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Soil moisture analysis is widely used in numerous practical cases, from weather forecasts
to precise agriculture. Recently, availability of moisture data increased due to the rapid
development of satellite image processing. However, satellite retrievals mostly provide
low-resolution surface data. In this study, we attempt to retrieve surface soil moisture
on the field scale using a decomposition algorithm. Furthermore, we add a mathematical
model based on Richards equation to evaluate soil moisture in the root zone. To combine
the results of both models, we employ a nudging data assimilation technique. Also, a dy-
namical variation of the method is proposed which makes it more adaptive to the soil type
and provides improvement to modeling results. Two types of numerical experiments are
conducted. Simulation results show reasonably good convergence with the measurements.
The model performs with average correlation of 0.58 on the whole root zone, reaching 0.85
on top soil layers.
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1. Introduction

Soil moisture is one of the crucial variables for land and atmosphere system modeling. Precise and
up-to-date information on soil moisture is required for real-world applications such as water resource
management, runoff and flood prediction, weather and climate forecasting. In agriculture, knowledge
of current soil moisture conditions enables better yield prediction, irrigation planning, and water con-
servation. It obviously finds a great use in agriculture and can enhance its sustainable development;
however, these applications demand frequent and accurate monitoring. Ground observations may be
the most accurate source of soil moisture data, but they are relatively expensive and provide only
sparse local information.

In the last decades, satellite imagery became acknowledged as an effective and accessible alternative
for ground observations. Microwave sensors are able to provide soil moisture measurements over
large spatial scales with reasonable accuracy. As the quality and availability of satellite retrievals is
improving, their use in land monitoring is growing. However, satellite retrievals reflect only the state
of the top soil layer (0− 5 cm) and at isolated instances of time, which is often not enough to describe
the state of the entire system.

A variety of methods is developed to propagate satellite observations onto continuous problem
domain. For example, exponential filters can provide estimates on root zone soil moisture based
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on satellite-retrieved values. This approach is rather effective for its simplicity, yet receives mixed
validation results from researchers. Some mark its ability of predicting the patterns [1], and others
show the quality of exponential filters results is still not as good as land surface model predictions [2,3].
It can also be expected that these results must depend greatly on the quality of observations, since the
errors present in retrievals are propagated further.

Land surface models, on the other hand, are able to provide continuous predictions of the system
state, but they contain errors due to multiple generalizations of process physics. In addition, as shown
in [4], simulated soil moisture is highly dependent on chosen model and parameters, and so cannot
represent real state precisely, especially at field scale. Therefore, a model can benefit greatly from
the satellite data, and combining them is a powerful tool for improving the quality of predictions.
One way is to do that is to use Earth remote sensing data for model calibration and parameter
estimation. This has been implemented successfully, for example, in [5–7]. The other way is to include
observations into the problem solving process, thus adapting the model output to observed real state.
The latter approach is known as data assimilation, and is popular in many modeling branches including
hydrology. Also, some recent studies combine both uses, updating both state and parameter estimates
with observations [8, 9].

Data assimilation involves combining data from different sources on the same variable, such as
soil moisture predicted by model, observed by satellite or ground sensors. While both the model and
observations are imperfect, they contain different kinds of information, and so their combination is
able to yield more accurate result than each of them does separately [10]. Such assimilated results
agree better with the real state of the system than each of the sources alone, which has been proved
in a number of works [11–13]. Some studies aimed at measuring the positive impact of combining
observations with a model, e.g. [11, 14, 15] to name a few.

Assimilation of satellite soil moisture has been successfully used in numerous land surface models.
GLDAS [16] and CLM [17, 18] might be the most notable examples of this. Studies [9, 19–25] are
just a few cases from the multitude of other recent implementations. Soil moisture assimilation also
allows solving more complex problems that require additional data, such as inverse problems or rainfall
correction [26].

