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The integral path method was applied to determine certain stochastic variables which
occur in problems of financial engineering. A stochastic variable was defined by a stochastic
equation where drift and volatility are functions of a stochastic variable. As a result, for
transition probability density, a path integral was built by substituting variables Wiener’s
path integral (Wiener’s measure). For the stochastic equation, Ito rule was applied in
order to interpret a stochastic integral. The path integral for transition probability density
was also found as a result of the Fokker–Planck equation solution, corresponding to the
stochastic equation. It was shown that these two approaches give equivalent results.
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1. Introduction

Stochastic processes are at the foundation of many phenomena: physical, economic, financial, social,
etc. [1, 2]. To describe them, one uses stochastic differential equations or an associated with them
Fokker–Plank equations. The stochastic differential equation describes the dynamics of a certain value,
and the Fokker–Plank equation determines the transition probability density of stochastic variable
distribution. Stochastic equations are based on Brownian motion, which was used to describe stock
pricing dynamics and Brownian particle movement. The mathematic theory behind the Brownian
motion was founded by Wiener. In order to find average values of stochastic process characteristics,
one should integrate over Wiener measure, which is defined for space of all trajectories of stochastic
variable dynamics [3]. Integral over Wiener’s measure is a path integral of the simplest stochastic
equation, which describes Brownian motion or Wiener’s process.

Apart from that, path integral (integral over trajectories) is used in solving problems of quantum
mechanics and is based on Feynman–Kac theorem for Schrödinger equation solution [3–5]. The same
form makes sense for the Fokker–Plank equation solution. It is understood that path integrals that
are introduced for stochastic equations based on Wiener’s measure or for representation of solutions of
Fokker–Plank the equation should be equivalent and give the same description results.

Application of path integral to financial problems was considered in [6–8], where the construction
of path integral over Wiener’s measure was pointed out. As it turned out, for stochastic equations with
constant volatility (7) (in physical research of Langevin equations with adaptive white noise [1]) such
construction is achieved unambiguously. However, for stochastic equations with volatility which is a
function of stochastic variable (1) (or Langevin equations with multiplicative noise), the construction
of path integral is ambiguous [7]. Under such conditions, the rules of Ito, Stratonovich or more generic
schemas of stochastic integral determination are considered. The form of the Fokker–Plank equation
depends on the choice of the scheme of stochastic integral determination. As a result, path integrals
that depend on the choice of stochastic integral rule occur [7].

Despite a vast quantity of works dedicated to the theme, there are a number of inconsistencies
and contradictions for received results [9–12]. In particular, in many physical applications during con-
struction of path integral for Fokker–Plank equation, the analogies that include some arbitrariness are
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used [9–11]. In works [13,14] general schemes of discretization of Langevin equation with multiplicative
noise are considered, the functional representations of transition probability density are obtained, and
Onsager–Machlup functions are shown. However, the corresponding Fokker–Plank equations are not
given. In work [15], a construction of forming functional for a finding of mean values that are described
by the stochastic equation of (1) type was considered. However, no function which is handy in the
application was given.

In this paper, a functional integral for the transition probability density of stochastic equation (1)
was built. In order to determine stochastic integral, an approach for Ito scheme [7], which is usually
applied to financial problems, was used. Unlike work [7] we built a functional integral of variables of
equation (1). In addition, we introduced a solution to the Fokker–Plank equation for transition prob-
ability density in the form of functional integral and showed the equivalence of these two approaches.

2. Construction of path integral for stochastic equation

In problems of financial engineering, the price of stocks, assets, interest rate, and other attributes
reveal the stochastic nature [16]. Dynamics of noted attributes is modeled with the help of stochastic
equation which generally can be written as

dr(τ) = A(r(τ)) dτ +B(r(τ)) dw(τ), (1)

where dw denotes a Wiener process. The stochastic variable dw has a normal distribution with pa-
rameters

〈

dw
〉

= 0,
〈

dw2
〉

= dt. Values A(r), B(r) define the drift and process volatility respectively
and usually depend on the stochastic variable as well. Mostly the need of calculation of mean values
over all realizations of stochastic process occurs, which is performed by integrating over the Wiener
measure [3]

〈

F (r(τ))
〉

w
=

∫

w0

dµ(w)F (r(τ)), (2)

where F (r(τ)) is a functional, which depends on variables r(τ) at moments of time τ ∈ [t0, t]. An
element of Wiener’s measure is defined by the following formula

dµ(w) = Dw(τ) exp

(

− 1

2

∫

t

t0

(

w(τ)

dτ

)2

dτ

)

, Dw(τ) =
∏

τ

dw(τ)√
2πdτ

.

