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Modeling and investigation of thermodynamic characteristics of spatially-finite metallic
systems is an essential task of modern nanophysics. We show that the widely used DFT
(density functional theory) is less efficient than the QST (quantum-statistical theory)
approach.
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1. Introduction

The modern development of nanotechnology has led to the necessity of constructing and studying
mathematical models of spatially-inhomogeneous systems. The most straightforward of such systems
are the spatially-finite metallic systems, for the study of which the density functional theory (DFT) is
widely used. This theory was proposed by Hohenberg and Kohn in the papers [1,2] and is essentially a
further development of the Thomas–Fermi theory [3], well-known in the theory of multielectron atoms.
However, the DFT is, in fact, a one-particle method and does not allow to take into account the
multiparticle correlations correctly [4, 5]. It is particularly true when considering the discreteness of
ionic subsystem [6–8].

An alternative to DFT is the quantum-statistical theory (QST), proposed in [9, 10], which is a
generalization of the reference system approach known in the study of multielectron systems [11].

In this paper the results of DFT and QST for calculating the thermodynamic characteristics of the
semi-infinite metallic systems are compared. The effectiveness of QST is shown.

2. Mathematical model of semi-infinite metallic systems

Advances in the theoretical description of the properties of metals with a surface are associated with
the usage of a simple model for such a system, which was proposed in the works [9, 10].

We consider a semi-infinite metallic system whose point ions have a charge Ze and the Cartesian
coordinates Rj = (Xj , Yj , Zj). Coordinates (Xj , Yj) ∈ R

2, Zj 6 0, z = 0 are the equation of a
“metal–vacuum” separation surface (plane), j = 1, . . . , Nion, e is the electron charge. Free electrons of
a semi-infinite metal have coordinates ri, i = 1, . . . , N .

The Hamiltonian of this model can be presented as follows:

H = −
~
2

2m

N
∑

i=1

∆i +
1

2

N
∑

i 6=j=1

e2

|ri − rj|
+

Nion
∑

j=1

(Pj ,Pj)

2M
+

1

2

Nion
∑

j 6=k=1

(Ze)2

|rj − rk|
+

N
∑

i=1

Nion
∑

j=1

w (ri,Rj) , (1)

where the first term is the kinetic energy of free electrons, the second term is the Coulomb interaction
energy between free electrons, the third term is the kinetic energy of ions (P is the ion momentum
operator), the fourth term is the potential energy of the inter-ionic interaction, and the last term is
the energy of electron-ion interaction [13]; ~ is the Planck constant, m and M are the electron mass
and ion mass, respectively.
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We assume that, in general, the system is electroneutral, i.e. the following condition is met

ZNion = N.

It is convenient to present the potential w(ri,Rj) of electron-ion interaction in this form

w(ri,Rj) = w(|ri −Rj |) + ∆w(ri,Rj), (2)

where w(|ri − Rj |) is the periodic potential of electron-ion interaction in the case of infinite metal
(pseudopotential [11]), ∆w(ri,Rj) is the deviation of electron-ion interaction potential in a semi-
infinite metal from the periodic potential w(|ri −Rj |).

We extract from Hamiltonian (1) the Hamiltonian of the semi-infinite jellium model Hjell [11]
(reference system). We have (see [11])

H = Hjell + H̃ii +
N
∑

i=1

Nion
∑

j=1

δw(|ri −Rj |), (3)

where

H̃ii =

Nion
∑
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j
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1
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(4)
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, (5)

and

Hunif
jell = −

~
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(6)

is the Hamiltonian of homogeneous jellium (see [11]);

Vsurf(ri) = Vjell(ri) + Vion(ri), (7)

the surface potential acting on electrons;

Vjell(ri) = e

∫

V
dR

eN
V − ρjell(R)

|ri −R|
, Vion(ri) =

Nion
∑

j=1

∆w(ri,Rj)

δw(|ri −Rj |) = w(|ri −Rj|) +
1

Nion

∫

V
dR

eρjell(R)

|ri −R|
(8)

is the difference potential — the difference between the ion pseudopotential and the electrostatic po-
tential of the positive charge of semi-infinite jellium.

In (4)–(7)

ρjell(R) =
eN

V
θ(−Z) (9)

is the ion density distribution in the semi-infinite jellium model, V = SL/2 is the volume of a semi-
infinite metal, S is the surface area of a semi-infinite metal, L is the range of change of electron
z-coordinate normal to the surface: z ∈ (−L/2;L/2). Henceforth, we assume that S → ∞, L → ∞,
θ(x) is the Heaviside step function.