Basically, data assimilation methods can be divided in two main categories: smoothing and filtering.
Filtering works in a predictor-corrector scheme, where the simulated state is first evaluated by the model
and then corrected (filtered) based on the observations. Common examples are popular Kalman filters
(KF), but also three dimensional variational assimilation (3D-Var) and particle filters should be noted.
Smoothing methods, on the other hand, add observations into the model continuously, combining past
and future information [10]. This category includes 4D-Var and its parent, Newtonian relaxation or
nudging.

Newtonian nudging (NN) has first been used for meteorology and oceanography problems to refine
initial conditions. Later it received application in hydrology problems, not least in soil moisture predic-
tion. NN has been used in a number of global and regional scale models, such as GLEAM, TOPLATS
and CATCHY [27–29]. The method involves adding a nudging term into the model equation, which
can be physically interpreted as a force pulling the solution towards observations.

A number of studies investigated the relation of NN to other assimilation methods. For example,
Vidard et al. [30] proposed a formulation of NN similar to 4D-Var and KF. Results of [31] indicate
that KF generally performs better than NN, but the latter is more effective computationally. For
that reason, in GLEAM v.3 Kalman filters were replaced with NN, yielding results of nearly the same
accuracy for much less computational time [27]. It has also been reasoned from theoretical point of
view that the principal concept of smoothing methods like NN and 4D-Var better suits continuous
problems than KF, since filtering corrections can cause model shocks [10]. Most recent researches
successfully implemented ensemble Kalman filter to Richards equation-based models in spite of the
reported difficulties, see for example [32, 33]. Still, a more stable and cheaper NN method is still
preferred in complex nonlinear problems, e.g. unsteady water flow problems as described in [34].
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The purpose of this study is to develop a complex model for simulating soil moisture with both
satellite and land model level, which will be able to predict soil moisture at field scale. Section 2 of
the paper deals with the core of the mathematical model. Section 3 explains adjustments made to
the Newtonian nudging method in the moisture governing equation. Section 4 describes the procedure
used to acquire satellite retrievals. Section 5 contains verification setting and discussion.

2. Mathematical model and numerical solving process

We use Richards equation-based model to describe subsurface water flow. It is a well-known and consis-
tent approach for soil moisture flow problems, used, for example, in HYDRUS [35,36], CATCHY [28,32]
and other models, e.g. [33, 37]. We also include the heat transfer equation into our model, since heat
has influence on water flow in the soil and vice versa. Moreover, soil temperature is another variable
that can be retrieved from satellite images and assimilated. Here we implement the thermally induced
water flux theory by Philip and de Vries [38]. Other associated processes like salinity or vapor flow
are neglected in the current model, but may be studied in the future. Our model consists of coupled
nonlinear moisture transport and heat transfer boundary value problem. We assume a one-dimensional
soil layer of thickness l and downward x axis, with x = 0 at the soil surface. Then the corresponding
problem settings are as follows:
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T (x, t)|x=0 = T1(t), t > 0, (6)

T (x, t)|x=l = T2(t), t > 0, (7)

T (x, 0) = T0(x), x ∈ [0; l]. (8)

Here θ is absolute soil moisture, h is pressure head, T is temperature, k is soil hydraulic conductivity,
kT is hydraulic conductivity due to temperature, Srwu(h, x, t) is root water uptake, λ(h) is soil thermal
conductivity, cT = cn(1−θ)+cwθ is volumetric heat capacity of porous medium, cn and cw are specific
heat capacity of solid soil and water, respectively, ρ is soil water density, u(h) is soil water flux rate.
In the boundary conditions, Q(t) is precipitation rate, Es(t) is soil evaporation rate, T1(t) and T2(t)
are temperatures on the soil surface and l m depth; h0(x) and T0(x) are initial conditions for pressure
head and temperature, respectively.

Among the most notable problems associated with Richards equation is the choice of relations
between moisture and pressure head, since both are present in the equation. In our model, we use
Mualem–van Genuchten model [39], represented by the following equations:

θ(h) = θmin +
θmax − θmin

(1 + (−αh)n)m
, m = 1− 1

n
, (9)

k(h) = ksS
l
(

1−
(

1− S
1

m

)m)2
, (10)

where θmin and θmax are residual (minimum) and saturation (maximum) water content, ks is saturated
soil hydraulic conductivity, S = (θ− θmin)/(θmax − θmin) is saturation degree, α, n and l are empirical
model parameters. These relations are well-established and widely used in Richards-based models,
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including the ones cited above. Many studies are dedicated to evaluation of Mualem–van Genuchten
model parameters, among which program estimators like Rosetta [40] should be noted.

