dy + ds) + dy (d1 + d3) (d2 + ) R—Ool + d—; (dg + d3) (dg + @)? (Ry — 1)?
2
d7 2 Roi dy 2
+ — (dg +a)" — (R() -1+ — (d1d2 + 2dy1ds + d3) (do + ) (Ry— 1)
do Ry do
d; Ro1\ Ro
+ d_2 <d2d3 + d2(d2 + Q)R—()) R—O (d2 + Oé)

d R
+d—1(dgdg—i-d%—i-a(dg—i-dg))%(dg—i—&)(Ro—l).
2 0

Therefore, whenever Ry > 1 we have B1By — B3 > 0 then the Routh-Hurwitz criterion implies that
three roots of the cubic equation are negative when Ry > 1. Additionally, if R" > 1 or R°TL > 1, then
FE4 has at least one positive eigenvalue. So, we can state that the immune response free equilibrium
F; is locally asymptotically stable when Ry > 1, R" < 1 and R¢TY < 1 and unstable if RV > 1 or

RCOTL > 1.

Theorem 4. The infected equilibrium with humoral immune response Fs is locally asymptotically

stable when Ry > 1 and RfTL’W < 1 and unstable when RfTL’W > 1.

Proof. The characteristic equation at Fs is determined by

(x 4+ ds — gl2) (ac4 + C1x3 + ngz + Csx + 04) =0.

Where
kI %
Cr=dy+ BiVa+ Boly + -2 +M,
Vs I
kI d1 81T V5
Co = (dy + 1 Va + Pal2) 722 +do (B1Va + Bala) + cpVoZs + %7
kI T5 V-
Cs = (di + p1Va + Bala) cpVaZy + do (51 Va2 + Pal2) 722 + (5115 2) cpVaZs,
T5V:
Cy = do (1 Va + Bal2) cpVals + di <51 2 2) cpVals.
The first observed eigenvalue is glo —ds = d5 (RlcTL’W —1), which is negative when RlcTL’W < 1. Also,

C4,Cy > 0 whenever Ty, I5, Vo, Wy and Zs are all positive when Rq > 1. We have,
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kI kI \*
C1Cy — C5 = (dy + B1Va + B212) |(d1 + 1V + Bals) 2 4 BikT, + <—2>

V2 Vs
T5V;
+da (B1V2 + B212) [dl ¥ B Vo + Boly + &17222]
TV, . .
+ 5112 2 [dl (d1+ p1Va + Bol2) + dy <72> +d (51]2 2>} \ chploZs.
2 A :

Hence, C1Cy — C3 > 0 when Ry > 1.
(C1Cy — C3)C3 — CFCy = ckplaZs (di + B1Va + Bo12)” [dl +

+_

BiVaTy Kl
I Va

kI dokI
+ 22 (dy + 1Va + Bolz)? (B1Va + Bal?) Sl
V2 V2

+ B1kTs (di + B1Va + Bal2) (B1Va + Palz) (dids + cpVaZs)

dok Iy kI 2
kT 22
7 BikTs + ( v >

T,V ko 2
8112 Vs ,81]€T2—|—<—2>

+ CpVéZz]

+ (di + B1Va + Pal2) (B1Va + Pal2)

+ (B1Va + Balz) (didy + cpVaZs)

I Va

dy (B1V2 + B212) cpVaZa B 2]
cpVaZs do(B1Va + Pals)
do (B1Va + Bal3) cpVoZs B 2}
cpVaZy do (B1V2 + B212) '
As a result of the arithmetic and geometric means inequality, it follows that
dy (B1Va + Ba21y) cpVaZa
cpVaZs dy (1Va + Bal>)
Now, we can state that (C1Cy — C3)C3 — C2Cy > 0 whenever Ty, I, Vo, W and Z are positive

when R; > 1. By the Routh—Hurwitz criteria FEs is locally asymptotically stable when Ry > 1 and

RlcTL’W < 1 and unstable when RfTL’W > 1. ]

+ Prdackp (B1Va + Pala) ToVaZs [

+ dackp (di + p1Va + Bol2) (51Va + B2l2) 12 Z [

—-220.

Theorem 5. The infected equilibrium with cellular immune response Fs is locally asymptotically
stable when Ry > 1 and RgTL’W < 1 and unstable when RgTL’W > 1.

Proof. The characteristic equation at E3 is given by

(x +dy — cV;),)(a:A‘ + D123 + Doa® + Dsz + Dy) =0.

