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Modeling and investigation of thermodynamic characteristics of spatially-finite metallic
systems is an essential task of modern nanophysics. We show that the widely used DFT
(density functional theory) is less efficient than the QST (quantum-statistical theory)
approach.
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1. Introduction

The modern development of nanotechnology has led to the necessity of constructing and studying
mathematical models of spatially-inhomogeneous systems. The most straightforward of such systems
are the spatially-finite metallic systems, for the study of which the density functional theory (DFT) is
widely used. This theory was proposed by Hohenberg and Kohn in the papers [1,2] and is essentially a
further development of the Thomas—Fermi theory [3]|, well-known in the theory of multielectron atoms.
However, the DFT is, in fact, a one-particle method and does not allow to take into account the
multiparticle correlations correctly [4,5]. It is particularly true when considering the discreteness of
ionic subsystem [6-8].

An alternative to DFT is the quantum-statistical theory (QST), proposed in [9, 10|, which is a
generalization of the reference system approach known in the study of multielectron systems [11].

In this paper the results of DFT and QST for calculating the thermodynamic characteristics of the
semi-infinite metallic systems are compared. The effectiveness of QST is shown.

2. Mathematical model of semi-infinite metallic systems

Advances in the theoretical description of the properties of metals with a surface are associated with
the usage of a simple model for such a system, which was proposed in the works [9, 10].

We consider a semi-infinite metallic system whose point ions have a charge Ze and the Cartesian
coordinates R; = (X;,Yj,Z;). Coordinates (X;,Y;) € R?, Z; < 0, 2 = 0 are the equation of a
“metal-vacuum” separation surface (plane), j = 1,..., Njon, € is the electron charge. Free electrons of
a semi-infinite metal have coordinates r;, i =1,..., N.

The Hamiltonian of this model can be presented as follows:

h2 N 1 N 1onP P 1Nion 2 Nlon
— . - it i)
H=—go3 Bits D Z_rjﬁZ 7 2 ]_rk,+Z w(rRy), (1)
1=1 1#j= 1 j;ﬁk 1 i=1 j=1

where the first term is the kinetic energy of free electrons, the second term is the Coulomb interaction
energy between free electrons, the third term is the kinetic energy of ions (P is the ion momentum
operator), the fourth term is the potential energy of the inter-ionic interaction, and the last term is
the energy of electron-ion interaction [13]; & is the Planck constant, m and M are the electron mass
and ion mass, respectively.
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We assume that, in general, the system is electroneutral, i.e. the following condition is met

Z Nion = N.
It is convenient to present the potential w(r;, R;) of electron-ion interaction in this form
w(r;, R;) = w(r; — Rj|) + Aw(r;, R;), (2)

where w(|r; — R;|) is the periodic potential of electron-ion interaction in the case of infinite metal
(pseudopotential [11]), Aw(r;,R;) is the deviation of electron-ion interaction potential in a semi-
infinite metal from the periodic potential w(|r; — R;l).

We extract from Hamiltonian (1) the Hamiltonian of the semi-infinite jellium model Hjey [11]
(reference system). We have (see [11])

N Nion
H:Hje11+Hii+ZZ5w(|I’i—Rj|), (3)
i=1 j=1
where N N
s PPl ] (Ze)? 1 pien(R) pjen(R')
H;; = —j+— 7——/dR/de J° )0 (4)
23 ;1 R,-Ri 25y R-R|
2
s pien(R) pjen(R) — (£
JOH f"‘z‘/surfrz /dR/ dR’ . ( )‘:JR,(—:R),,’ (V) ) (5)
and

h (eN)? 1
it = — ; dR dR [ dR' ———=- (6
=g z +3 z e z/ o AR [ AR e )
is the Hamiltonian of homogeneous jellium (see [11]);
‘/surf(ri) = ‘Gell(ri) + ‘/ion(ri)a (7)
the surface potential acting on electrons;
eN Nio
5 — pien(R)
Vell(ri) = 6/ de—a Vion rz ru
! v ri — R Z::

dw(lr; — Ry|) = w(|r; — Ry|) +

[ ar 775?'0[(;) ®)

is the difference potential — the difference between the ion pseudopotential and the electrostatic po-
tential of the positive charge of semi-infinite jellium.

In (4)~(7)

ion

pen(R) = 5 0(-2) ©

is the ion density distribution in the semi-infinite jellium model, V' = SL/2 is the volume of a semi-
infinite metal, S is the surface area of a semi-infinite metal, L is the range of change of electron
z-coordinate normal to the surface: z € (—L/2;L/2). Henceforth, we assume that S — oo, L — oo,

O(x) is the Heaviside step function.
The grand partition function = of the proposed model for semi-infinite metal

E =Spexp{—pB(H — uN)} (10)
in the adiabatic approximation [13] can be presented as follows:
E=exp{— BH;}Spexp{ — B(Hjen — uN — Vi) } = =1 - Eo, (11)
where -
E1 =exp{ — BHi} (12)
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and ~
Eo = exp { 5( jell — /LN - ‘/Cl)} (13)

is the grand partition function for the electronic subsystem of a semi-infinite metal in the field of fixed
ions. In (11), (13) p is the chemical potential, and 3 is thermodynamic beta [11].