Hence, considering equations (9), (10) soil moisture state equation (1) can be transformed to the
following form with the only unknown state variable — pressure head:
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where values of coefficients β(h) = ∂θ
∂h

, v(h) = ∂k(h)
∂h

can be calculated analytically according to
Mualem–van Genuchten model.

We also account for nonlinearity of heat equation coefficients, namely, λ(h) and cT . Sadeghi et
al. [41] describe numerous relations for thermal conductivity λ(θ). In our model, we make use of
Chung and Horton model:

λ0(θ) = b1 + b2θ + b3
√
θ, (12)

where b1, b2, b3 are empirical parameters.
Evaporation and crop water uptake (connected to the transpiration) terms depend on weather and

vegetation. Potential evaporation can be calculated by the means meteorological parameters [42], and
is also provided by some weather services. Root water uptake is limited by potential evapotranspiration
and water availability, as expressed in the Feddes model, see [43] for reference.

The described one-dimensional problem can be solved on a uniform grid with a finite difference
scheme. Both moisture (11), (2)–(4) and heat transport (5)–(8) problems are solved consecutively on
each discrete time step. Particularly, we employ a homogeneous difference scheme that is intended for
equations with variable coefficients [44]. However, coefficients calculated by Mualem–van Genuchten
relations are not only variable, but nonlinear, which presents additional computational difficulties.
To deal with nonlinearity, we implement an implicit iterative scheme proposed by Samarskiy. The
scheme requires additional iterations on each time step, but allows solving nonlinear problems without
further transformation of model equation, e.g. by Newton linearization method. The iterative scheme is
guaranteed to converge and in practice yields stable result even with considerably large time step [44].

3. Newtonian nudging assimilation

In spite of many good data assimilation practices suggested in the literature, only some of them can be
readily applied to solving boundary value problems, since their solution has a much more complicated
structure than time series. Assimilating observations, which affects only part of the problem domain,
can disrupt the numerical scheme and lead to instabilities. Therefore, we chose Newtonian nudging
for its simplicity and stability. Another advantage of NN is that the nudging process is included
directly into the model equation. Thus, we are guaranteed that the solving process is not disrupted by
assimilated observations, and the solution agrees with our linearization scheme on each iteration.

The nudging method consists in adding the so-called nudging term to the Richards equation:
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where θobs is observed surface soil moisture, G is nudging factor, W (x, t) is weight function, and ε(x)
is called degree of trust or accuracy of observations. Note that, thought the final form (11) is written
in pressure heads only, assimilation still uses difference of observed and predicted soil moisture.

The above method is called nudging to gridded analysis and is meant for assimilating observations
that are interpolated onto the problem grid. In the case observations are not interpolated but still
closely related, another formulation called nudging to individual observations is preferred [45]:
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Equations (13), (14) present the general formulation of the NN. A number of improvements have
been introduced to NN method in [30, 31, 46], some of which are discussed below.

3.1. Weighting functions

The weighting function W (x, t) depends on the distance between the point of observation and running
coordinates (x, t). In two-dimensional case, it can be separated into temporal and vertical weights,

W (x, t) = W1(t)W2(x). (15)

Table 1. Values assigned to Newto-
nian nudging parameters.

Nudging
Value

parameter

G 2.5 days−1

ε 0.5
Rx 0.1 m
ta 2 days

These weights can be defined differently, and should be within
the [0; 1] interval. Here we assume linear weight functions follow-
ing [34]:

W1(t) =















1, |t− t0| 6 ta
2 ;

ta−|t−t0|
ta

2

, ta
2 < |t− t0| < ta;

0, |t− t0| > ta;

(16)

W2(x) =

{

1− |x−x0|
Rx

, |x− x0| < Rx;

0, |x− x0| < Rx.
(17)

In the equations above ta is active time, Rx is observation radius, t0 and x0 are time and depth of the
observation, x0 = 0 as for the surface observations. In our numerical experiments, we assumed these
parameter values as presented in Table 1.

