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In this work, we study the tensor completion problem in which the main point is to predict
the missing values in visual data. To greatly benefit from the smoothness structure and
edge-preserving property in visual images, we suggest a tensor completion model that seeks
gradient sparsity via the l0-norm. The proposal combines the low-rank matrix factorization
which guarantees the low-rankness property and the nonconvex total variation (TV). We
present several experiments to demonstrate the performance of our model compared with
popular tensor completion methods in terms of visual and quantitative measures.
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1. Introduction

Low-rank tensor completion is the task of filling missing entries in incomplete multidimensional data.
As for the matrix case, the rank function is a powerful tool to capture some type of global information.
However, a basic issue in the low-rank tensor completion is the definition of the tensor rank which is not
unique [1] as for the matrix rank. The tensor nuclear norm which is based on extending the definition
of the matrix nuclear norm to the tensor case has been widely used to define the convex surrogate of
the tensor rank. A central drawback of the nuclear norm-based algorithms is calculating the singular
value decomposition in each iteration, which suffers from high computational costs. To cope with
this problem, [2] proposed another efficient model which performs low-rank property using parallel
matrix factorization by unfolding the current tensor. Parallel matrix factorization has demonstrated
its effectiveness for tensor recovery [3] especially in filling with missing values in multidimensional
data [2, 4, 5]. In the last models, the use of additional prior knowledge that characterize the local
information in the reconstruction problem has been advantageous.

The theory of regularization plays a crucial role in the image procesing area [6–10]. Total variation
(TV) regularization is an efficient regularizer that has been widely used to explore the piecewise
smoothness structure of data, due to its advantageous edge-preserving property. Although it has
initially proposed for the denoising context [11], it has nonetheless been successfully adapted to various
applications. For low-rank tensor completion, total variation defined by l1 TV has introduced to exploit
the spectral smoothness along the third dimension [4, 5]. Those methods have achieved remarkable
performance. However, they only exploit the spectral smoothness and ignore the spatial piecewise
structure exhibited in the first and the second modes. Besides, the convex l1-TV penalizes the large
gradient magnitudes which may affect the preservation of the image edges. Therefore, to efficiently
preserve more information, a novel l0 based TV has been introduced in [12].

In this paper, we present a novel completion model based on a nonconvex penalty of the original
tensor. In addition to the parallel low-rank matrix factorization, the spectral-spatial smoothness
property characterized by nonconvex l0-total variation is exploited. The l0 gradient penalty counts the
number of nonzero gradients. This choice is motivated by the fact that the l0 gradient penalization
can give rise to truly piecewise structure and better enhance highest-contrast edges by confining the
number of nonzero gradients [12].
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2. Preliminaries

2.1. Notation on tensor

In this subsection, we introduce basic notation on tensors and definitions used through the rest of this
paper. We use Euler script for denoting tensors e.g. X and upper-case letters for matrices e.g. X.
A tensor X is a multi-dimensional structure in R

I1×I2×...×IN .
Mode-i unfold: It may be convenient to store N -way arrays in matrices. This transformation is

called matrix unfolding.
Mode-i unfold of the tensor X is denoted as

X(i) = unfold(X ) ∈ R
Ii×ŝ, (1)

where ŝ =
∏N

k 6=i Ik, X(i) is a matrix with columns being the mode-i fibers of X in the lexicographical
order.

The inverse operator of unfold is denoted as fold and defined as follows:

X = foldi(X(i)). (2)

The tensor rank is defined as rank(X ) =
(

rank(X(1), rank(X(2), . . . , rank(X(N))
)

. The tensor X is
low-rank, if X(i) is low rank for all i.

Definition 1 (Mixed l1,0 pseudo-norm). For a given vector y ∈ R
m and index sets s1, . . . , si, . . . , sn

(1 6 n 6 m) that satisfies the following properties:

— each si is a subset of 1, . . . ,m,
— si ∩ sl = ∅ for any i 6= l,
— ∪n

i=1si = 1, . . . ,m

the mixed l1,0 pseudo-norm of y is defined as:

‖y‖s1,0 = ‖(‖ys1‖1 , . . . , ‖ys1‖1 , . . . ‖ysn‖1)‖0 (3)

where ysi denotes a sub-vector of y with its entries specified by si and ‖ · ‖0 calculates the number of
the non-zero entries in (·).

