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Abstract. Problem statement.  To ensure highly efficient inter-resonance modes of operation of 

vibrating equipment, the oscillating masses of the system must have certain inertia-rigid parameters, as 
well as a certain frequency of natural oscillations. The disadvantage of highly efficient inter-resonance 
oscillatory systems is that the third reactive mass must be small, and therefore the use of complex and 
large structures is impossible. Therefore, it is best to use the reactive mass as a continuous section. The 
continuous section, which is a flexible body, optimally combines inertial and rigid parameters. 
Scientific works have already considered the design of the vibrating table, in which the continuous 
section is an ordinary rectangular plate hinged in the intermediate mass. This decision looks quite 
promising. However, likely, the rectangular shape of the plate is not the best option to ensure 
maximum energy efficiency. Purpose. Extend the method of calculating the natural frequency of 
oscillations of the plates by the approximate Rayleigh-Ritz method using the general hyperboloid 
equation to plates with variable cross-section for the proposed types of plates and check the results 
with the calculation in Ansys software. Methodology.  The calculations of the plates were performed 
using the basic principles of the theory of oscillations, in particular the Rayleigh-Ritz method in the 
software product MathCAD. Findings (results) and originality (novelty). Two types of elastic plates 
with variable cross-sections are considered. In the first case, the shape of the plate was given by 
quadratic functions, in the second case, it was described by trigonometric functions of cosine. In both 
cases, the same conditions of attachment in the intermediate mass were observed. The calculation of 
the first natural frequency of oscillations of the considered plates was performed using the approximate 
Rayleigh-Ritz method with the assumption that the deflection of the plates occurs on the surface of the 
hyperboloid. The reliability of the obtained results was verified by numerical calculation in the 
software product Ansys. Practical value. It is assumed that the proposed types of plates can increase 
the dynamic potential of the vibrating machine. Scopes of further investigations. For further study of 
the considered types of plates as a continuous section of the inter-resonance vibrating machine, it is 
necessary to calculate their deflections at forced oscillations. 

Keywords: inter-resonance vibrating machine, continuous member, elastic plate, the natural 
frequency of body oscillations, Rayleigh-Ritz method. 
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Introduction  
Today in many branches of machine-building, chemical, construction, and mining industries 

vibration equipment is used to perform technological tasks. The most common type of force perturbation 
of oscillating masses of such vibrating machines is an electromagnetic drive. It provides the required 
perturbation force with relative ease of manufacture, simplicity, and reliability. However, typical designs 
of electromagnetic vibrating machines do not fully use the potential of energy efficiency. They were 
designed and put into production in the 80s of the last century, and therefore at the moment, with the rapid 
development of technology, have become a relatively energy-intensive type of equipment. Current trends 
in industrial development require the creation of energy-saving technological equipment because high 
competition encourages reducing the cost of production. Therefore, there is a need to create such 
technological equipment (including vibrating), which would have significant productivity and be energy 
efficient. 

Problem Statement 
Since the existing one- and two-mass designs of vibrating machines with electromagnetic drive have 

no prospects for significant improvements in energy efficiency, three-mass solutions have recently been 
developed [1]. This applies not only to vibrating machines with electromagnetic drive but also to vibrating 
equipment with inertial [2] and crankshaft [3] drives. 

To ensure highly efficient inter-resonance modes of operation of vibrating equipment, the oscillating 
masses of the system must have certain characteristics. Such characteristics include inertia-rigid 
parameters, as well as the frequency of natural oscillations. The disadvantage of highly efficient inter-
resonance oscillating systems is that the third reactive mass must be small, and therefore the use of 
complex and large structures is impossible. Recently, the use of not only classical discrete models of multi-
mass mechanical oscillating systems (MOS) but also the synthesis of continuous sections in them is 
considered [3]. It is best to use continuous sections as a reactive mass. The continuous section, which is a 
flexible body, optimally combines inertial and rigid parameters. In the article [4] the design of the vibrating 
table is considered, in which the continuous section is an ordinary rectangular plate, hinged in the 
intermediate mass. This decision looks quite promising. However, likely, the rectangular shape of the plate 
is not the best option to ensure maximum energy efficiency. 