3.2. Nudging coefficient

The nudging factor G is meant to represent the relative magnitude of the nudging term to other
processes. Original studies recommended to select it in the way that its time scale correspond to
the slowest process in the model and, regarding the numerical stability condition, it is required that
G 6 1/∆t, where ∆t is time step [45]. In [28], different scalar values of G are tested and the results
are discussed. Nudging with constant G of both moisture and pressure heads is conducted in [31].
Optimal determination of nudging coefficient from adjoint equations is suggested in [47]. Later studies
tend to treat G as a matrix rather than a scalar, similar to KF and 4D-Var matrices. For example,
authors of [30] proposed to choose G from optimality conditions as either a scalar value or a matrix.

We considered the classical formulation of Newtonian nudging as in (13). However, our own nu-
merical experiments with constant G proved unsatisfactory. Nudging effectively forced the solution to
low moisture values, but performed poorly where moisture had to be pushed towards saturation. That
is, the model readily predicted soil water shortage, but failed to consider sudden moisture rise, e.g. due
to precipitation events underestimated or missed in the weather data. In cases soil water saturation
was close to minimum, nudging often caused instabilities. Besides, the effect of assimilation varied
between soil types, so the nudging coefficient had to be determined manually in each case. Therefore,
we aimed to find a universal method to calculate G dynamically for any given soil characteristics.

The magnitude of terms in (11) depends on soil model parameters β(h), hydraulic conductivity k(h)
and its derivative v(h). We also find that, in the numerical scheme derived from the equation, the free
term β(h) · h(x, t−1) occurs along with nudging term (here t−1 denotes time of the previous iteration).
Another option is using a ratio of unsaturated and saturated soil water conductivities, k(h)/k0. Both
terms are dimensionless and represent the magnitude of terms in the moisture equation, so they can
be used to weigh nudging coefficient. In our numerical experiments, we used the following combination
of both:

G = 100

[

β(h) |h| + 0.5
k(h)

k0

]

. (18)

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 203–216 (2022)



208 Kozhushko O. D., Boiko M. V., Kovbasa M. Yu., Martyniuk P. M., Stepanchenko O. M., Uvarov N. V.

Our numerical experiments suggest that this formulation works well for most soil types. However, it
is purely empirical and lacks theoretical justification. Further tests are required to verify the formula.

4. Satellite moisture retrieval

The task of data assimilation needs low-noise and frequent satellite data. Active instruments on the
Sentinel-1, RADARSAT, RISAT-1 and other satellites can provide high-resolution soil moisture data
of around hundreds of meters with appropriate algorithms [48–50], but, as a rule, they have a sparse
repeated interval around 10 days worldwide. Passive instruments on SMAP, AMSR-E, AMSR2 and
SMOS. On the other hand, can provide high repeated interval worldwide of around a couple of days.
However, without disaggregation algorithms [51,52], these instruments provide low resolution of around
tens of kilometers. There are several algorithms to combine passive and active satellite data [53] but
the temporary gaps have stayed unfilled.

To provide high-resolution soil moisture retrievals we applied disaggregation method to passive
sensors AMSR-E, AMSR2 and SMAP to provide high resolution vertical and horizontal brightness
temperature, land surface temperature for AMSR2 and AMSR-E data [54]. To calculate dielectric
permittivity (DP) of the soil, we exploited Single Channel Algorithm — Vertical (SCA-V) [55] for
SMAP disaggregated data and Land Parameter Retrieval Model for AMSR-E and AMSR2 data. It
allows us to obtain DP maps with high resolution of 250 × 250m, which is close to the field scale.
We applied Mironov model for L-band [56] and Dobson model [57] for C-band to convert DP to soil
moisture content.