Definition 2 (Indicator function). Let B be a given operator and γ be a positive fixed integer, the
indicator function of l1,0 mixed pseudonorm is defined as follows

I‖B·‖s1,0(y) =

{

0, ‖By‖s1,0 6 γ,

∞, otherwise.
(4)

3. Low-rank tensor completion problem

According to current research, the effective recovery of matrix and tensor completeness is mostly
dependent on their low-rank assumption [13,14]. The rank function is an effective method for capturing
global data. As a result, we frequently assume that the matrix or tensor is low-rank or nearly so. The
direct minimization of the tensor rank and the updating of the low-rank tensor is a typical method for
the completion problem,

min
Y

rank(Y)

s.t. PΩ(Y) = F ,
(5)

where Y ∈ R
n1×n2×n3 is the recovered tensor, F is the observed data, and PΩ denotes the projection

of Y on the observed set Ω (the random sampling operator) which is defined by

PΩ(Y) =

{

Yi1,i2,...,in if (i1, i2, . . . , in) ∈ Ω,
0 otherwise.
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Several models for the tensor completion problem have been proposed depending on the definition of
the tensor rank. The rank(Y) operator has different forms, such as CANDECOMP/PARAFA (CP)
rank [1] and Tucker rank. Actually, the rank minimization problem suffers from different issues. First,
it is a non-convex function and the problem (5) is NP-hard. Thus, analog to the matrix case, the
nuclear norm is then used as the convex surrogate of the rank function. However, the definition of the
nuclear norm of a tensor still a complicated issue since it cannot be intuitively derived from the matrix
case. Different versions of tensor nuclear norms have been proposed. Liu et al. [15] first proposed
a tensor completion approach based on the sum of matricized nuclear norms (SMNN) of the tensor.
However, nuclear norm-based models make use of the singular values decomposition which is known
to be expensive in terms of computational cost. Thus, a recent version of the tensor nuclear norm is
the matrix factorization model which stands on the approximation of each matricization tensor of the
underlying tensor by two low-rank factors .

4. The proposed model

To better characterize and enhance important components in a given visual data, we propose a sparsity-
based gradient regularization in addition to the low-rank matrix factorization for the tensor completion
problem. The gradient-based priors have extensively exploited in several image processing applications,
owing to their ability to suppress artifacts and ameliorate the reconstructed images effectively. The
sparsity property is naturally obtained via the l0-norm which simply counts the number of nonzero
elements in a vector. In the gradient domain, the l0-norm counts the amplitude changes discretely.

4.1. The sparse l0-gradient

The l0 regularized gradient can control the number of non-zero gradients globally. Unlike existing
edge-preserving smoothing methods, this prior knowledge does not rely on local characteristics but
instead locates important edges. The l0 total variation has been proposed for 2D image deblurring [16]
and has been recently extended to the tensorial framework for hyperspectral images denoising [12].
Motivated by the promising results presented by those models, we make use of the l0-gradient penalty
in the context of tensor completion. It is defined as follows:

l0TV(X ) =

h
∑

i

v
∑

j

C

(

z
∑

k

(|Xi+1,j,k − Xi,j,k|+ |Xi,j+1,k − Xi,j,k|)

)

, (6)

where C(X) is a binary function that simply counts how may non-zeros image gradients which is
defined as follows

C(X) :=

{

1, if X 6= 0,
0, otherwise,

(7)

where boundary values of gradients are defined as follows

{

Xi,j+1,k − Xi,j,k = 0, if i = h,
Xi+1,j,k − Xi,j,k = 0, if j = v.