Direct computation in (2) consists of solution of stochastic equation (1) for r(τ) and it’s substitution
into (2) [17]. It is understood that the solution can be found only for the simple cases. That is why a
more practical approach is in variable substitution in integral over Wiener measure, taking into account
a connection between variables defined by equation (1)

∫

w0

dµ(w)F (r(τ)) =

∫

r0

dµ(r)F (r(τ)). (3)

Here dµ(r) denotes element of the measure received as a result of variable substitution. If functional
F (r(τ)) depends only on the value of variable r(t) at boundary, then averaging in (2) reduces to integral
with transition probability density K(r, r0, t, t0)

∫

r0

dµ(r)F (r(τ)) =

∫

dr F (r)K(r, r0, t, t0), (4)

where transition probability density determines through conditional measure

K(r, r0, t, t0) =

∫

r

r0

dµ(r). (5)
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In problems of modeling of interest rate [16] the following integrals occur
∫

r0

dµ(r)F

(
∫

t

t0

r(τ) dτ

)

=

∫

dr

∫

r

r0

dµ(r)F

(
∫

t

t0

r(τ) dτ

)

. (6)

Let’s consider the problem of construction of path integral for the transition probability density of
stochastic variable r(τ) based on (5) relation It is obvious that such transformations take place in (6)
case.

Mentioned above transformations are unambiguous in case of constant volatility B(r) = σ

dr(τ) = A(r(τ)) dτ + σ dW (τ). (7)

Construction of path integral for stochastic equation (7) is given in Appendix A.
As in the case of (7) equation let us write equation (1) in integral form

w(τ) − w(t0) =

∫

τ

t0

dr(τ ′)

B(r(τ ′))
−

∫

τ

t0

A(r(τ ′))

B(r(τ ′))
dτ ′ . (8)

First integral in left part of (8) is a stochastic integral [2,7] which value depends on the approach used
in computation of integral sum. For stochastic integrals rules corresponding to the different choices of
points for integrated function in integral sum were proposed. Let’s denote stochastic variable related
to stochastic integral by x(τ)

x(τ)− x(t0) =

∫

τ

t0

dr

B(r(τ ′))
= ϕ(r(τ)) − ϕ(r(t0)). (9)

Using Ito’s formula we find a differential equation which is satisfied by value x(τ)

dx(τ) = ϕ′(r(τ)) dr(τ) +
1

2
ϕ′′(r(τ))dr(τ)2 =

(

A(r(τ))

B(r(τ))
− 1

2
B′(r(τ))

)

dτ + dw(τ). (10)

Formula (10) takes into account that dr(τ)2 ≈ B(r(τ))2dτ . As it is seen, a stochastic differential
equation with constant volatility corresponds to the stochastic variable x(τ). Such an approach of
transitioning to the stochastic variable for which volatility is constant was proposed in [7]. In this
case, representation of transition probability density by path integral is defined by formula (32). Let’s
rewrite equation (10) by substituting stochastic variable r(τ) with x(τ)

dx(τ) = Aef(x(τ)) dτ + dw(τ), (11)

with the following notation

Aef(x(τ)) =
A
(

ϕ−1(x(τ))
)

B
(

ϕ−1(x(τ))
) − 1

2
B′(ϕ−1(x(τ))

)

.