The grand partition function Ξ of the proposed model for semi-infinite metal

Ξ = Sp exp {−β(H − µN)} (10)

in the adiabatic approximation [13] can be presented as follows:

Ξ = exp
{

− βH̃ii

}

Sp exp
{

− β
(

Hjell − µN − Ṽei
)}

≡ Ξ1 · Ξ2, (11)

where
Ξ1 = exp

{

− βH̃ii

}

(12)
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and
Ξ2 = exp

{

− β
(

Hjell − µN − Ṽei
)}

(13)

is the grand partition function for the electronic subsystem of a semi-infinite metal in the field of fixed
ions. In (11), (13) µ is the chemical potential, and β is thermodynamic beta [11].

Calculating Ξ2 (13) or thermodynamic potential Ω2 = − 1
β ln Ξ2 [11] is an essential task to obtain

various thermodynamic and structural characteristics of metals with a separation surface.

3. DFT

The basis of DFT approach for calculating Ω2 are theorems of Hohenberg–Kohn [1] and Mermin [15],
which state that the thermodynamic potential Ω can be presented as follows:

Ω[n(r)] = F [n(r)] +

∫

v(r)n(r) dr. (14)

The minimum Ω determines the electron density n(r), unambiguously connected with an external
potential v(r). The external potential is the potential created by the discrete ionic subsystem, i.e.

v(r) =

Nion
∑

j=1

w(Rj − r).

Here w(R − r) is the pseudopotential of electron interaction [6, 7].
In (14)

F [n] = Sp

{(

T + U +
1

β
ln ρ̂0

)

ρ̂0

}

, (15)

where

ρ̂0 =
exp {−β(T + U − µN)}

Sp exp {−β(T + U − µN)}

is the operator of equilibrium distribution, obtained from the condition for minimum (14), and the
electron density

n(r) = Sp (ρ̂0n̂(r)) .

n̂(r) is the electron density operator, T is the electron kinetic energy operator T = − ~
2

2m

∑N
i=1 ∆i, and

U is the operator of potential energy of interaction U = 1
2

∑N
i 6=j=1

e2

|ri−rj |
.

Since condition βµ ≫ 1 [11] is always satisfied, Ω + µN = E is the energy of the system, and
therefore the minimization condition

Emin = min
n(r)

E[n(r)]

gives the Euler–Lagrange equation [1], namely

δE[n(r)] =

∫

δn(r)

{

δ

δn(r)
T [n(r)] + veff(r)− µ

}

= 0, (16)

where

veff(r) ≡ v(r) +

∫

n(r′)

|r− r′|
dr′ +

δ

δn(r)
Exc[n(r)]. (17)

The condition for minimum (16) leads to solving a system of one-particle Schrödinger equations
(

−
~
2

2m
∆i + veff(r)− εi

)

ψi(r) = 0 (18)

taking into account the following relations

n(r) =

N(µ)
∑

j=1

|ψj(r)|
2 (19)
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∆veff(r) = −4πn(r). (20)

Summation in (19) runs over states j such that εj 6 µ.
The system of equations (18)–(20) is solved by numerical methods. The main problem is con-

structing the functional Exc[n(r)] [1, 2], for which various approximations are used (see [3]). But all
currently available approximations lead to accurate results only in two extreme cases: (1) the density
n(r) changes very slowly (∇n(r) → 0); (2) n(r) ≫ 1 (when the kinetic energy operator T can be
neglected). Moreover, the chemical potential µ is uncertain.

4. QST

In QST, proposed in [9–11], the calculation of the grand statistical sum Ξ2 reduces to the calculation of
many-particle density matrices, and in the case of local pseudopotentials the energy E of the considered
model can be represented as follows:

E = E0 + δE(1) + δE(2) + . . . , (21)

where

E0 = ε0 +
1

2

NS

V

∫ L/2

−L/2
dz F 0

1 (z)

∫ 1

0
dλ

(

g(r||, z, z, λ) −
e2

|r|||

)
∣

∣

∣

∣

r||=0

(22)

+
1

2

N2S

V 2

∫

S
dr||

∫ L/2

−L/2
dz1

∫ L/2

−L/2
dz2

(

F 0
2 (r||, z1, z2)− F 0

1 (z1)F
0
1 (z2)

)

∫ 1

0
dλ g(r||, z1, z2, λ),

and the screened potential of inter-electronic interaction

g(r||, z1, z2, λ) =
1

S

∑

q

exp
{

i(q, r||)
}

g(q, z1, z2, λ) (23)

is the solution of integral equation

g(q, z1, z2, λ) = ν(q, z1 − z2) +
β

SL2
λ

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ ν(q, z1 − z′)D(q, z′, z)g(q, z1, z2, λ). (24)

Here D is the “density–density” correlation function of the noninteracting system of electrons in the
field of “surface potential” Vsurf(r) [11],

ν(q, z) =
1

L

∑

k

4πe2

q2 + k2
exp (−ikz) , (25)

ε0 = −
1

β

∑

k||,α

ln
[

1 + exp
{

β(µ− Eα(k||))
}]

(26)

is the total energy of the system of noninteracting electrons in the field of “surface potential” Vsurf(r),
Eα(k||) are the one-particle electron energies (see [11]).