(8)

Actually, the l0TV(X ) counts the non-zeros gradients in the spatial dimension with the assistance of
spectral information. With definition 1, another formulation of the l0-TV becomes:

l0TV(X ) = ‖BDX‖s1,0, (9)

where operator D is an operator to calculate both horizontal and vertical differences. Operator B is
an operator that forces boundary values of gradients to be zero when i = h and j = v.
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4.2. Nonconvex TV for tensor completion

To better exploit the aforementioned properties, we propose an alternative completion model formu-
lated as the following nonconvex minimization problem

min
A,X,Y

N
∑

n=1

αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F

s.t. ‖BDY‖s1,0 6 γ and PΩ(Y) = F ,

(10)

where A = (A1, A2, . . . , AN ), X = (X1,X2, . . . ,XN ), αn > 0 (n = 1, 2, . . . , N), and
∑N

n=1 αn = 1.

4.3. Alternating minimization-based solving algorithm

Considering a three-way tensor Y ∈ R
n1×n2×n3 , the Lagrangian function associated to the proposed

model (10) is given as

min f(A,X,Y) = min
A,X,Y

N
∑

n=1

αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
+ I‖B·‖s1,0(DY) + ι(Y), (11)

where τ and λ are regularization parameters, and ι(·) is the following indicator function:

ι(Y) :=

{

0, if PΩ(Y) = F ,
∞, otherwise.

(12)

Within the framework of Alternating Minimization-based algorithm, the problem (11) can be solved
by updating the three subproblems alternately







Step 1: Ak+1 = argminA f(A,Xk,Yk),
Step 2: Xk+1 = argminX f(Xk+1,X,Yk),
Step 3: Yk+1 = argminY f(Ak+1,X l+1,Y),

(13)

which is equivalent to the following two basic steps






Step 1:
(

Ak+1,Xk+1
)

= argminA,X

∑N
n=1

αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
,

Step 2: Yk+1 = argminY
∑N

n=1
αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
+ I‖B·‖s1,0(DY) + ι(Y).

(14)

4.3.1. (X,A)-subproblem

Since the objective function of the X-subproblem is strictly quadratic, the problem has a closed form
solution. Set the partial derivative of the function over X to zero yield the following linear equation:

Xk+1
n =

(

(Ak
n)

TAk
n

)†(
(Ak

n)
TY k

(n)

)

, n = 1, 2, 3. (15)

Similar to the minimization of X-subproblem, the closed-from solution of A is given by the following
linear equation:

Ak+1
n =

(

Y k
(n)(X

k+1
n )T

)(

Xk+1
n (Xk+1

n )T
)†
, n = 1, 2, 3. (16)

4.3.2. Y-subproblem

In contrast to the above minimization subproblems, the minimization of the Y-subproblem can be
computationally challenging. A popular method to solve it, is to decouple the problem using variable
slitting technique. By introducing an auxiliary variable noted V, we can rewrite the Y-subproblem as
the following equivalent constrained problem

min
X,A,Y

N
∑

n=1

αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
+ I‖B·‖s1,0(V) + ι(Y)

s.t. V = DY.

(17)
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The augmented Lagrangian function associated to problem (17) can be expressed as follows:

Lβ (Y,V,M) =
N
∑

n=1

αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
+

β

2
‖V −DY −M/β‖2F + I‖B·‖s1,0(V) + ι(Y), (18)

where M are the Lagrange multipliers and β > 0 is the penalty parameter. Problem (18), is then
alternately minimized with respect to each block of variables Y,V, and the Lagrangian multiplier M















Yk+1,p+1 = argminY Lβ (Y,V
p,Mp) ,

Vp+1 = argminV Lβ

(

Yk+1,p+1,V,Mp
)

,

Mp+1 = Mp + β
(

DYk+1,p+1 − Vp+1
)

,

(19)

which equivalent to














Yk+1,p+1 = argminY
∑N

n=1
αn

2

∥

∥Y(n) −AnXn

∥

∥

2

F
+ β

2 ‖V
p −DY −Mp/β‖2F + ι(Y),

Vp+1 = argminV
β
2 ‖V −DYk+1,p+1 −Mp/β‖2F + I‖B·‖s1,0(V),

Mp+1 = Mp + β
(

DYk+1,p+1 − Vp+1
)

.