As a result for stochastic equation (11) it is received the next path integral for transition probability
density

K(x, x0, t, t0) =

∫

x

x0

Dx(τ) exp

{

− 1

2

∫

t

t0

(

ẋ(τ)−Aef(x(τ))
)2
dτ − 1

2

∫

t

t0

A′
ef(x(τ))dτ

}

. (12)

A′
ef(x(τ)) denotes derivative by argument and

Dx(τ) =
∏

τ

dx(τ)√
2πdτ

. (13)
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Given transition probability density K(x, x0, t, t0) let’s write the following

P (x, t) =

∫

K(x, x0, t, t0)P0(x0, t0) dx0. (14)

Here transition probabilities density P (x, t) and P0(x0, t0) are given at respective time moments and
are normalized to 1. To transform equation (1) to transition probability density one needs to perform
a variable substitution in (14) using connection between variables (9)

P (r, t) =

∫

K̃(r, r0, t, t0)P0(r0, t0) dr0,

where

K̃(r, r0, t, t0) =
1

B(r)
K(ϕ(r), ϕ(r0), t, t0). (15)

Formulas (15) and (12) as solution of the problem were presented in [7]. However, given formulas are
not comfortable in application because in order to receive transition probability density for stochastic
equation (1) one needs to perform additional transformation. That is why it is convenient to express
transition probability density for stochastic process (1) with the help of path integral of variables
r(τ). Let’s perform variable substitution in path integral (12) according to (9) (x(τ) = φ(r(τ))). In
particular the following is received for expressions in integral (12)

ẋ(τ) =
1

B(r(τ))
ṙ(τ), Aef(x(τ)) =

A(r(τ))

B(r(τ))
− 1

2
B′(r(τ)),

A′
ef(x(τ)) = A′(r(τ))−A(r(τ))

B′(r(τ))

B(r(τ))
− 1

2
B(r(τ))B′′(r(τ)).

A measure element (13) is the next

Dr(τ) =
∏

τ

dr(τ)
√

2πB2(r(τ))dτ
.

Substituting denoted transformations into (12) we receive expression for transition probability density
of stochastic process (1)

K̃(r, r0, t, t0) =
1

B(r)

∫

r

r0

Dr(τ) exp

(

− 1

2

∫

t

t0

(

ṙ(τ)−A(r(τ))

B(r(τ))
+

1

2
B′(r(τ))

)2

dτ−
∫

t

t0

u(r(τ)) dτ

)

. (16)

Here the following is denoted

u(r(τ)) =
1

2
A′(r(τ))− 1

2
A(r(τ))

B′(r(τ))

B(r(τ))
− 1

4
B(r(τ))B′′(r(τ)).

Let’s extract the item 1
2B

′(r(τ)) in quadratic expression exponentially in (16). For item that contains
multiplicator ṙ(τ), we receive the following

exp

(

− 1

2

∫

t

t0

ṙ(τ)
B′(r(τ))

B(r(τ))
dτ

)

= exp

(

− 1

2

∫

t

t0

d ln(B(r(τ)))

dτ
dτ

)

=

√

B(r0)

B(r)
.

As a result for transition probability density we receive the following path integral

K̃(r, r0, t, t0) =

√

B(r0)

B(r)3

∫

r

r0

Dr(τ) exp

(

− 1

2

∫

t

t0

(

ṙ(τ)−A(r(τ))

B(r(τ))

)2

dτ −
∫

t

t0

u0(r(τ)) dτ

)

(17)

with the following notations

u0(r(τ)) =
1

2
A′(r(τ))−A(r(τ))

B′(r(τ))

B(r(τ))
+

1

8
B′(r(τ))2 − 1

4
B(r(τ))B′′(r(τ)). (18)
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It can be seen that for constant volatility B(r(τ)) = const in expression for (18) only the first item
remains which corresponds to (32).

Accordingly, we receive an integral path representation of transition probability density correspond-
ing to stochastic equation (1). The received formula is convenient in application because it allows
receiving a path integral by direct substitution of respective values of the stochastic equation. Based
on (17) one can receive transition probabilities density for stochastic processes which are used in finan-
cial engineering. Examples for Brownian geometric motion and Cox–Ingersoll–Ross (CIR) process [16]
are given in Appendix B.

As we already noted, the Ito rule was used to obtaine formulas (17) for transition probability
density. As it is known [2] the Fokker–Plank equation for transition probability density corresponding
to stochastic equation (1) is

∂K(r, r0, t, t0)

∂t
= −HK(r, r0, t, t0), (19)

where

H = −1

2

∂2

∂r2
B(r)2 +

∂

∂r
A(r) (20)

is a differential operator for Fokker–Plank equation. It is understood that path integrals for transition
probability density which are received base on stochastic equation and Fokker–Plank equation must
match.