Calculating Z5 (13) or thermodynamic potential Qo = —% In=y [11] is an essential task to obtain
various thermodynamic and structural characteristics of metals with a separation surface.

3. DFT

The basis of DFT approach for calculating 2, are theorems of Hohenberg—Kohn [1] and Mermin [15],
which state that the thermodynamic potential €2 can be presented as follows:

Qn(r)] = Fn(r)] + /v(r) n(r)dr. (14)

The minimum  determines the electron density n(r), unambiguously connected with an external
potential v(r). The external potential is the potential created by the discrete ionic subsystem, i.e.

SYum
7j=1
Here w(R —r) is the pseudopotential of electron interaction [6,7].

e i =so{ (70 + S ), 1

 exp{—B(T+U —uN))

Spexp {—B(T + U — V)]
is the operator of equilibrium distribution, obtained from the condition for minimum (14), and the
electron density

where

n(r) = Sp (pof(r)).

n(r) is the electron density operator, T' is the electron kinetic energy operator 7' = —% Zf\il A;, and
2

U is the operator of potential energy of interaction U = % Zgéjzl ﬁ
i—rj

Since condition fu > 1 [11] is always satisfied, Q@ + uN = E is the energy of the system, and
therefore the minimization condition

Enin = min E[n(r)]

n(r)

gives the Euler-Lagrange equation [1|, namely

dE[n(r)] = /5n(r) {%(I‘)T[n(r)] + Ve () — ,u} =0, (16)

where 5
Veft (T | r’ + TEXC[ n(r)]. (17)

The condition for minimum (16) leads to solvmg a system of one-particle Schrodinger equations

<—%Ai + Vet (T) — €i> i(r) =0 (18)

taking into account the following relations

N(u)

Z [4(r) (19)
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Aveg(r) = —4mn(r). (20)

Summation in (19) runs over states j such that e; < p.

The system of equations (18)—(20) is solved by numerical methods. The main problem is con-
structing the functional Ey.[n(r)] [1,2], for which various approximations are used (see [3]). But all
currently available approximations lead to accurate results only in two extreme cases: (1) the density
n(r) changes very slowly (Vn(r) — 0); (2) n(r) > 1 (when the kinetic energy operator T' can be
neglected). Moreover, the chemical potential y is uncertain.

4. QST

In QST, proposed in [9-11], the calculation of the grand statistical sum =5 reduces to the calculation of
many-particle density matrices, and in the case of local pseudopotentials the energy F of the considered
model can be represented as follows:

E=FEy+0EW +6E® 1 .., (21)
where
1IN L2 1 2
Ey=c¢o+ 15 dz Flo(z)/ dA <g(r||,z,z,)\) — e_) (22)
2V Jorp eyl /o
1 N2S L)2 L2
2 VT /dr/ dzl/ dzg F2 (r), 21, 22) — Fl(zl)Fl 29) / dAg(r|, 21, 22, A),
L)2 L2
and the screened potential of inter-electronic interaction
1 .
g(rHv 21, %2 A) = § Z eXp {1(q7 I'||)} g(qv 21,225 )‘) (23)
a
is the solution of integral equation
L2 L2
g(qulaszA) :V(q7zl 2)\/ dZ/ dZ v qul —z)D(q,z',z)g(q,zl,zQ,/\). (24)
" 5L L2 L2

Here D is the “density—density” correlation function of the noninteracting system of electrons in the
field of “surface potential” Viu¢(r) [11],

1 4re? .
v(q,z) = i3 Z 2R exp (—ikz), (25)
k
f0= =5 - n[1+ exp (Bl — Eall)}] (26)
ko

is the total energy of the system of noninteracting electrons in the field of “surface potential” Viu¢(r),
Eq(k)|) are the one-particle electron energies (see [11]).
In the case of homogeneity of a semi-infinite metal in a plane parallel to the separation plane

SZ/dz (Sw)y(z — Z,)n(2), (27)

2

ion Nlon

N(N -1
SE® = —5% Z/drl /drg dw(|r1 — Rj|)dw(|ry — R;|) Fa(ri,ra)
1 j=1

7

<.

n Nio
ﬁV Z/dréw v — Ry|)ow(|r — Ry[) F1(2)

||P12
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2 Nion Nion
N_ S2

+ B2v2 ]Z:; /dzl <5w>p(zl - Zj)Fl(Zl) ; /dz2 <5w>p(22 — Z;)F1(z2). (28)

In (22)—(28) Fi(r) and Fy(ry,ra) are the unary and binary Bogolyubov distribution functions, respec-

tively [16], which are also the functionals of chemical potential yi; n(z) = £ Fy(2) is the electron density
distribution;

(6w} (z — Z5) = % / arow (fr2 4 (= — Z)?) (29)

FY(ry) and FY(r1,r2) are respectively the unary and binary distribution functions of the system of
noninteracting electrons in the field of “surface potential” Vy,¢(r;), defined by formula (7) (see [9-11]).
The general scheme for obtaining expressions for 6 E(™ is given in [11].