Where

V3T:
D1=d1+d3+ﬁ213+51V3+ﬁ1 573

I3 ’
Dy = dyds + didg + dods + dya + dsa + d1qZs + qds Zs + qds Zs — dy BoT5 — d3B215 + doS1V3
+d3p1 Vs — kBT + qB1VsZs + dafals + d3fBals + qBal3Z3,
D3 = dydads + didsae — dyd3 275 + dads 51 Vs — di kT3 + did3qZs + didsqZs + d3dsqZs + dadsfBal3
+ dsqBel3Z3 + d3qB1V3Z3 + dsqP1 Vs Zs + d3qBelsZs,
Dy = qdid3ds Z3 + d3dsB2qZ313 + qB1d3ds Z3 V3.
One of the eigenvalues is, c¢V3 — dy = d4(R2CTL’W — 1), which is negative when R2CTL’W < 1. Also,
Dy, Dy are positive whenever Ty, I5, Vo, Wy and Zs are all positive, that is, when Rs > 1. Obviously,
if RgTL’W > 1 then there exists one positive eigenvalue. Thus, according to the Routh-Hurwitz

Theorem, the immune response free equilibrium Fj3 is locally asymptotically stable when Rs > 1 and
R2CTL’W < 1 and unstable when RgTL’W > 1. [
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Theorem 6. The infected equilibrium with both humoral and cellular immune response FE, is locally

asymptotically stable when R3 > 1 and RgTL’W > 1.

Proof. The characteristic equation at Fy is

0+ F13:4 + Fg:p3 + F3:E2 + Fyx + F5 = 0.
Where
Fy =dy+ds+pWy + 51‘1/—:T4 + Bady + P1Va,

Fy = dids + dids + dods + dia + dga + dipWy + apWy + dopWy + dypWa + d1qZy + d3qZy + dsqZy

—d1 BTy — d3BoTy — kB Ty — pBaWyTy + dof1Vy + d3f1 Vi + dofBaly + d3fols + pgWaZy
+ qB1Z4Vy + BaplaWiy + qB2 2414 + pp1VaWa,

F3 = didods + didza — didg BTy — dikB1Ty + diapWy + dyapWy + didopWy + didapWy + dodapWy
+d1d3qZy + didsqZy + d3dsqZs + dad3PBols + dad3 1 Vi + dipqZaWy + dapqZsWy + dspqZsWy
+ dapBrVaWy + dodapBriVaWy + dsqBelsZy + d3qBelsZy — dipBoTuWy — dapBoTuWy + d3qB1VaZy
+d5qP1VaZy + dopBolsWy + dypBolsWy + pq1VaWaZy + pqPolsWaZy,

Fy = dydadypWy + didapaWy + didsdsqZy + d1dapgWaZy + didspgWaZy + dadspgWaZy
+ dadypBrVaWy + d3dsqBels Zy — d1dapBoTuWa + dodapBolsWy + d3dsqB1VaZy + dapqrVaWaZy
+ dspqp1VaWaZy + dspqBelaWaZy + dapqBelsWiZy,

F5 = pqdads 51 VaWaZy + pqds 2 1sWaZy + pqdidads WaZy.

It is evident that F; and Fj are positive whenever Ty, I, V4, W4 and Z, are all positive, that is true

when R3 > 1 and RgTL’W > 1. By the Routh—-Hurwitz theorem, we have that the immune response

free equilibrium Fj is locally asymptotically stable when R3 > 1 and RZC TLW S 1. ]

5. Numerical simulations

In order to clarify numerically the stability of each equilibrium to the model (2), we will present in
this section several numerical results using Matlab software. In five figures below (a) represents the
uninfected cells, (b) the infected cells, (¢) virions, (d) B cells and finally (e) T cells. The parameters of
our numerical tests are shown in Table 3 and their units in Table 2 and also the taken initial condition

is as follows (7°(0),1(0),V (0), W(0), Z(0)) = (30, 10, 2, 500, 400).

Table 2. The list of parameter units for the different numerical simulations.

Parameters Descriptions Units
A Source rate of uninfected cell cells ml~1 day~!
51 Virus-to-cell infection rate ml virion ~! day~!
B Cell-to-cell infection rate ml cell =1 day—!
dy Death rate of uninfected cell day !
ds Death rate of infected cell day !
ds Death rate of virus day ™!
dy Death rate of B cell day !
ds Death rate of T cell day !
q Neutralization rate of infected cell by T cell day !
Q@ Cure rate of infected cell day !
k Production rate of virus virions cell™! day~!
P Neutralization rate of virus by B cell ml cell ™! day—!
c Development rate of B cell ml virion™! day~!
g Development rate of B cell ml virion™! day~!
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Table 3. The list of parameter values for the different numerical simulations.