The path integral for transition probability density that was found based on the solution of the
Fokker–Plank equation is given in Appendix C. As it can be seen from solution (50), (51) function
u0(r(τ)) matches the one for path integral (51) which means that both approaches give the same
results.

Let’s point out that in work [10] the path integral for Fokker–Plank equation (19) was defined based
on quantum-mechanical analogies and Feynman’s integral in phase space (coordinates and impulses
space) for imaginary time. Herein a certain “symmetry” rule was used for an operator in Fokker–
Plank equation (20). A function of coordinates and impulses and of Feynman’s integral in phase space
conforms to symmetry operator. After calculating path integrals for impulses, an action (expression
in the exponent of formula (50)) and corresponding Lagrange function (which in physical researches
is known by the name of Onsager–Machlup function) was received. However, the received expression
differs vastly from the one in (50). The symmetry approach using the Weyl rule was used in [11]
where the Fokker–Plank equation for particle dynamics under few noncorrelated Brownian motions
was considered. If to limit to a single coordinate of the particle and to one Brownian motion, we will
receive equation of the form (19) with the following operator

H = −1

2

(

∂

∂r
B(r)

)2

+
∂

∂r
A(r). (21)

Operator (21) can be reduced to the form (20)

H = −1

2

∂2

∂r2
B(r)2 +

∂

∂r
Ã(r) (22)

with notation Ã(r) = A(r) + 1
2B(r)B′(r).

For Fokker–Plank equation with operator (22) based on (50) we receive following solution

K(r, r0, t, t0) =

√

B(r0)

B(r)

∫

Dν(τ) exp

{

− 1

2

∫

t

t0

(

ν(τ)−A(r(τ))

B(r(τ))

)2

dτ −
∫

t

t0

ū0(r(τ)) dτ

}

× δ

(

r − r0 −
∫

t

t0

ν(τ) dτ

)

, (23)

ū0(r(τ)) =
1

2
A′(r(τ))− 1

2
A(r(τ))

B′(r(τ))

B(r(τ))
. (24)
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Comparing expression (24) with respective results of the work [11] we can see that the (24) has missing
term 1

8B
′(r(τ))2. It is obvious that the difference in works [10, 11] is caused by the arbitrariness in

symmetrization procedures used. At the same time, our approach of construction of a solution to the
Fokker-Plank equation is based only on identical transformation. Let us notice that in work [13] in case
of Stratonovich scheme an action with Onsager–Machlup function was received which matches (23),
(24).

Let’s generalize the considered approach of construction of path integral for a stochastic process
defined by two or more equations. In particular, let’s consider a system of two stochastic equations

dri(τ) = Ai(ri(τ)) dτ +Bi(ri(τ)) dwi(τ), i = 1, 2. (25)

If Wiener’s processes wi (i = 1, 2) are independent of each other
〈

dwi

〉

= 0,
〈

dw2
i

〉

= dt (i = 1, 2),
〈

dw1dw2

〉

= 0 then we receive a multiplication of transition probabilities density for each stochastic
equation which are defined by formulas (16), (18) respectively including parameters.

In case of correlation of Wiener’s processes
〈

dw1dw2

〉

= ρ for means one can receive a form with
double path integral

∫

w0

dµ(w)F (r(τ)) =

∫

r0

dµ(r)F (r(τ)).

Elements of Wiener’s measure for two correlated Wiener’s processes [3] are denoted as

dµ(w) = Dw(τ) exp

(

− 1

2

∫

t

t0

ẇ(τ)Cov−1
ẇ(τ) dτ

)

,

Dw(τ) =
∏

τ

dw1(τ)√
2πdτ

dw2(τ)√
2πdτ

(detCov)−1,

where

Cov =

(

1 ρ

ρ 1

)

is a covariant matrix of Wiener’s processes and also ẇ(τ) = (ẇ1(τ), ẇ2(τ)). Using the above ap-
proach one can receive a measure in a space of variables r1(τ), r2(τ) and a functional representation of
transition probability density for variables given by equations (25).

