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Abstract. Purpose. A two-dimensional mathematical model of the problem of 
thermoelasticity for three-component plate containing a crack has been built. The stress intensity 
coefficients in the vertices of the crack increase affecting strength of the body significantly. This 
leads to the growth of a crack and, as a result, to further local destruction of a material. Therefore, 
such a model reflects, to some extent, the destruction mechanism of the elements of engineering 
structures with cracks. Graphic dependences of stress intensity factors (SIFs) at the tops of the crack 
have been built. This would make it possible to obtain the critical values of constant temperature in 
the two joined dissimilar elastic half-planes containing an inclusion and a crack in order to prevent 
crack growth, which would not allow the local destruction of the body. Methodology. Based on the 
method of the function of a complex variable we have studied the two-dimensional thermoelastic 
state for body with crack as stress concentrators. As result, the problem of thermoelasticity was 
reduced to a system of two singular integral equations (SIE) of the first and second kind, a numerical 
solution of which was found by the method of mechanical quadratures. The two-dimensional 
mathematical model of the thermoelastic state has been built in order to determine the stress 
intensity coefficients at the top of the crack and inclusion. The systems of singular integral equations 
of the first and second kinds of the specified problem on closed (contour of inclusion) and open 
(crack) contours are constructed. Numerical solution of the integral equations in the case of constant 
temperature in the two joined dissimilar elastic half-planes containing the crack and an inclusion was 
obtained by the mechanical quadrature method. Influence of thermophysical and mechanical 
properties of an inclusion on the SIF sat the crack types was investigated. Graphic dependences of 
the stress intensity factors which characterize distribution of the intensity of stresses at the vertices 
of a crack have been built, as well as on its elastic and thermoelastic characteristics of inclusion. 
This would make it possible to analyze the intensity of stresses in the neighborhood of a crack 
vertices depending on the geometrical and mechanical factors. As a result, this allow to determine 
the critical values of temperature in the three-component plate containing a crack in order to prevent 
the growth of the crack, as well as to prevent the local destruction of the body. It was found that that 
the appropriate selection of mechanical and thermophysical characteristics of the components of a 
three-component plate containing a crack can be useful to achieve an improvement in body strength 
in terms of the mechanics of destruction by reducing stress intensity factors at the crack’s vertices. 
Originality. The solutions of the new two-dimensional problem of thermoelasticity for a specified 
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region (a two joined dissimilar elastic half-planes containing inclusion and a crack) due to the action 
of constant temperature is obtained. The studied model is the generalization of the previous models 
to determine the two-dimensional thermoelastic state in a piecewise-homogeneous plate weakened 
by internal cracks. Practical value. The practical application of this model is a more complete 
description of the stress-strain state in piecewise homogeneous structural elements with cracks 
operating under temperature loads. The results of numerical calculations obtained from the solution 
of systems of equations and presented in the form of graphs can be used in the design of rational 
modes of operation of structural elements. This takes into account the possibility of preventing the 
growth of cracks by appropriate selection of composite components with appropriate mechanical 
characteristics. 

Keywords: crack, inclusion, thermoelasticity, stress intensity factor, singular integral 
equation.  

Introduction 

Many modern structures contain components that often have to work under the influence of thermal 
heating, as a result of which temperature stresses appear in them. This is especially typical for some tools 
and structures of the heating industry. The efficiency of those elements is often largely determined by the 
intensity of stresses in some areas and the level of their concentration, for example, in the vicinity of 
technological in homogeneities (cracks, inclusions). In this case, the destruction of materials is associated 
with the presence of sharp stress concentrators such as cracks. The study of the thermoelastic state near the 
crack is necessary in order to calculate the strength from the standpoint of fracture mechanics. This is 
especially important for structures made of high-strength as well as low-plastic materials that can be 
subjected to various types of thermal loads. Therefore, it is important as theoretically, as well as practically 
studying the distribution of stresses in the vicinity of stress concentrators such as cracks. The stress 
intensity at the crack vertices is expressed in terms of stress intensity coefficients (SICs). Analysis of these 
parameters allows determining the limit value of heat load at which the crack begins to grow, while the 
body begins to collapse locally. 

Therefore, such studies are important for calculating the strength in terms of fracture mechanics. In 
particular, in the case of piecewise homogeneous bodies with a crack, the stress intensity coefficients can 
be reduced by selecting the appropriate mechanical and thermophysical characteristics of the composite 
components themselves. 