Parameter Fig.2 Fig.3 Fig.4 Fig.5 Fig.6 Sources
A 1 1 1 10 10 [17,18]
B1 0.01 0.01 0.01 0.01 0.01 [17,18]
Ba 0.001 0.01 0.01 0.01 0.01 [13]
dy 0.01 0.01 0.01 0.01 0.01 [22]
d 1 1 1 1 1 [22]
ds 6 6 1 1 1 [17,18,22]
dy 0.3 0.3 0.1 0.3 0.1 [17,18,28]
ds 0.05 0.05 0.05 0.05 0.1 [17,18,28]
q 54-107* 54-107% 54-107* 54-.-107% 54-107* [16]
o 0.01 0.01 0.01 0.01 0.01 [23]
k 2.9 2.9 2.9 2.9 2.9 [22]
p 0.006 0.006 0.006 0.006 0.006 [28]
c 0.1 0.1 0.1 0.01 0.01 [28]
g 0.015 0.015 0.015 0.015 0.015 [28]
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Fig. 2. The infection dynamics illustrating the stability of DFE equilibrium Ej.

In order to illustrate the stability of DFE equilibrium FEy, we will use the parameter values from
Table 3 which leads to Rg = 0.5776. Hence, the basic reproduction number is less than unity which
predicts theoretically the stability of the DFE equilibrium Ey. We clearly see from Figure2 that the
number of the uninfected cells increases progressively to reach their maximal level % = 100. Besides,
the concentration level of the infected cells, free virions, B cells and T cells is decreased towards zero.
This simulation concludes that the solutions of the system (2) converge to the disease-free equilibrium
Ey = (100,0,0,0,0). Therefore, our first numerical simulations support the theoretical result already
mentioned in Theorem 2.
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Fig.4. The infection dynamics illustrating the sta-
bility of the second endemic equilibrium FEs.

Fig.3. The infection dynamics illustrating the sta-
bility of the first endemic equilibrium Fj.

Within the parameters indicated in Table 3, we can calculate the following thresholds Rg = 1.4686,
RW = 0.1608 and RETL = 0.2491, which means Rg > 1, R" < 1 and R¢TL < 1, this predicts the
theoretical stability of the first disease equilibrium F;. We can remark from Figure3 that the unin-
fected, infected cells and virions show a damped oscillatory behavior and converge to their respective
coordinates of the equilibrium point F; = (68.1599,0.3220,0.1556,0,0). We also observe that the
concentrations of B cells and T cells converge towards zero. Consequently, the simulation is in good
agreement with the theoretical result already stated in Theorem 3.

The following thresholds can be calculated using the parameters listed in Table 3, Ry = 1.7843 and
also RfTL’W = 0.1846. Which means that R{ > 1 and RfTL’W < 1, this reflects the stability of F5 as
already pointed out in Theorem 4. Indeed, Figure 4 shows the behavior of the infection corresponding
to the stability of the disease equilibrium F>, we notice that after some periods of oscillations, the
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functions that describe uninfected cells, infected cells, virions, antibodies and CTL cells are approaching
respectively to their own coordinates of the infected steady state Eo = (38.4721,0.6153,1,130.7182,0).
Also, we can see easily that when the quantities of virions increase, the antibody response is activated
in order to neutralize them.
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Fig.5. The infection dynamics illustrating the sta-  Fig.6. The infection dynamics illustrating the sta-
bility of the third endemic equilibrium FEs. bility of the fourth endemic equilibrium Ej.

After several days of the infection, we observe from Figure5 that the humoral immune response
is the only component that converges towards zero while the other four problem variables converge
towards their respective values of the infected equilibrium F3 = (71.7,3.3,9.7,0,3308.6). While, based
on Table 3, we have Ro = 2.7673 and RgTL’W = 0.0290, that is to say Re > 1 and RgTL’W < 1, the
simulation supports the theoretical result stated in Theorem 5. Indeed, we can notice that because
there exists sufficient amount of infected cells then CTL cells are mobilized to destroy them.
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Our last numerical simulations deal with the stability of the last endemic equilibrium. Using Table 3,
we get R3=1.4104 and RgTL’W =0.0193. In other terms Rg > 1 and RgTL’W <1, which demonstrates
the stability of F4 as previously stated in Theorem 6. Indeed, it can be observed from Figure6 that
all the curves converge toward the endemic equilibrium E4 = (56.9811,6.6667, 10, 155.5556, 767.6450).