3. Conclusions

The work considers an application of the path integral method to determine transition probability
density of stochastic variables and means values that occur in problems of financial engineering. A
functional representation of transition probability density of stochastic variables, which is defined by
a stochastic equation with drift and volatility as functions of a stochastic variable, was built. Path
integrals are constructed by two different approaches. The first approach is based on stochastic equation
and the other one is based on Fokker–Plank equation for the transition probability density of stochastic
variable.

Construction of path integral based stochastic equation is based on variable subsection in Wiener’s
path integral (Wiener’s measure). As in work [7] a transition is performed from the stochastic equation
with random volatility to a stochastic equation of constant volatility using a variable substitution
approach. This results in an unambiguously defined path integral. A form of path integral for stochastic
equation depends on rule choice of stochastic integral calculating. We use the Ito rule, which is
conventional in problems of financial engineering. Unlike work [7] we perform an inverse variable
substitution in a path integral and receive a path integral in a variable of the initial stochastic equation.

In the second approach, the path integral for transition probability density is constructed on a
solution of the Fokker–Plank equation which also conforms to the Ito rule. So we used operational
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approaches and Gauss path integral. It is shown that path integrals received by two different approaches
are equivalent. Let’s note that used approach doesn’t have flaws inherent to a number of works
where certain rules of symmetrization of Fokker–Plank differential operator were used, that led to
inconsistent results. Application of received path integrals was shown on an example of financial
problems like Black–Scholes formula for option and time structure of interest rate in CIR model.
Methods considered in work can be generalized for problems with several stochastic equations, as a
subject to separate research.

Appendix A

Let’s rewrite equation (7) in integral form

w(τ) − w(t0) =
1

σ
(r(τ)− r(t0))−

1

σ

∫

τ

t0

A(r(τ ′)) dτ ′.

Based on relation between variables w(τ) and r(τ) (7) let’s find a Jacobian for the variable substitution
in path integral over Wiener’s measure (formulas (4), (5), (6)). For the measure element we find that (3)

Dw(τ) = D̃r(τ)

∥

∥

∥

∥

δw(τ)

δr(τ ′)

∥

∥

∥

∥

, D̃r(τ) =
∏

τ

dr(τ)√
2πdτ

, (26)

where
∥

∥

∥

∥

δw(τ)

δr(τ ′)

∥

∥

∥

∥

=

∥

∥

∥

∥

1

σ
δ(τ − τ ′)− 1

σ
A′(r(τ ′))θ(τ − τ ′)

∥

∥

∥

∥

=

(

∏

τ

1

σ

)

J0 (27)

is a functional determinant. The following notation was used

J0 =
∥

∥δ(τ − τ ′)−A′(r(τ ′)) θ(τ − τ ′)
∥

∥ , (28)

where the prime sign in A′(r) points to the derivative over argument. We consolidate the first multi-
plicator in (27) with element of the measure D̃r(τ) in (26) and write the following

Dr(τ) = D̃r(τ)

(

∏

τ

1

σ

)

=
∏

τ

dr(τ)√
2πσ2dτ

.

The functional determinant (28) is obtained using identity [11, 19]

det(I +K) = eSp ln(I+K), (29)

where I and K are unitary and arbitrary matrices in functional space respectively and Sp denotes the
spur of matrix. From formula (28)

K(τ − τ ′) = −A′(r(τ ′)) θ(τ − τ ′). (30)

Application of formula (29) consists in expansion of ln(I + K) into series and in finding of spur of
powers of matrices K(τ − τ ′). In presence of multiplicator θ(τ − τ ′) in (30) we receive the following
for all matrix powers starting from second

SpKn = 0, n > 2.

As a result we find the following for the determinant (28)

J0 = exp

{
∫

t

t0

K(τ − τ ′)|τ ′→τdτ

}

= exp

{

−1

2

∫

t

t0

A′(r(τ)) dτ

}

. (31)
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It was taken into account in formula (31) that θ(τ − τ ′)|τ ′→τ = 1
2 while keeping in mind that

θ(τ − τ ′)|τ ′→τ =
∫

τ

t0
δ(τ − τ1)dτ1 =

1
2 .