Literature Review 

Investigations of the problem of thermoelasticity in the two-dimensional case for piecewise 
homogeneous bodies with cracks by the method of singular integral equations have already been described 
in the literature before. In particular, we studied the thermoelastic state in a finite [1], semi-finite [2] and 
infinite [3] flat region with foreign inclusions and cracks, in a plate with a circular two-component 
compound inclusion and crack [4]. The plane thermoelastic state in the case of half-space, which is locally 
heated under the action of the heat flux of its free surface and contains inclusions and cracks, was also 
investigated by the method of singular integral equations (SIEs). Using the method of functions of the 
complex variable, the SIEs solved the problems of thermal conductivity and thermal elasticity for a plane 
with thermally insulated or thermally conductive cracks located in a circular foreign inclusion [6], and for 
bodies with thermal cylindrical inclusion [7] and cracks. Based on the boundary method [8] and the Fourier 
transform method [9], the thermoelasticity problem for a crack plane were solved.  

The review of the main literature sources showed that the mathematical models used to study the 
thermoelastic interaction of a crack with a curvilinear line connecting two dissimilar media have remained 
little studied. Therefore, it is necessary to build mathematical models to determine the thermal loads when 
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the growth of the crack would begin and the body starts to locally collapse. The study of such models will 
make it possible to offer one of the approaches to prevent the growth of cracks, for example by selecting 
the components of a piecewise-homogeneous plate with appropriate mechanical and thermophysical 
characteristics. 

The model for a circular disk with an inclusion and a crack considered below is of great practical 
importance for the calculation of the thermoelastic state in composite materials, taking into account the 
different stress concentrators in them. Such materials are often used to make structural elements used in 
construction, mechanical engineering and other industries. 

Problem Statement 

Consider an infinite body (plane), which consists of two elastic heterogeneous bodies (half-planes)  
+S and −S with a line of junction 0L  and shear modules +G  and  −G . The lower half-plane contains a 

circular inclusion bounded by a contour 1L  with a shear modulus  1G  and a crack 2L . We assume that the 

contours 0L , 1L , 2L  have no common points and a positive direction by passing the contours, is such that 

the inclusion or the upper half-plane remains on the left  (Fig. 1). Contours )2,1( =nLn are assigned to local 

coordinate systems nnn yOx  whose axes nn xO  are parallel to the axis xO  that coincides with the contour 

oL . The points nO  determine in the basic system of Cartesian coordinates xOy  complex coordinates 
000
nnn yixz ⋅+= , and the relationship between the coordinates of points on the plane give the relationship 

0
nn zzz += ;  yixz ⋅+= ;  nnn yixz ⋅+= . 

 

 

Fig. 1. Geometry of soldered heterogeneous half-planes with a circular 
inclusion and a crack 

Let the folded plane with the inclusion and the crack be under a stationary temperature field 
0),( ≠== constTyxT c . Then let’s suppose that the stationary temperature 0=cT  corresponds to the 

state when the stresses in the whole piecewise-homogeneous plane with a crack are zero. 
In research we assumed that the conditions of ideal mechanical contact (equality of stresses and 

displacements in the approach to the left and right to the contour) are set on the contour of inclusion 1L  

and the contour of the junction of half-planes 0L . 
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[ ] [ ]−+ +=+ )()()()( 1111 tiTtNtiTtN , 

    [ ] [ ]−+ +=+ )()()()( nnnn tiTtNtiTtN ,   1,0=n , 
(1) 

0)()( =+−+ −+
nnnn ivuivu ,   ,nn Lt ∈ 1,0=n . (2) 

The crack’s contours 2L  do not come into touch during the process of deformation and there are no 

forced loads on them. 

[ ] 0)()( 22 =+ ±tiTtN ,nn Lt ∈ 2=n . (3) 

We also believe that the temperature coefficients of linear expansion (TCLE) of half-planes are 

equal to tt aa −+ =( ), which allows, in the absence of force loads, to satisfy the conditions of ideal 

mechanical contact at the junction line of half-planes at infinity. If equality tt aa −+ =( ) is not satisfied, then 

in this problem, in addition to the heat load, one should set such effortsat infinity that would allow to 
satisfy these conditions. 