Analysis of Modern Information Sources on the Subject of the Article 
The elastic plate has many eigenforms and eigenfrequencies. However, in the future, we will focus 

on the first natural frequency. Vibrational analysis of functionally graduated plates (FG) is often found in 
the literature [5-7]. In particular, various boundary conditions for fixing FG plates are considered, both 
simple conditions such as SSSS or CCCC, and more complex conditions such as CCSS, CSSS, CFSS, 
SFSS, SSSF, and others. More complex conditions are often solved using the Levy equations [8].  
S. P. Tymoshenko contributed to the improvement of the method of calculation of shells and elastic plates [9]. 

Plates with variable cross-sections are also investigated. In [10] was investigated the bending 
performance of sandwich variable cross-section plate. The authors have found the most adverse regional 
limit bearing capacity, stress-strain relationship, and stress three-dimensions degree in the ultimate state. 
M. Ece et al [11] have investigated the vibration of an isotropic beam that has a variable cross-section. In 
their article, the governing equation is reduced to an ordinary differential equation in spatial coordinate for 
a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration 
of the beam are obtained for three different types of boundary conditions associated with simply supported, 
clamped, and free ends. Natural frequencies and mode shapes are determined for each set of boundary 
conditions. In the article [12], the free vibration of the variable cross-section (non-uniform) single-layered 
graphene nano-ribbons (SLGNRs) is investigated by using the Differential Quadrature Method (DQM). 
The authors have also assumed that the width of the cross-section is vary exponentially along the length of 
the ribbon. Euler–Bernoulli beam theory is considered in conjunction with the nonlocal elasticity theory of 
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Eringen. Boiangiu et al [13] have solved the differential equations for free bending vibrations of straight 
beams with variable cross-section using Bessel’s functions. The general equations for one-step conical 
beams were used together with corresponding equations of cylindrical beams to model multi-step beams 
with various boundary conditions. E. Demir et al. [14] have investigated the free vibration behavior of a 
multilayered symmetric sandwich beam made of functionally graded materials (FGMs) with variable 
cross-section resting on variable Winkler elastic foundation. S. Zolkiewski in his work [15] has been 
focused on the problem of vibrating beams with a variable cross-section fixed on a rotational rigid disk. 
The beam was loaded by a transversal time-varying force orthogonal to an axis of the beam and 
simultaneously parallel to the disk's plane. In the paper [16], a general analytical method, based on 
segmentation view and iteration calculation, is proposed to obtain the modal function and natural 
frequency of the beam with an arbitrary variable section. In the calculation, the section function of the 
beam is considered as an arbitrary function. In addition, the total amount of calculation caused by high-
order Taylor expansion is reduced greatly by comparing with the original Adomian decomposition method 
(ADM). 

Statement of Purpose and Tasks of Research 
Given the prospects of highly efficient discrete-continuous inter-resonance vibrating machines and 

the advantages of using electromagnets as a drive for this type of equipment, this work aims to improve the 
methodology for designing inter-resonance vibrating tables with electromagnetic drive. Namely: 

– to extend the known [4] method of calculating the natural frequency of oscillations of plates by the 
approximate Rayleigh-Ritz method using the general equation of hyperboloid on plates with variable cross-
section; 

– check the results obtained by comparing them with the data obtained by calculating the natural 
frequencies of oscillations of similar plates in the software product Ansys. 

Main Material Presentation 
The continuous section, which is the object of research in this paper, is synthesized into a discrete 

system of the inter-resonance vibrating table with electromagnetic drive, the scheme of which is shown in 
Fig. 1. The vibrating table consists of active 1m , intermediate 2m , and reactive 3m  masses moving in 
generalized coordinates 1 2( ), ( )z t z t  and 3( )z t  accordingly.  The vibrational masses of the vibrating table 

are connected in series by means of elastic node systems (marked 12c  and 23c ). The active mass is attached 

to the foundation by means of a system of vibration isolators with total rigidity isc . It should be noted that 
the reactive mass in the form of a plate is a body with distributed parameters, and therefore combines 
inertial and rigid parameters. These parameters are relevant only in dynamic processes. In such cases, they 
appear as abstract values.  