6. Conclusions

In this work, we have presented a mathematical model that describes the dynamics of HCV infection by
considering two essential modes of transmission, virus to cell and cell to cell. We have also taken into
account the cure of infected cells. The model has included the role of CTL and antibody responses in
our suggested hepatitis C virus dynamics. Moreover, we have presented some mathematical analysis,
including the existence, positivity, and the boundedness of the unique solution. We have determined
the basic reproduction number Rg. Besides, we have found the expressions of reproduction number of
the humoral immune, the cellular immune respectively noted by R" and R¢TZ. Also, the threshold
parameters that describe the average number of secondary generated infected cells in the presence of
both humoral and cellular immune are noted respectively by RICTL’W and RSTL’W. Then, the local
stability of one disease-free equilibrium and four endemic equilibria are established in terms of the
different conditions on the key thresholds Rg, R, RCTE, RfTL’W and RSTL’W. The paper ends
by some numerical simulations illustrating the behavior of infection by the HCV during the days of
observation. Results indicate that the immunity system represented by antibodies and CTL cells
reduces the infection under some appropriate conditions. More precisely, we have established that B
cells do not stimulate themselves to destroy the virions unless there are sufficient levels of virions.
Likewise, T cells do not neutralize the infected cells unless there exist sufficient amounts of infected
cells.
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AvHamiunuin ananiz mogeni HCV 3 mixkniTuHHOO nepepaqeto Ta
LWBUAKICTIO OAYy>XaHHS1 3@ HAasIBHOCTI aAanTUBHOIO IMYHITETY

Canxi M.Y, Xappym C.2, Ammamni K.

L Tabopamopia mamemamuru, iHGOPMAMUKY Ma 36CMOCYHKIS,
parxysvmem nayx © mexniku Moxammedia, Ynuisepcumem Xacana II Kacabranxu,
PO Boz 146, Mozammedia, Mapoxko
2 Hayionaavha wkoaa mopaieni ma ynpasainng Kacabaanwxu, Ynisepcumem Xacana I,
Kacabranxa, Mapoxxo

V 1iit pobOTi JOC/TITKYETHCST MATEMATUYIHO Ta IUCETHHO IMHAMIKY 3aXBOPIOBAHHS BipyCcOM
renatuty C 3 ypaxyBaHHSM JIBOX OCHOBHUX IILISAXIB mepeadi irdexkrrii, a came: Big Bipycy
J0 KJIITUHU Ta BiJl KJIITUHU JIO KJAITUHA. ¥ HAIMN MOJesi BpaXxOByEThCsS POJIb IMIBUJIKOCTI
ony:kaHHd 1H(MIKOBAHUX KJIITUH Ta epeKT aJanTuBHOrO imyHiTeTy. Momesib cKiamaeTbes
3 IWAITH HEeJHINHUX JudepeHIiaJbHIX PiBHAHD, IO OMUCYIOTh B3aEMOJII0 MixK Heindi-
KOBAHMMHU KJITHHAMU, iIH(PIKOBaHUMU KiiTuHAMU, BipioHamu remarury C Ta ajalTUBHAM
imyniTerom. Ileit iMmyHniTeT mogano depe3 rymopanbHuil i Kaituaauil imysui Biamosigi. 11sa
poboTa MOYNHAETHCSA 3 TOBEICHHS HEBII €MHOCTI Ta 0OMEKEHOCTI pO3B’A3KiB 1 BUBHATEHHS
OCHOBHOT'O BiZITBOPIOBAJIBHOTO umcJia. Jlajii BCTAHOBJIEHO II'Th PIBHOBaXKHUX IIOJIOXKEHb,
TEOPETUYHO Ta YHCEJIbHO IPOJIEMOHCTPOBAHO aHAJI3 JIOKAJIBHOI CTIMKOCTI I BCiX PiB-
HOBaXKHUX I0JI02KeHb. HaperniTi, 70X0quM0 BUCHOBKY, [0 YNCEIbHI PE3YIbTATH Y3I0JKY-
IOTHCS 3 HAIUMU TEOPETUIHUMU II0JIOZKEHHSIMHU.

Knrouosi cnosa: miockaimunhutl, weudkicms 00ysicants, 2ymoparvha iMynHa 610no-
810b, KAIMUHNKA IMYHHA 6i0Nn0610b, adanmusHutl IMYHIMEM, CMITKICMb.
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