Main Material Presentation 

Complex potentials can be chosen in the following form [10]: 
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Here, ( )11 tg is unknown functionon the inclusion’s contour 1L ; )( 2
'
2 tg  – unknown function on the 

crack’s contour 2L  (the derivative of unknown jump of displacements when crossing the crack line). The 

function )( 2
'
2 tg must have integrative features at the ends of the crack. −+=Γ GG /0 ;   +G ( −G ) are the 

shear modules for of the upper (lower) half-plane. The complex potentials ( ) ( ) ( ) ( )zzzz 2211 ,,, ΨΦΨΦ  

characterize the perturbed thermal stress state due to an inclusion and a crack. 
Note that the choice of complex potentials in the form of (4) provides exact satisfaction of the 

boundary condition (1) on the contour 0L . As a result, the unknown function on the contour 0L  is 

excluded, and the order of the SIEs, which we obtain after satisfying the other boundary conditions, has 
been reduced from the third to the second order. 

Satisfying using potentials (4) the second equality of the boundary condition (1) on the inclusion’s 
contour 1L and the boundary condition (2) on the crack’s contour 2L we obtain a system of two singular 
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integral equations of the second and first kind with respect to two unknown functions )( 11 tQ and )( 22 tQ on 

the contours 1L and 2L  
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. 
t
−α , −G , ( )1111 ,,,, μαμ EGE t are the temperature coefficient of linear expansion, the shear module, the 

elasticity Young module, the Poisson coefficient of the lower half-plane (respectively, inclusion).  
The system of equations (4) has an unique solution for its arbitrary right-hand side, provided the 

following condition^  

( ) 0' 2

1

1
22 =

−
dttg , (6) 

which provides un ambiguous movements when by-passing the contour of the crack.  

Determining the unknown functions )( 11 tQ and )( 22 tQ  from the system of equations (5) (6), we can 
further find the distribution of thermal stresses in the whole piecewise homogeneous plate with a crack. 

Therefore the stress intensity coefficients (SICs) III KK , in the crack vertices are found by the formula [10] 

( )



 −=− ±

±→

±±
2222

22

2lim tQltiKK
lt

III πμ . 
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Here indexes “–” refer to the top of the crack ( −= kk lt ), and“+” – to its end ( += kk lt ). The numerical 

values of the stress intensity coefficients III KK , are real quantities that characterize the stressed-strained 

state in the neighborhood of the crack’s vertices. 

Results and Discussion 

Let the unloaded crack of length l2 with the center at the point ( h−,0 ) be parallel to the junction line 0l of 

the half-planes. The center of the circular inclusion of the radius R is on the crack line at a distance d  from the 
center of the crack, the axes of local coordinate systems nn xO  are parallel to the axis Ox  (Fig. 1). We believe that 

the conditions of ideal mechanical contact are fulfilled on the inclusion contour 1l . The solution of the system of 

equations (5) under condition (6) is found numerically by the method of mechanical quadratures [11].  

Graphic dependences for the dimentionless stress intensity coefficients TI KKF /1
−− =  and 

0/2 == −−
TII KKF  ( )1/(2

−− += χπβ lTK cT ) in the left crack top lx −=2 closer to the inclusionare 
obtained for different values of elastic, thermophysical and geometric parameters of the piecewise-

homogeneous plane, when 5,0=
h

l
; 2=

h

d
; 5,0=

h

a
; 2== −+ χχ  Lines 1 correspondtothevalue 

5,0/1 =−GG lines 2 – 1/1 =−GG  ; lines 3 –  2/1 =−GG   (Fig. 2 - 5, 8) and, respectively, lines 1 

correspond to the value  5,0/1 =−GG  ; lines 2 –  1/1 =−GG  ; lines 3 –  2/1 =−GG   (Fig. 6 - 7). 

When the temperature coefficient of the linear expansion of the inclusion t
1α  increases, 

thentheSIC
−

1F increases linearly with increasing ratio tt
−αα /1 , and increasing the stiffness of the inclusion 

(shear modulus 1G ) significantly enhances the growth of SIC −
1F , and increasing the stiffness of the upper 

half-plane (shear modulus +G ) increases SIC −
1F slightly. In this case, if tt

−αα π1 , then SIC  01 π−F , and 

when tt
−αα φ1 , then SIC   01 φ−F  (Fig. 2). 