5. Results of numerical experiments

It is a common approach to verify hydrological model results against the historical ground station
data. Ground observations are often considered the most accurate measurements of soil moisture and
provide independent benchmark to validate model simulations. Multiple ground station datasets are
available in open access on the International Soil Moisture Network (ISMN) website [58].

For our study, we selected ground stations from the SCAN sensors network in USA, Arkansas,
installed by the University of Arkansas at Pine Bluff (UAPB). The stations measure soil moisture and
temperature on five layers: 5 cm, 10 cm, 20 cm, 50 cm and 100 cm, and also provide basic weather data
such as precipitation and air temperature. Other weather parameters were downloaded from the ERA5
climate reanalysis database, which provides weather data at 0.25◦ × 0.25◦ resolution grid [59]. As for
the soil parameters, values for loamy soil were assumed. Simulations are conducted for the whole span
of 2018. The initial conditions are assumed according to the satellite moisture estimates.

Here we present two kinds of validation tests. The first experiment is aimed to compare the perfor-
mance of original Newtonian relaxation with scalar nudging coefficient (simulations are denoted NN)
against dynamic variation described in section 3 (denoted DN). We evaluate results of both simulation
experiments on every soil layer. The second experiment provides general small-scale assessment of the
model performance and compares average result metrics for the selected ground stations.

Another, large-scale validation of the presented model was conducted in [60]. It involved data from
all ISMN soil moisture stations located in the USA. However, due to the large difference of measurement
approaches, the benchmark data were not uniform, and only surface measurements were considered.
The experiment presented in this paper is more focused on the subsurface soil moisture and the effect
of assimilating surface moisture observations on the root zone soil layers.

Model performance is evaluated by the means of the following key metrics: RMSE, bias, correlation
(R) and index of agreement (IoA). The latter is defined as

IoA = 1−
∑

t

(

θDA(t)− θobs(t)
)2

∑

t

(

|θDA(t)− θobs(t)|+ |θobs(t)− θobs(t)|
)2 . (19)
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For the second validation test, we also add assimilation efficiency coefficient (Eff) based on the
improvement of MSE following [19]:

Eff = 100%

[

1−
∑

t

(

θDA(t)− θobs(t)
)2

∑

t (θ
OL(t)− θobs(t))

2

]

. (20)

In the equations above, superscript ‘obs’ signifies observations to which result is compared (ground
station measurements in our case), ‘DA’ — modeling with data assimilation, ‘OL’ — open-loop simu-
lation.

5.1. One station experiment

First, we check the validity of the proposed dynamic nudging method. For that purpose, we run NN
and DN simulation experiments for the selected ground station, Lonoke Farm. The rows of plots
in Fig. 1 represent soil moisture on different soil layers on which moisture is measured by the ground
station. The first plots, representing the top soil layer, also show the satellite retrieved moisture values.

As seen from the figure, satellite observations in general follow the trend of the ground station
data. However, due to the imperfection of measurements, they contain noise and at times visibly
diverge from the ground data. Model simulations, on the other side, are more constrained, so it can
be noted that data assimilation mitigated the noise present in observations. Furthermore, comparison
of simulation result plots demonstrates the problem with NN we noted above. Due to the constant
G coefficient, relative force of nudging is not equal for various moisture levels, and so the nudging is
noticeably ‘weaker’ at the periods when the soil is wetter. Notice that, although nudging is applied
only to the top 10 cm of the problem domain, DN introduces improvement to all soil layers.

Table 2. Summary of model performance evaluation for UAPB
Lonoke Farm station by soil layers. Here NN stands for experi-
ments with original Newtonian nudging formulation and DN — for

proposed dynamical nudging method.