 
Fig. 1. Schematic diagram of the inter-resonance vibrating table 
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Based on existing experience in the design of high-efficiency three-mass inter-resonance vibrating 
machines [1], it is known that the reactive mass in this type of vibrating equipment should be quite light (tens of 
times lighter than the active and intermediate masses) and have the necessary values of inertial stiffness. It is 
accepted [4] to use elastic plates as a reactive mass. The material of the elastic plate is structural steel. This 
material has a low cost and is endowed with magnetic properties. In our case, the elastic plate is fixed in the 
intermediate mass through a hinged connection. The described scheme of fixing the plate is shown in Fig. 2. 

 
Fig. 2. Estimated plate fastening scheme,  

where 1 3 2182 , 176 , 540 ,L L mm L mm L mm= = = = 87,5 .nh mm=  

The rigid parameters of the plate and its mass are related to the natural oscillation frequency 
parameter w . Therefore, to synthesize a continuous section into a discrete mechanical oscillation system 
(MOS), it is necessary to set the natural frequency of the plate. The correct selection of the parameters of 
the plate, in particular its natural oscillation frequency, contributes to the implementation of highly 
efficient modes of operation between resonances of vibrating machines. 

To calculate the natural frequency of a plate with a variable cross-section and this type of mounting, 
use the approximate Rayleigh-Ritz method. It was studied [4] that the deflection of such plates with hinged 
fastening at four points occurs on the surface describing the hyperboloid. As a result, it is assumed that 
when oscillating at the first natural frequency, the plate forms a surface area of the hyperboloid. The 
calculation scheme for the description of this process is shown in Fig. 3. 

To describe the oscillations of the plate, we use the general equation of the hyperboloid, which 
according to the calculation scheme in Fig. 3, will look like: 

2 2 2

2 2 2 1.y z x
b c a

+ - =  (1) 

To establish the displacement e  the relative coordinate system along the 0z – axis, use one of the 
four hinges. At the point with the coordinates 2 / 2, / 2nx L y h= = , the deflection along the 0z – axis will 
be equal to .e  Substituting the above conditions in equation (1), we obtain the following expression:  

( ) ( )2 22
2

2 2 2
/ 2 / 2

1.nh L

b c a
e

+ - =  (2) 

Denote k  the ratio of the sides /b c . From Fig. 3 shows that the parameter a  is equal to half the 
length of the plate. Denoting / 2a L= , we obtain the equality:  

( )
( )

( )222
2

2 2
/ 2/ 2

1 .
/ 2

nhLb
k bL

é ùæ ö ê úe = × + -ç ÷ ê úè ø ë û
 (3) 
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It is known [4] that the coefficient k  does not affect the first natural frequency of the rectangular 
plate. This statement is also true for plates with variable cross-sections. Therefore, for further calculations, 
we take the value 1k = . We also accept the value of the hyperboloid parameter 0,6.b =  

 

 
Fig. 3. Calculation scheme for determining the natural frequency of oscillations of the plate  

with the assumption that the oscillations occur on the hyperboloid surface, where   , ,x y z  – the coordinates  

of the absolute frame of reference; , ,b b bx y z  – coordinates of the relative frame of reference; e  – displacement  

of the relative coordinate system along the axis; , ,a b c   – hyperboloid parameters 

In Fig. 3 it can be seen that the deflection of the plate along the 0z – axis at any point will be: 
( , ) .W x y z= - e  (4) 

Given expressions (2)–(4), the equation of deflection of the plate surface will look like: 

( )
( )
( )

( )222 22 2
2

2 2 2 2
/ 2/ 2

( , ) 1 1 .
/ 2 / 2

nhLb x y bW x y
k kb bL L

é ùé ùæ ö æ ö ê úê ú= × + - - × + -ç ÷ ç ÷ ê úê úè ø è øë û ë û
 (5) 

When calculating the plate by the Rayleigh-Ritz method, we assume that the kinetic energy of the 
plate oscillations is equal to the potential. Therefore, the equality will be fair: 