Knowing the expression for €2, one can get the chemical potential p from the condition

o0
N=(N)=——. 30
) = -5 (30)
Thus, in contrast to DFT, expressions (22)—(29) state a clear dependence of the total energy E
of the electronic subsystem of a semi-infinite metal on the distribution functions and show that just

knowledge of the unary (density distribution) function is not enough to calculate the energy of a
semi-infinite metallic system.

5. Some numerical results and conclusions

In order to perform numerical calculations of the thermodynamic characteristics (energy, density of
particle distribution, etc.) in QST, it is first necessary to know the chemical potential u of the electronic
subsystem, determined by equation (29). It is essential to note it is necessary to correctly take into
account the electroneutrality condition, as shown in Refs. [17,18].
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Fig. 1. Chemical potential u for electronic subsystem Fig. 2. Unary electron distribution function Fj(z).
of semi-infinite metal. Solid line — QST calculation, dashed line — using the

Monte Carlo method, dash-dot — DFT calculation.

Fig. 1 shows the results of calculating the chemical potential u as a function of the Gell-Mann—
Brueckner parameter 74 [11]. As can be seen from the calculated results, depending on the electron
concentration, the chemical potential p behaves in the same way as for the unlimited metal; that is,
the presence of the separation surface has little effect on its behavior.

Fig. 2 presents the results of calculating the unary distribution function Fj(z) for the values of

parameter ¢ = 2.66 and comparing them with the results obtained in the DFT approach and the
Monte Carlo method calculations.
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As can be seen from Fig. 2, the results of calculating Fi(z) in the near-surface region agree better
with the Monte Carlo method calculations [12] than the results of the DFT approach.

The results of binary distribution function F(r), 21, 22) calculation for the case, when one of the
electrons is located at the point (r| = 0,22 = —6ap) and (r)| = 0, 2o = —4ap), are given in Fig. 3. The
results of such calculations in DFT are impossible.

=
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Fig. 3. Binary electron distribution function F(r)|, z1,22) and its projection on (r||, z1)-plane for z, = —6ap

(top) and z2 = —4ap (bottom).

Fig.4 shows the results of calculating
the surface energy o (defined according to
Kohn-Lang [2]) as a function of concentra~
tion. As shown in Fig.4, the surface en-
ergy values calculated in the QST approach
agree much better with the experimental
data for simple metals than those obtained
in DFT. Moreover, the surface energy o in
QST is positively defined (unlike DFT) in
the whole range of electron concentrations.
As the electron concentrations decrease (as
the s parameter increases), the QST val-
ues of o start to agree with the DFT cal-
culations. This behavior of DFT calculations of ¢ indicates the fundamental problems with correct
consideration of correlation effects in DFT for metallic systems with a separation surface.

TS; ap

Fig. 4. Surface energy o.
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Very interesting are the results of calculating the effective potential g(r||, 21, z9) of inter-electronic
interaction, which cannot be performed in DFT. These calculations are presented in Fig. 5.
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Fig. 5. Dependence of the effective potential of inter-electronic interaction, taking into account the correction
for the local field (the Hubbard approximation), on the distance between electrons in the separation plane
and the normal coordinate of one of the electrons, the other coordinate is fixed. Calculations performed for
rs = 4.86ap.

The results of calculation show that in the depth of metal the effective potential of the inter-
electronic interaction is axially symmetric; this symmetry is lost when approaching the separation
plane.

The obtained results suggest that QST is more effective for studying spatially-finite metallic systems
than DFT. The use of expression (21) for calculating the total energy of spatially-finite metallic systems
allows, if one knows the distribution functions Fj(z), Fa(z1, 22) (see (19)—(28)) of the reference frame
(electrons in the field of surface potential), to calculate the thermodynamic characteristics of such

systems.
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HaniBobme>xeHa metaneBa cuctema: QST npotn DFT

Kocrpo6iit I1. I1., Mapkosuu B. M., Puxa 1. A.

Hauionarvrut ynisepcumem “/Ivsiscora nosimexnira”,
eyn. C. Bandepu, 12, Jlveis, 79013, Yxpaina

PoszrisinyTo nBa minxomm G0 MOJEIOBAHHS IIPOCTOPOBO-OOMEXKEHUX METAJIEBUX CHCTEM:
DFT 1a QST. B 060x mijixojgax eHepris HAIiBOOMEXKEHMX MeTaJliB IIOJA€ThCA Y BUIJISJI
Psiy 38 CTEMEHSIMU TICEBIONIOTEHIaIy eJleKTpoH-i0HHOT B3aemomil. Oqrak QST-minxin, Ha
Bimminy Big DFT-migxomy, m03Bo/IsIE KOPEKTHO BpaxyBaTu OOMIHHO-KOPESIiitHi edexkTn
€JIEKTPOHHOI ITiICUCTEMH.

Knto4oBi cnoBa: nanisobmesceruti Meman, meopia GyHKUIORaAY 2Yycmuny, 6a2amouac-
MUHKOBG MAMPUUA 2YCTUHU.
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