Depth Experiment RMSE Bias R IoA
5 cm NN 0.1104 0.0950 0.8571 0.7436

DN 0.0714 0.0416 0.8653 0.8951
10 cm NN 0.0696 0.0403 0.8349 0.8359

DN 0.0595 0.0145 0.8504 0.9138
20 cm NN 0.0785 0.0647 0.8073 0.7430

DN 0.0567 0.0082 0.8380 0.8896
50 cm NN 0.0899 0.0690 0.8695 0.7601

DN 0.0435 0.0085 0.9053 0.9474
100 cm NN 0.1205 0.1086 0.8241 0.6582

DN 0.0608 0.0458 0.8996 0.8908
Average NN 0.0938 0.0755 0.8386 0.7481

DN 0.0584 0.0237 0.8717 0.9073

Table 2 presents the evaluation
metrics for the single station experi-
ment. RMSE is generally rather high
for all soil layers. Positive bias in-
dicates that the model is generally
overestimating the soil moisture, es-
pecially on the topmost and the deep-
est soil layers. It can be mostly at-
tributed to the imprecise choice of soil
water retention parameters. Large er-
rors on the top layer might be at-
tributed to noisy forcing, and also
difficulty of representing near-surface
processes by the model.

Nevertheless, other metrics indi-
cate the plausible performance of the
model as for a remote experiment. Correlation is very high on each layer, indicating the model is closely
imitating the process dynamics. The index of agreement, as a complex indicator, is less favorable where
RMSE is low, but still suggests the model is performing reasonably well in this case. Overall, better
convergence is observed on the root zone layers, which is explained by the factors mentioned above.
The best results are obtained for the 10 cm soil layer on this station, as well as on the most of other
stations.

Comparison of evaluation metrics for the variants of nudging indicate relevant improvements in
DN. Despite correlation is nearly unchanged and index of agreement only slightly increased, RMSE
becomes considerably better due to lower bias. In general, simulation results fit closely to ground
station data with average correlation of 0.87 and agreement of 0.90, although the bias at the top and
bottom soil layers exceeds 0.04 in moisture units, which is relatively high.
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Fig. 1. Results of historical soil moisture calculation as compared to the ground station data on four soil levels.
Left are simulations with constant G, right — with dynamically calculated G. Solid line represents model

analysis, dotted line — ground station observations, single black dots — satellite observations.
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5.2. Multiple stations experiment

For the general validation test, we calculate the same metrics plus assimilation efficiency for five UAPB
ground stations. Table 3 shows the performance of the open loop, NN and DN experiments averaged
over the ground measurement stations. Results indicate that open loop simulations are not estimating
the state of the system accurately enough. However, as suggested by the theory, data assimilation
succeeded in improving the model performance in every aspect. RMSE is considerably decreased with
assimilation, from the average 0.1096 to 0.0818 and 0.0693 depending on the assimilation method, and
bias is likewise decreased from 0.0703 to 0.0508 and 0.0329. Here, as in the previous case, our dynamic
nudging method proved to be more flexible and accurate than the one with constant coefficient.

Table 3. Summary of model performance evaluation for UAPB soil moisture stations by soil
layers. Here OL stands for open loop simulations, NN and DN are as in Table 2.

Station Experiment RMSE Bias R IoA Eff
5 cm OL 0.1172 0.0797 0.5852 0.5436 —

NN 0.0787 0.0565 0.8636 0.7920 54.32%
DN 0.0579 0.0230 0.8451 0.9019 75.80%

10 cm OL 0.1005 0.0601 0.4957 0.4976 —
NN 0.0625 0.0286 0.6924 0.7301 61.76%
DN 0.0588 0.0175 0.6913 0.7963 65.42%

20 cm OL 0.1079 0.0498 0.4669 0.4033 —
NN 0.0788 0.0301 0.7616 0.6824 47.41%
DN 0.0708 0.0273 0.7481 0.7976 56.31%

50 cm OL 0.1367 0.0914 0.3938 0.3305 —
NN 0.1096 0.0696 0.5736 0.4456 30.91%
DN 0.0873 0.0439 0.5281 0.5682 51.54%

100 cm OL 0.0856 0.0705 0.2305 0.2697 —
NN 0.0795 0.0694 0.0716 0.2801 17.77%
DN 0.0716 0.0528 0.0992 0.3291 21.92%