In the case of homogeneity of a semi-infinite metal in a plane parallel to the separation plane

δE(1) = S

Nion
∑

j=1

∫

dz 〈δw〉p(z − Zj)n(z), (27)

δE(2) = −β
N(N − 1)

2V 2

Nion
∑

i=1

Nion
∑

j=1

∫

dr1

∫

dr2 δw(|r1 −Rj |)δw(|r2 −Ri|)F2(r1, r2)

+ β
N

2V

Nion
∑

j=1

Nion
∑

i=1

∫

dr δw(|r −Rj |)δw(|r −Ri|)F1(z)
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+ β
N2

2V 2
S2

Nion
∑

j=1

∫

dz1 〈δw〉p(z1 − Zj)F1(z1)

Nion
∑

i=1

∫

dz2 〈δw〉p(z2 − Zi)F1(z2). (28)

In (22)–(28) F1(r) and F2(r1, r2) are the unary and binary Bogolyubov distribution functions, respec-
tively [16], which are also the functionals of chemical potential µ; n(z) = N

V F1(z) is the electron density
distribution;

〈δw〉p(z − Zi) =
1

S

∫

dr|| δw
(√

r2|| + (z − Zi)2
)

; (29)

F 0
1 (r2) and F 0

2 (r1, r2) are respectively the unary and binary distribution functions of the system of
noninteracting electrons in the field of “surface potential” Vsurf(ri), defined by formula (7) (see [9–11]).
The general scheme for obtaining expressions for δE(n) is given in [11].

Knowing the expression for Ω, one can get the chemical potential µ from the condition

N = 〈N〉 = −
∂Ω

∂µ
. (30)

Thus, in contrast to DFT, expressions (22)–(29) state a clear dependence of the total energy E
of the electronic subsystem of a semi-infinite metal on the distribution functions and show that just
knowledge of the unary (density distribution) function is not enough to calculate the energy of a
semi-infinite metallic system.

5. Some numerical results and conclusions

In order to perform numerical calculations of the thermodynamic characteristics (energy, density of
particle distribution, etc.) in QST, it is first necessary to know the chemical potential µ of the electronic
subsystem, determined by equation (29). It is essential to note it is necessary to correctly take into
account the electroneutrality condition, as shown in Refs. [17, 18].
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Fig. 1. Chemical potential µ for electronic subsystem
of semi-infinite metal.

Fig. 2. Unary electron distribution function F1(z).
Solid line — QST calculation, dashed line — using the
Monte Carlo method, dash-dot — DFT calculation.

Fig. 1 shows the results of calculating the chemical potential µ as a function of the Gell–Mann–
Brueckner parameter rs [11]. As can be seen from the calculated results, depending on the electron
concentration, the chemical potential µ behaves in the same way as for the unlimited metal; that is,
the presence of the separation surface has little effect on its behavior.

Fig. 2 presents the results of calculating the unary distribution function F1(z) for the values of
parameter rs = 2.66 and comparing them with the results obtained in the DFT approach and the
Monte Carlo method calculations.
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As can be seen from Fig. 2, the results of calculating F1(z) in the near-surface region agree better
with the Monte Carlo method calculations [12] than the results of the DFT approach.