(20)

1. Update Y. The minimization over the Y has a closed form solution. Let Ωc be the compliment
of Ω, and the fact that PΩc(F) = 0 we obtain the following solution

Yk+1,p+1 = PΩc

(

∑3
n=1 αn foldn

(

αnA
k+1
n Xk+1

n

)

+ βDTVp −Mp/β

1 + βDTD

)

+ F . (21)

2. Update V. Actually, the sub-problem of V can be expressed by the following constrained
minimization problem:

min
V

‖V−DYk+1,p+1 −Mp+1‖2F

s.t. ‖BV‖s1,0 6 γ.
(22)

The resolution of problem (22) is performed by the following Proposition.

Theorem 1 (Projection onto l1,0 mixed pseudo-norm ball with binary mask [17]). Let
y ∈ R

m as a known vector and γ as a non-negative integer. Let W be a known diagonal binary
matrix, and let s1, . . . , sn(1 6 n 6 m) be index sets satisfying the conditions from definition 1.

Without loss of generality, we can assume that Wy =
(

yT
s1
. . .yT

sn

)T
. Additionally, we denote by the

subvectors ys(1) . . .ys(n)
are sorted in descending order according to the l2 norm:

∥

∥

∥
ys(1)

∥

∥

∥

2
>

∥

∥

∥
ys(2)

∥

∥

∥

2
>

. . . >
∥

∥

∥
ys(n)

∥

∥

∥

2
. The following problem

z⋆ ∈ argmin
z∈RM

‖y − z‖2 subject to ‖Wz‖s1,0 6 γ

. has one of the optimal solutions

z⋆ =

{

y, if ‖W‖s1,0 6 γ,
(

y⊤
s1
· · ·y⊤

sn

)⊤
+ (I−W)y, if ‖W‖s1,0 > γ,

where

ysk
:=

{

ysk , if k ∈ {(1), . . . , (γ)},

0, if k ∈ {(γ + 1), . . . , (n)}
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Algorithm 1 Nonconvex tensor completion algorithm (NC_TC).

Require: The observed tensor F , the set of index of observed entries Ω;
Ensure: The recovered tensor Y;
1: initialization: X = F , A0

n, Z0
n for n = 1, 2, 3;

2: for k = 1, . . . ,nMax
3: Low-rank matrix factorization step

– update Ak+1
n for n = 1, 2, 3;

– update Zk+1
n for n = 1, 2, 3;

4: The tensor completion step
– update the l0 projection Vk+1;
– update the reconstructed tensor Yk+1;
– update the lagrangian multiplier Mk+1.

5. Experimental results

This section is devoted to the numerical results in which we evaluate the performance of the proposed
Nonconvex completion algorithm. Thus, we conduct experiments on four benchmark 3D channel RGB
color images. The missing values are distributed randomly. The accuracy of the obtained results are
measured by the peak signal to noise ratio (PSNR) and structural similarity (SSIM).

Table 1. The PSNR/SSIM obtained by the completion of four images using different sampling ratios 10%,
20%, 30%, and 40%. For each test, the results of LRTC [18], TNNR [19], MF-TV [4], and our proposed NC-TC

are illustrated and the best among the results is highlight in bold face.