As a result, we receive the following path integral for the transition probability density of a stochas-
tic process

K(r, r0, t, t0) =

∫

Dr(τ) exp

{

− 1

2σ2

∫

t

t0

(

ṙ(τ)−A(r(τ))
)2
dτ − 1

2

∫

t

t0

A′(r(τ)) dτ

}

. (32)

Formula (32) was also obtained in [7] where for the variable substitution Jacobian the method of finite
approximations was used.

Appendix B

B.1. Geometric Brownian motion

Let’s consider stochastic equation for geometric brownian motion [2, 16]

dS(τ) = φS(τ) dτ + σ S(τ) dw(τ), (33)

where stochastic variable S(τ) > 0, τ ∈ [t0, t], σ > 0. Substituting values A(S(τ)) = φS(τ), B(S(τ)) =
σS(τ) of stochastic equation (33) into formula (16) we receive the following path integral for transition
probability density

KGB(S, S0, t, t0) =
1

σS

√

S0

S
exp

(

1

2
(t− t0)

(

φ− 1

4
σ2

))
∫

S

S0

DS(τ) exp

(

− 1

2

∫

t

t0

(

Ṡ − φS(τ)

σS(τ)

)2

dτ

)

.

(34)
Path integral (34) is reduced to a known integral [4, 21] by variable substitution x(τ) = ln(S(τ)). As
a result we receive the following

KGB(S, S0, t, t0) =
1

√

2π(t− t0)σS

√

S0

S
exp

(

1

2
(t− t0)

(

φ− 1

4
σ2

))

exp

(

− 1

2

(

ln
(

S

S0

)

− φ(t− t0)
)2

σ2(t− t0)

)

.

As it is known [16] that geometric brownian motion is used in determination of option pricing (see (4))

C(S0) =

∫ ∞

0
KGB(S, S0, t, t0)F (S) dS,

where F (S) is a payoff function.
Substituting F (S) = (S − K)+ (K is strike price, sign + denotes that F (S) > 0 when S > K

and equals to zero otherwise), we receive a well-known Black–Scholes formula [16] for European option
price.

B.2. Stochastic equation CIR

The CIR model is represented by equation

dr(τ) = k(θ − r(τ)) dτ + σ
√

r(τ) dw(τ),

where stochastic variable is r(τ) > 0, τ ∈ [t0, t], σ > 0, k > 0, θ > 0. Using (16) it is received an
expression for transition probability density

KCIR(r, r0, t, t0) =
( r

r0
)
λ

2

σ(rr0)
1

4

exp

{

− k

σ2
(r − r0)

}

exp

{

k2θ

σ2
(t− t0)

}

(35)
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×
∫

r

r0

Dr(τ) exp

{

− 1

2σ2

∫

t

t0

ṙ(τ)2

r(τ)
dτ − k2

2σ2

∫

t

t0

r(τ) dτ − σ2(λ2 − 1
4)

8

∫

t

t0

1

r(τ)
dτ

}

,

where λ = 2kθ
σ2 − 1. Let’s consider the following path integral found in (35)

I(r, r0) =

∫

r

r0

Dr(τ) exp

{

− 1

2σ2

∫

t

t0

ṙ(τ)2

r(τ)
dτ − k2

2σ2

∫

t

t0

r(τ) dτ − σ2(λ2 − 1
4)

8

∫

t

t0

1

r(τ)
dτ

}

. (36)

The path integral (36) is reduced to radial oscillatory integral [4,21] using variable substitution r(τ) =
σ2

4 z(τ)2

I(r, r0) =

∫
2
√

r

σ

2
√

r0

σ

Dz(τ) exp

{

− 1

2

∫

t

t0

ż(τ)2dτ − ω2

2

∫

t

t0

z(τ)2dτ − (λ2 − 1
4 )

2

∫

t

t0

1

z(τ)2
dτ

}

. (37)

Notation ω = k

2 is introduced in (37). For the integral above, we find the following

I(r, r0) =
2ω

σ sinh(ω(t− t0))
(rr0)

1

4 exp

{

−2ω

σ2
(r + r0) coth(ω(t− t0))