Average OL 0.1096 0.0703 0.4344 0.4089 —
NN 0.0818 0.0508 0.5926 0.5860 42.44%
DN 0.0693 0.0329 0.5824 0.6786 54.20%

The correlation on the 5 cm, 10 cm and 20 cm soil layers is also significantly improved by assimi-
lation, as well as the index of agreement. Again, correlation is only slightly affected by the nudging
method. Nevertheless, the assimilation efficiency indicates positive influence of assimilation in general
(with average efficiency on all soil layers of 42.44%) and of the dynamical nudging approach in partic-
ular (efficiency of 54.2%). Note that, while the efficiency is almost equal on the 10 cm layer (61.76%
against 65.42%), on the 5 cm layer the difference becomes considerable (54.32% against 75.8%).

On the deepest soil levels, correlation and agreement is weak due to observed influence of ground-
water. The model calculates moisture based on the atmosphere and surface conditions, whereas deep
layer soil moisture mostly depends on groundwater conditions which are currently not accounted for
in the model. As seen from Table 2, where correlation with Lonoke Farm station data is rather high
for all soil layers, surface information is enough for cases with low groundwater influence. In other
cases, good correlation cannot be achieved without additional data. Nevertheless, values of RMSE
and bias indicate that simulated results show reasonably good convergence with the ground station
measurements.

6. Conclusions

In this study, we built a soil moisture simulation system that includes satellite image processing and
the land model. Disaggregation algorithm provides high-resolution soil moisture maps, allowing the
system to run precise simulations on the field scale.
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Also, a dynamical variation of the Newtonian nudging method was proposed. The refined nudging
coefficient is calculated based on physical soil parameters that are already present in the soil moisture
equation. Compared to the use of constant nudging coefficient, it increases its variability and can
provide improvement to simulation results. On the other hand, the proposed method is much more
computationally cheap than optimal 4D analysis models, since it does not require solving additional
problem.

Results of validation on UAPB SCAN ground stations were satisfactory for the whole one-meter-
thick soil layer. Best convergence was found on the 10 cm layer. Assimilation efficiency increased
from 42.44% to 54.2% in average due to the use of proposed nudging formulation. Correlation was
mostly not affected, RMSE and the index of agreement improved by more than 15% in general. Our
further publications will explore other assimilation approaches and model use cases, such as rainfall
identification and irrigation planning. Also, an integration with crop growth model is planned for a
more detailed account of crop factors, which would present a more clear practical usage of the model
on a field scale.
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Оцiнки вологостi ґрунту широко використовуються у численних практичних зада-
чах, вiд прогнозу погоди до точного землеробства. В останнi роки доступнiсть даних
про вологiсть зросла завдяки стрiмкому розвитку алгоритмiв обробки супутнико-
вих зображень. Проте, бiльшiсть отриманих даних iз супутникiв вiдображають ли-
ше поверхневу вологiсть iз недостатньо високою роздiльною здатнiстю. У цiй роботi
ставимо за мету вiдновити поверхневу вологiсть ґрунту на рiвнi поля завдяки вико-
ристанню алгоритмiв декомпозицiї. Крiм того, використовуємо математичну модель
на основi рiвняння Рiчардса для оцiнки вологостi ґрунту в кореневiй зонi. Результа-
ти обох моделей поєднуються завдяки алгоритму асимiляцiї даних, що називається
ньютонiвською релаксацiєю. Запропонована динамiчна варiацiя методу, яка полег-
шує його адаптацiю до рiзних типiв ґрунту та покращує результати моделювання.
Проведено два типи чисельних експериментiв. Результати комп’ютерних симуляцiй
узгоджуються iз реальними даними з достатньою точнiстю. Загалом, отримана мо-
дель показує кореляцiю 0.58 на всiй кореневiй зонi, досягаючи 0.85 на приповерхневих
шарах ґрунту.

Ключовi слова: асимiляцiя даних, дистанцiйне зондування Землi, алгоритм нью-

тонiвської релаксацiї, комп’ютерне моделювання, супутникове вiдновлення волого-

стi, вологiсть ґрунту.
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