SR 10% 20% 30% 40%

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Image 1

TNNR 24.31 0.6262 28.84 0.8190 31.55 0.8911 34.15 0.9362
LRTC 23.38 0.6007 28.41 0.8046 31.29 0.8859 33.89 0.9333

MF-TV 17.55 0.2083 28.38 0.8075 32.25 0.8869 34.40 0.9215
NC-TC 29.18 0.8780 31.40 0.9159 33.01 0.9386 34.25 0.9548

Image 2

TNNR 14.34 0.2336 17.93 0.4510 21.04 0.6088 24.01 0.7349
LRTC 13.84 0.2209 17.76 0.4415 20.76 0.5920 23.80 0.7206

MF-TV 8.838 0.1236 15.40 0.4063 15.87 0.3982 24.16 0.7011
NC-TC 18.29 0.6256 20.90 0.7596 22.63 0.8314 24.23 0.8803

Image 3

TNNR 19.69 0.3587 23.67 0.5893 26.36 0.7213 28.78 0.8147
LRTC 19.11 0.3295 23.40 0.5694 26.06 0.7029 28.57 0.8046

MF-TV 10.14 0.0401 17.38 0.3210 22.17 0.5187 28.65 0.7872
NC-TC 24.47 0.7296 26.63 0.8127 28.33 0.8658 29.76 0.9006

Image 4

TNNR 16.42 0.2351 20.69 0.4649 23.53 0.6171 26.06 0.7290
LRTC 15.56 0.2071 20.44 0.4489 23.21 0.7384 25.77 0.7127

MF-TV 9.987 0.0964 18.62 0.4235 23.53 0.5972 27.12 0.7751
NC-TC 22.90 0.7370 25.33 0.8255 27.16 0.8749 28.80 0.9112
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Fig. 1. The visual comparison results of the recovered Image 1. From left to right and to bottom, the original
image, the incomplete image with 30% of observation, the recovered results by TNNR, LRTC, MF_TV, and

the proposed NC_TV respectively.

Fig. 2. The visual comparison results of the recovered Image 2. The original image, the incomplete image with
30% of observation,the recovered results by TNNR, LRTC, MF_TV, and the proposed NC_TV respectively.
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Fig. 3. The visual comparison results of the recovered Image 1. The original image, the incomplete image with
30% of observation,the recovered results by TNNR, LRTC, MFTV, and the proposed NCTV respectively.

Fig. 4. The visual comparison results of the recovered Image 4. The original image, the incomplete image with
30% of observation,the recovered results by TNNR, LRTC, MF_TV, and the proposed NC_TV respectively.
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We start the numerical results section by the comparison of the evaluation criterion. Therefore, we
present in Table 1, the PSNR and SSIM values of the obtained results of different tests using the four
images with different sampling ratios. Overall, we clearly observe that the proposed NC_TC model
presents larger PSNR and SSIM values compared with three tensor completion methods. Besides,
according to the PSNR and SSIM values, the MF_TV method presents poor completion results when
the sampling ratio is very small (especially when SR=10%). In contrast, our approach demonstrates
its effectiveness with respect to an extremely small set of observation.

To further show the significant impact of our algorithm on the completion of RGB color images,
we visually compare the results of four tensor completion methods. Thus, in Figures 1, 2, 3, and
Figure 4 we illustrate the reconstructed results obtained by using TNNR, LRTC, MF_TV and our
proposed NC_TC model. For test images with 70% of missing values respectively. As can be seen,
the proposed method can effectively predict the missing values in the images and thus provides more
accurate completion results. More importantly, the reconstructed images obtained by the proposed
NC_TC method contain more preserved information. Hence, we can conclude that NC_TC is robust
and stable with respect to the sampling ratio.

6. Conclusion

We presented in this paper, a novel tensor completion model using sparse gradient regularization. In
addition to the low-rankness information exhibited by the matrix factorization, the nonconvex total
variation is exploited in order to globally estimate and enhance important edges. To validate the pro-
posed algorithm, different experiments have been performed over the third-order tensor. The proposed
method demonstrates an improvement in filling with missing values while preserving fundamental
components in the target tensor.
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Доповнення тензора низького рангу з використанням неопуклої
повної варiацiї

Мохауї С., Ель Кате К., Хакiм А., Рагей С.

Унiверситет Кадi Айяд, Факультет науки i технiки, Гiлiз, Марракеш, Марокко

У цiй роботi вивчається задача тензорного доповнення, в якiй головним є передба-
чення вiдсутнiх значень у вiзуальних даних. Щоб отримати максимальну користь iз
гладкої структури та властивостi збереження країв у вiзуальних зображеннях, пропо-
нується модель тензорного доповнення, яка шукає розрiдженiсть градiєнта за допо-
могою l0-норми. Пропозицiя поєднує в собi матричну факторiзацiю низького рангу,
яка гарантує властивiсть низького рангу та неопуклi повнi варiацiї (ПВ). Подано
декiлька експериментiв, щоб продемонструвати ефективнiсть запропонованої моделi
порiвняно з популярними методами тензорного доповнення з точки зору вiзуальних
i кiлькiсних показникiв.

Ключовi слова: тензорне доповнення, пропущенi значення, паралельна матрична

факторiзацiя, неопукла ПВ.
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