The results of binary distribution function F2(r||, z1, z2) calculation for the case, when one of the
electrons is located at the point (r|| = 0, z2 = −6aB) and (r|| = 0, z2 = −4aB), are given in Fig. 3. The
results of such calculations in DFT are impossible.
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Fig. 3. Binary electron distribution function F2(r||, z1, z2) and its projection on (r||, z1)-plane for z2 = −6aB
(top) and z2 = −4aB (bottom).
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Fig. 4 shows the results of calculating
the surface energy σ (defined according to
Kohn–Lang [2]) as a function of concentra-
tion. As shown in Fig. 4, the surface en-
ergy values calculated in the QST approach
agree much better with the experimental
data for simple metals than those obtained
in DFT. Moreover, the surface energy σ in
QST is positively defined (unlike DFT) in
the whole range of electron concentrations.
As the electron concentrations decrease (as
the rs parameter increases), the QST val-
ues of σ start to agree with the DFT cal-
culations. This behavior of DFT calculations of σ indicates the fundamental problems with correct
consideration of correlation effects in DFT for metallic systems with a separation surface.
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Very interesting are the results of calculating the effective potential g(r||, z1, z2) of inter-electronic
interaction, which cannot be performed in DFT. These calculations are presented in Fig. 5.
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Fig. 5. Dependence of the effective potential of inter-electronic interaction, taking into account the correction
for the local field (the Hubbard approximation), on the distance between electrons in the separation plane
and the normal coordinate of one of the electrons, the other coordinate is fixed. Calculations performed for

rs = 4.86aB.

The results of calculation show that in the depth of metal the effective potential of the inter-
electronic interaction is axially symmetric; this symmetry is lost when approaching the separation
plane.

The obtained results suggest that QST is more effective for studying spatially-finite metallic systems
than DFT. The use of expression (21) for calculating the total energy of spatially-finite metallic systems
allows, if one knows the distribution functions F1(z), F2(z1, z2) (see (19)–(28)) of the reference frame
(electrons in the field of surface potential), to calculate the thermodynamic characteristics of such
systems.

[1] Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 136 (3B), B864–B871 (1964).

[2] Lang N. D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Physical Review B. 1

(12), 4555–4568 (1970).

[3] Theory of the Inhomogeneous Electron Gas. Edited by Lundqvist S. and March N. H. Springer, Boston,
MA (1983).

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 178–185 (2022)



Semi-infinite metallic system: QST versus DFT 185

[4] Mattsson A. E., Kohn W. An energy functional for surfaces. The Journal of Chemical Physics. 115 (8),
3441–3443 (2001).

[5] Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W. First-principles evaluation of the surface barrier
for a Kohn–Sham electron at a metal surface. Physical Review Letters. 68 (9), 1359–1362 (1993).

[6] Fiolhais C., Henriques C., Sarŕia I., Pitarke J. M. Metallic slabs: Perturbative treatments based on jellium.
Progress In Surface Science. 67 (1–8), 285–298 (2001).

[7] Dobson J. F., Rose J. H. Surface properties of simple metals via inhomogeneous linear electronic response.
I. Theory. Journal of Physics C: Solid State Physics. 15 (36), 7429–7456 (1982).

[8] Eguiluz A. G. Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response ap-
proach. Physical Review B. 35 (11), 5473–5486 (1987).

[9] Kostrobij P. P., Markovych B. M. Semi-infinite metal: Perturbative treatment based on semi-infinite jel-
lium. Condensed Matter Physics. 11 (4), 641–651 (2008).

[10] Kostrobij P. P., Markovych B. M. Semi-infinite jellium: Thermodynamic potential, chemical potential, and
surface energy. Physical Review B. 92 (7), 075441 (2015).

[11] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Basis approach in the theory of multielectron systems.
Rastr-7, Lviv (2017), (in Ukrainian).

[12] Acioli P. H., Ceperley D. M. Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair
correlation functions. Physical Review B. 54 (23), 17199–17207 (1996).

[13] Vakarchuk I. O. Quantum mechanics. Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian).

[14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E. Methods of quantum field theory in statistical physics.
Fizmatgiz, Moscow (1962), (in Russian).

[15] Mermin N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review. 137 (5A),
A1441–A1443 (1965).

[16] Bogolyubov N. N. Selected works on statistical physics. Moscow University Press, Moscow (1979), (in
Russian).

[17] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the
plasmon spectrum in dielectric–metal–dielectric structures. Mathematical Modeling and Computing. 6

(2), 297–303 (2019).

[18] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philo-
sophical Magazine. 98 (21), 1991–2002 (2018).

Напiвобмежена металева система: QST проти DFT

Костробiй П. П., Маркович Б. М., Рижа I. А.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна

Розглянуто два пiдходи до моделювання просторово-обмежених металевих систем:
DFT та QST. В обох пiдходах енергiя напiвобмежених металiв подається у виглядi
ряду за степенями псевдопотенцiалу електрон-iонної взаємодiї. Однак QST-пiдхiд, на
вiдмiну вiд DFT-пiдходу, дозволяє коректно врахувати обмiнно-кореляцiйнi ефекти
електронної пiдсистеми.

Ключовi слова: напiвобмежений метал, теорiя функцiоналу густини, багаточас-

тинкова матриця густини.
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