}

Iλ

(

4ω
√
rr0

σ2 sinh(ω(t− t0))

)

, (38)

where Iλ(x) is Bessel function. In summary, for the CIR model of transition probability density, the
following expression is obtained

KCIR(r, r0, t, t0) =
k exp

{

k2θ

σ2 (t− t0)
}

σ2 sinh(12k(t− t0))

( r

r0

)
λ

2

exp

{

− k

σ2

(

(r − r0) + (r + r0) coth
k(t− t0)

2

)}

× Iλ

(

2k
√
rr0

σ2 sinh(12k(t− t0))

)

, (39)

It is easy to see that (39) matches the [16] which was found using a different approach.
In models of interest rate path integrals with F (x) = e−x occur (see also formula (6)). Then in

path integral (37) one should take into account a multiplier exp{−
∫

t

t0
r(τ)dτ}. It is easy to see that

mentioned path integral is reduced to (38) with substitution ω =
√
k2+2σ2

2 . Taking that into account
and integrating final expression for r ∈ [0,∞] we receive a structure of interest rate in CIR model [16].

Appendix C

Path integral for Fokker–Plank equation

Let’s set solution to the (19) equation in the form of exponent operator

K(r, r0, t, t0) = e−(t−t0)H δ(r − r0). (40)

Transform differential operator (20) with the identity approach

H = −1

2

(

B(r)
∂

∂r
− p(r)

)2

+ u(r), (41)

where

p(r) =
A(r)

B(r)
− 3

2
B′(r),

u(r) =
1

2
A′(r)−A(r)

B′(r)

B(r)
+

1

2

A(r)2

B(r)2
+

1

8
B′(r)2 − 1

4
B(r)B′′(r).

(42)
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Using Gaussian quadrature [19,20] for linearization of quadratic term of operator (41) in formula (40)
results as

K(r, r0, t, t0) =

∫

Dq(τ) exp

{

− 1

2

∫

t

t0

q(τ)2dτ

}

Texp

{

−
∫

t

t0

q(τ)

(

B(r)
∂

∂r
− p(r)

)

dτ −
∫

t

t0

u(r) dτ

}

× δ(r − r0). (43)

Symbol T denotes a Т-product (a chronological ordering of operators) [4, 18] and also the following
notation was used

Dq(τ) =
∏

τ

√

dτ

2π
dq(τ).

After “unraveling” the differential operator B(r) ∂

∂r
[18–20] in (43) one can get

K(r, r0, t, t0) =

∫

Dq(τ) exp

{

− 1

2

∫

t

t0

q(τ)2dτ

}

exp

{
∫

t

t0

q(τ)p(r(τ)) dτ −
∫

t

t0

u(r(τ)) dτ

}

× δ(r(t0)− r0). (44)

In (44) the following was denoted

r(τ) = exp

{

−
∫

t

τ

q(τ ′)dτ ′B(r)
∂

∂r

}

r exp

{
∫

t

τ

q(τ ′)dτ ′B(r)
∂

∂r

}

.

It is easy to see that r(τ) satisfies equation

ṙ(τ) = q(τ)B(r(τ)), r(t) = r. (45)

Solution of the equation (45) is the following

r(τ) = f−1

(

f(r)−
∫

t

τ

q(τ ′) dτ ′
)

,

where function f(r) is a solution to equation f ′(r) = 1
B(r) and f−1(r) denotes inverse function such

that f−1(f(r)) = r.
In order to give a usual form to integral (44) let’s perform a variable substitution

f−1

(

f(r)−
∫

t

τ

q(τ ′) dτ ′
)

= r −
∫

t

τ

ν(τ ′) dτ ′ . (46)

Differentiating (46) for τ we receive the following relation between variables

q(τ) =
ν(τ)

B
(

r −
∫

t

τ
ν(τ ′) dτ ′

)
.