 

  
Fig. 2. Dependence of SIC −

1F  

on −αα /1 at 5,0/ =−+ GG  

Fig. 3. Dependence of SIC −
2F  

on −αα /1 at 5,0/ =−+ GG  

 

The values of SIC −
2

F are much smaller in absolute value than the SIC −
1F for the same values of the 

parameters of the problem (Fig. 3,4,7,8). If the the temperature coefficient of the linear expansion of the 
inclusion is greater than the lower half-plane ( −αα φ1 ), then increasing the stiffness of the inclusion 

(shear modulus 1G ) causes a nonlinear increase in SIC −
1F  (Fig. 6), and increasing the stiffness of the 

upper half-plane (shear modulus 2G ) slightly increases (decreases) SIC −
1F if the stiffness of inclusionis 

less than or equal to) than the stiffness of the lower half-plane (Fig. 5) 
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Fig. 4. Dependence of SIC −
2F  

on −αα /1 at 2/ =−+ GG  

Fig. 5. Dependence of SIC −
1F on  −+ GG /   

at 2/1 =−αα  

 

  

Fig. 6. Dependenceof SIC −
1F  

on −GG /1 at 2/1 =−αα  

Fig. 7. Dependenceof SIC −
2F  

on −GG /1 at 2/1 =−αα  

 

 

Fig. 8. Dependenceof SIC −
2F on −+ GG / at 2/1 =−αα  
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Note that here it isn’t taking into account the possible contact of the cracks. Therefore, in some 

cases, the SIC
±

IF can acquirenegative values, which we do not take into account. But this result can also be 
used to obtain information about the compressive normal stresses in the vicinity of the crack vertices, 
which inhibits crack growth and local destruction of the body. If it is necessary to take into account the 
contact, the problem should be formulated as a mixed problem on the contours of the crack. Its solution is 
much more complicated, but nevertheless the solution can also be obtained by the method of singular 
integral equations. 

In this problem, the lips of the crack do not touch each other. Then, according to the criterion, taking 
into account the hypothesis of the initial crack growth, from the boundary equilibrium [12] it is possible to 
find the critical values of the temperature Tcr when the growth of the crack and the local destruction of the 
body begin, according to the formula 

±=
1

1

F

K
T c

cr .                                                                           (7) 

Here CK1 is a constant of the material that characterizes the resistance of the material to the 

destruction and is determined experimentally. 

Based on the analysis of numerical results for SIC
−

1F from formula (7) the following conclusions 
follow. When the temperature coefficient of the linear expansion of the inclusionis greater than the lower 
half-plane ( −αα φ1 ), then the increase in the stiffness of the inclusion (shear modulus 1G ) causes a 

decrease in the critical temperature to start the crack growth from the left top (closest to the inclusion) (Fig. 
6). A similar situation is observed with increasing stiffness of the upper half-plane in the case of more rigid 
inclusion than the lower half-plane (Fig. 5). An increase of the temperature coefficient of the linear 
expansion of the inclusion also causes a decrease in the critical temperature to begin crack growth. 

Conclusions 

1. A two-dimensional mathematical model has been constructed forthe problemof stationary 
thermoelasticity for a three-component piece-homogeneous plate with a crack,in the form ofSIEs of the 
first kind on the crack’s contour and the second kind on the inclusion’s contour. That allows to obtain the 
solution of the integral equation with high accuracy in comparison with the asymptotic method of a small 
parameter, which can be used only for certain types of integral equations. 

2. Numerical solution of SIE systems is obtained in the partial case of soldered heterogeneous half-
areas with a circular inclusion and a crack when we have a uniform temperature distribution in the whole 
piecewise homogeneous plate with crack ( ) 0, ≠== constTyxT c . Using this solution, stress intensity 

coefficients (SICs) at the crack vertices were calculated, which can be apply to determining the critical 
value of the constant temperature in the plate at which the crack begins to grow. 

3. Graphic dependence of stress intensity coefficients on inclusion characteristics is obtained; in 
particular, it is found that the appropriate selection of mechanical and thermophysical characteristics of 
inclusion can determine the creation of compressive or tensile normal stresses around crack vertices, which 
can be used to develop rational modes of structural elements in terms of preventing crack growth. 
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