.K P=  (6) 
Consider two cases of plates with variable cross-sections. In both cases, the change in the shape of 

the plate will be described by a continuous function at some interval. At the same time the conditions of 
fastening of a plate shown in Fig. 2.  
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In the first case, the shape of the plate on the 0xy  plane is described by quadratic equations 

( )
2 2

1 2 2 2 2
2 2

2
( )

2
n nh x h Ly x

L L L L

× × ×
= - +

- × -
 and 

( )
2 2

2 2 2 2 2
2 2

2
( )

2
n nh x h Ly x

L L L L

× × ×
= -

- × -
. The graph of these functions is 

presented in Fig. 4. 

 
Fig. 4. The first case of describing a plate with a variable cross-section using  

the quadratic equations 1( )y x  and 2 ( ).y x  

As can be seen from Fig. 4, the shape of the plate is limited by two parabolas. This type of 
continuous section can be considered a parabolic plate. 

For a parabolic plate, the ratio of kinetic energy 1K  to the square of the circular frequency of 

oscillations 2
1w  during deflection on the hyperboloid surface at the first natural frequency of oscillations 

can be determined from equation [4]: 

( )

( )
2 2

2 2 2 2
2 2

2 2

2 2 2 2
2 2

2
2/2

21
2

/21 2
2

1 ( , ) d d ,
2

n n

n n

h x h L
L L L LL

n
L h x h L

L L L L

K b W x y x y

× × ×
- +

- × -

- × × ×
-

- × -

= r
w

ò ò  (7) 

where – 37800 /kg mr = the density of steel; 3,4nb mm=  – the thickness of the plate. 
To find the potential deflection energy at the first natural frequency of the plate on the hyperboloid 

surface, we use the dependence [4]: 

( )

( )
2 2

2 2 2 2
2 2

2 2

2 2 2 2
2 2

22 22
2 22/2

1 22 2 2/2 2
2 22

d ( , ) d ( , )
d dy1 D d d ,

2 d ( , ) d ( , ) d ( , )2(1 )
d d d dy

n n

n n

h x h L
L L L LL

L h x h L
L L L L

W x y W x y
x

P x y
W x y W x y W x y

x y x

× × ×
- +

- × -

- × × ×
-

- × -

æ öæ öç ÷+ +ç ÷ç ÷ç ÷
è øç ÷= ç ÷æ öæ öç ÷ç ÷+ - m - ×ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øè øè ø

ò ò  (8) 

where the parameter D  can be determined from the equation: 
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( )( )3 2/ 12 1 ,nD E b= × - m  (9) 

0,26m =  – Poisson's ratio; 112,1 10E Pa= × - modulus of elasticity of the first type. 

Determining the ratio of kinetic energy to the square of the circular frequency 1
2

1 /K w  and the 

potential deflection energy 1P  of the parabolic plate on the hyperboloid surface according to (8) and (9), 

we establish the value of its first natural frequency [4]: 

1 1
1 31

1 1 551,7 88,6 .
2 2 2 1,78 10

P Hz
K -

w
u = = = =

p p p ×
 (10) 

In the second case, the shape of the plate on the plane is described by trigonometric functions from 

cosine 
( )3

2

cos( / )( )
2 cos / 2

nh x Ly x
L L

× p ×
=

× p ×
 and 

( )4
2

cos( / )( ) .
2 cos / 2

nh x Ly x
L L

× p ×
= -

× p ×
 The graph of trigonometric functions 

3( )y x  and 4 ( )y x  is presented in Fig. 5. 
 

 
Fig. 5. The second case is the description of a plate with a variable cross-section  

using trigonometric functions 3( )y x  and 4 ( )y x  

The shape of the plates in Fig. 5, described by trigonometric functions is similar to the shape of a 
plate bounded by two parabolas (Fig. 4). This similarity is due to the same conditions for fastening the 
plates in the intermediate mass of the vibrating machine. 