Similarly to Appendix A Jacobian is defined for variable substitution in path integral (44)

∥

∥

∥

∥

δq(τ)

δν(τ ′)

∥

∥

∥

∥

=

∥

∥

∥

∥

δ(τ − τ ′)

B(r(τ))
+ ν(τ)

B′(r(τ))

B(r(τ))2
θ(τ − τ ′)

∥

∥

∥

∥

=
∏

τ

1

B(r(τ))
J0. (47)

In formula (47) the following is denoted

J0 =

∥

∥

∥

∥

δ(τ − τ ′) + ν(τ)
B′(r(τ))

B(r(τ))
θ(τ ′ − τ)

∥

∥

∥

∥

,

where θ(τ − τ ′) is a Heaviside function. Using calculation approach shown in appendix A for J0 we
receive

J0 = exp

(
∫

t

t0

ν(τ)
B′(r(τ))

B(r(τ))
θ(τ ′ − τ)|τ ′→τdτ

)

=

√

B(r)

B(r0)
.
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As a result for transition probability density

K(r, r0, t, t0) =

√

B(r)

B(r0)

∫

Dν(τ) exp

{

− 1

2

∫

t

t0

ν(τ)2

B(r(τ))2
dτ

}

× exp

{
∫

t

t0

ν(τ)
p(r(τ))

B(r(τ))
dτ −

∫

t

t0

u(r(τ)) dτ

}

δ

(

r − r0 −
∫

t

t0

ν(τ) dτ

)

. (48)

In formulas above the following was denoted

r(τ) = r −
∫

t

τ

ν(τ ′) dτ ′, Dν(τ) =
∏

τ

√

dτ

2π

dν(τ)

B(r(τ))
. (49)

Let’s perform some transformation in exponent expression of (48) formula in term containing p(r(τ)).
Combine the first term in p(r(τ)) (42) with multiplicator ν(τ) with quadratic term ν(τ)2 in for-
mula (48). The second term in p(r) we calculate in closed form

exp

(

− 3

2

∫

t

t0

ν(τ)
B′(r(τ))

B(r(τ))
dτ

)

= exp

(

− 3

2

∫

t

t0

d

dτ
ln
(

B(r(τ))
)

dτ

)

=

(

B(r0)

B(r)

)
3

2

.

As a result of the above transformation we receive the following path integral for transition probability
density

K(r, r0, t, t0) =
B(r0)

B(r)

∫

Dν(τ) exp

{

− 1

2

∫

t

t0

(

ν(τ)−A(r(τ))

B(r(τ))

)2

dτ −
∫

t

t0

u0(r(τ)) dτ

}

× δ

(

r − r0 −
∫

t

t0

ν(τ) dτ

)

. (50)

Value u0(r(τ)) comparing to u(r(τ)) (42) does not include term with A(r(τ))2

u0(r(τ)) =
1

2
A′(r(τ))−A(r(τ))

B′(r(τ))

B(r(τ))
+

1

8
B′(r(τ))2 − 1

4
B(r(τ))B′′(r(τ)). (51)

Path integral (50) is defined in space of “velocities” ν(τ) [4,8,17,19] where connection with “coordinate”
r(τ) is defined in (49). Path integrals (16) and (50) give us equivalent solutions of the problem. We
use the form of path integral (50) only for comparison of approaches based on stochastic equation (1)
and a respective Fokker–Plank equation (19).
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Метод функцiонального iнтегрування в стохастичних рiвняннях
фiнансової iнженерiї

Янiшевський В. С., Барановська С. П.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Метод функцiонального iнтегрування застосовано для визначення деяких середнiх
випадкових величини, що зустрiчаються в задачах фiнансової iнженерiї. Випадкова
величина задається стохастичним рiвнянням, де дрейф та волатильнiсть є функцiя-
ми випадкової величини. В результатi для густини умовної ймовiрностi побудова-
но функцiональний iнтеграл шляхом замiни змiнних у функцiональному iнтегралi
Вiнера (мiрi Вiнера). Для стохастичного рiвняння використано правило Iто для iн-
терпретацiї стохастичного iнтегралу. Функцiональний iнтеграл для густини умовної
ймовiрностi знайдено також у результатi розв’язку рiвняння Фоккера–Планка, що
вiдповiдає стохастичному рiвнянню. Показано, що два пiдходи дають еквiвалентнi
результати.

Ключовi слова: стохастичне рiвняння, густина умовної ймовiрностi, рiвняння

Фоккера–Планка, функцiональний iнтеграл.
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