For a plate described by trigonometric equations, the ratio of kinetic energy 2K  to the square of the 

circular frequency of oscillations 2
2w  can be determined from equation [4]:  

( )

( )2

2

cos( / )
2 cos /2/2

22
2

cos( / )/22
2 cos /2

1 ( , ) d d .
2

n

n

h x L
L LL

n
h x LL

L L

K b W x y x y

× p×
× p×

× p×- -
× p×

= r
w

ò ò  (11) 
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The potential energy of the deflection at the first natural frequency of the plate described by 
trigonometric functions is [4]: 

( )

( )2

2

22 2
cos( / )

2 22 cos /2/2

2 22 2 2cos( / )/2
2 cos /2 2 2

d ( , ) d ( , )
d dy1 D d d ,

2 d ( , ) d ( , ) d ( , )2(1 )
d d d dy

n

n

h x L
L LL

h x LL
L L

W x y W x y
x

P x y
W x y W x y W x y

x y x

× p×
× p×

× p×- -
× p×

æ öæ öç ÷+ +ç ÷ç ÷ç ÷
è øç ÷= ç ÷æ öæ öç ÷ç ÷+ - m - ×ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è øè øè ø

ò ò  (12) 

Having obtained the value of the ratio of kinetic energy to the square of the circular frequency 
2

2 2/K w  and the potential energy 2P  of the deflection of the plate of the second type from dependences 

(11) and (12), determine its first natural frequency [4]: 

2 2
2 32

1 1 550,2 93,4 .
2 2 2 1,6 10

P Hz
K -

w
u = = = =

p p p ×
 (13) 

As can be seen from equations (10) and (13), the difference in the values of the first natural 
frequencies of oscillations of two different types of plates with the same mounting conditions is relatively 
small. 

The obtained values of the first natural frequencies of oscillations of the plates will be verified using 
the finite element method (FEM) using the software module Modal, which works in the shell of the 
product Ansys. To do this, build three-dimensional models of the plates described above. The results of the 
calculation of the first natural frequency of the parabolic plate are shown in Fig. 6, and for the plate 
described by trigonometric cosine functions - in Fig. 7. 

 

 
Fig. 6. The result of calculating the first natural frequency of the parabolic plate 
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Thus, according to numerical calculations in the software product Ansys, the first natural frequency 
of the parabolic plate is 87.364 Hz , and the plate is described by trigonometric equations – 92.757Hz . The 
values obtained by this method are close to those determined by the approximate Rayleigh-Ritz method 
using the hyperboloid equation. This indicates the correctness of the calculations. 

 

 
Fig. 7. The result of calculating the first natural frequency of the plate described  

by trigonometric cosine function 

Comparing the results obtained in this article with the value of the first natural frequency of the 
rectangular plate [4] with similar lengths of sections and fastening conditions in the intermediate mass, we 
can conclude that the considered structures of plates with variable cross-section are more rigid. Therefore, 
to ensure their inter-resonance mode of operation of the vibrating machine at oscillation frequency 50 Hz , 
it is necessary to increase the length 1L  and 3.L  

Conclusions 
To ensure the energy efficiency of vibrating technological equipment, there is a tendency to 

introduce additional oscillating masses, as well as the creation of discrete-continuous oscillating systems. 
The synthesis of the continuous section in the form of a flexible body is a promising direction in the 
development of vibrating machines. In this paper, two types of elastic plates with variable cross-sections 
were proposed. In the first case, the shape of the plate was given by quadratic functions, in the second case, 
it was described by trigonometric functions of cosine. In both cases, the same conditions of attachment in 
the intermediate mass were observed. The calculation of the first natural frequency of oscillations of the 
considered plates was performed using the approximate Rayleigh-Ritz method with the assumption that the 
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deflection of the plates occurs on the surface of the hyperboloid. The reliability of the obtained results was 
verified by numerical calculation in the software product Ansys. Compared with a rectangular plate of 
similar length, the natural frequency of the considered plates with variable cross-sections is significantly 
higher. To ensure their inter-resonance mode of operation of the vibrating machine at the frequency of 
oscillations 50 Hz  it is necessary to increase their total length. It is assumed that this may increase the 
amplitude of the oscillations of the ends, as well as increase the dynamic potential of the vibrating 
machine. 
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