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Magnetohydrodynamics (MHD) stagnation point flow in a porous medium with velocity
slip is investigated in this study. The governing system of partial differential equations
is transformed into a set of non-linear ordinary differential equations by using the simi-
larity transformation. Subsequently, the transformed equations are numerically solved by
using the shooting method in MAPLE software. The skin friction coefficient and the local
Nusselt number are obtained and presented graphically. The effects of the governing pa-
rameters including the velocity slip, magnetic and permeability parameters, are examined.
It is found that both the skin friction coefficient and the local Nusselt number increase as
magnetic and permeability parameters increase.
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1. Introduction

MHD was first introduced and developed by a physicist named Hannes Alfven, who won the Nobel in
Physics in 1970 [1]. The basic idea of MHD is the magnetic field, which generates an electrical flow
in the moving conductive fluid and which can change the magnetic field. The MHD equations are the
combination of the Navier–Stokes equation and Maxwell electromagnetic equations [1]. It is known
that the fluid which has characteristics of MHD possesses the ability to manipulate the flow, which
means it can control separation flow. It also helps to optimise the heat transfer from the electrically
conductive fluid. Thus, MHD flow is an essential research in engineering such as nuclear reactor cooler
and power generator. Many researchers have recently become interested in MHD studies for their
various interesting physical properties and their applications in the engineering field.

Pavlov, in 1974 studied viscous flow past a stretching sheet in the presence of a uniform magnetic
field, which has practical relevance in polymer processing (Mahapatra et al. [2]). The Pavlovian
similarity solutions are then exhibited by Andersson [3] where it shows that solutions are not only for
the boundary layer equations but also for the complete Navier–Stokes equations. Next, Andersson’s
results were further developed by Liu [4] to discover the stretching sheet’s temperature distribution.
The flow and heat transfer over a stretching sheet in the presence of uniform magnetic field has also
been considered by Chakrabarti and Gupta [5], Chiam [6], Mahmoud [7], Prasad et al. [8] and Ishak et
al. [9]. On the other hand, the effects of non-uniform magnetic field on the development of boundary
layers on a stretching sheet were studied by Helmy [10], Chiam [11] and Ishak et al. [12]. Furthermore,
Sharma et al. [13] investigated MHD mixed convection stagnation point flow over a linearly stretching
sheet with the presence of heat source/sink. This study showed that the heat transfer rate increases
with the increase of the magnetic field.

The authors would like to express their appreciation to the reviewers and editors for their insightful remarks and
recommendations, which helped to enhance this work. The Ministry of Higher Education (MOHE) funded this study
via the Fundamental Research Grant Scheme (FRGS/1/2016/STG06/UPM/03/1).
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Compared to the stretching case, less study has been considered on the MHD flow over the shrink-
ing sheet. Fang and Zhang [14] studied a closed-form exact solutions of MHD viscous flow over a
shrinking sheet. Then, Fang et al. [15] analytically solved the MHD flow over a shrinking sheet under
the slip conditions and presented multiple solution branches for a certain range of the parameter. Pre-
viously mentioned, Ishak et al. [9] studied MHD stagnation point flow towards a stretching sheet while
Mahapatra and Gupta [16] and Lok et al. [17] extended Wang’s problem to MHD stagnation point
flow towards a shrinking sheet where dual solutions exist for small values of the magnetic parameter.
In addition, Yian et al. [18] carried out a more extensive study on MHD flow, which includes the
suction effect over a shrinking sheet. From this study, a non-unique solution was discovered when the
suction strength increased. Motivated from the previous studies, many researchers are interested in
further studying the MHD flow by adding physical effects on the boundary layer, such as slip, thermal
radiation, suction and heat generation effects (Aman et al. [19]; Chen et al. [20]; Mansur et al. [21];
Khashi’ie et al. [22]; Alias & Hafidzuddin [23]).

In recent years, the study of MHD flow and heat transfer in porous media has received a great
deal of research interest due to its importance in engineering and industrial applications. Mohd Noor
and Hashim [24] studied the MHD flow and heat transfer past a shrinking sheet in a porous medium.
Following this, Zheng et al. [25] further studied by considering velocity slip and temperature jump in
their problem. This study found a closed-form solution for the flow field which the porosity, suction,
shrinking, and velocity slip parameter has been taken into account. Next, Khalili et al. [26] worked on
MHD stagnation point flow towards stretching/shrinking permeable plate in a porous medium filled
with a nanofluid while Chaudhary and Choudhary [27] considered heat and mass transfer by MHD
flow near the stagnation point flow over a stretching or shrinking sheet in a porous medium. It is
found that the surface heat transfer rate decreases with the permeability parameter, but the opposite
behaviour is observed for the magnetic parameter. Other researchers have analysed the problem with
a porous medium in their research, including (Seth et al. [28]; Mishra et al. [29]; Khashi’ie et al. [30];
Khashi’ie et al. [31]).

In recent times, magnetohydrodynamics (MHD) are well known in the field of fluid dynamics.
However, the porous medium was not commonly regarded as a concern in most of the previous study.
Therefore, in this current research, our interest is to extend the work done by Aman et al. [19] in
studying the MHD stagnation point flow towards a stretching/shrinking sheet with a slip effect. To
expand the previous findings, porous media has been examined with the velocity slip considered. This
problem will study the effect of the stretching or shrinking parameter c, the magnetic field parameter
M and the porosity parameter K on the surfaces’ flow and heat transfer behaviour.

2. Mathematical formulation

Consider a two-dimensional steady stagnation point flow towards a shrinking or stretching sheet
through a porous medium with velocity slip. The velocity of the external flow is given by U∞ = ax,
where a > 0 is the strength of the stagnation flow. It is assumed that the velocity of the stretching or
shrinking sheet is given by Uw = bx, where b is the stretching/shrinking rate, with b > and b < 0 are
for the stretching and shrinking cases, respectively. It is also assumed that a constant magnetic field
B0 is applied normal to the surface and the induced magnetic field is neglected as it is assumed small.
Under the boundary layer approximations, the governing equations for the continuity, momentum and
energy can be written as:

• continuity equation
∂u

∂x
+
∂v

∂y
= 0; (1)

• momentum equation

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+ ν

∂2u

∂y2
+

ν

K1

(U∞ − u) +
σB2

0

ρ
(U∞ − u); (2)
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• energy equation

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)

with the boundary conditions:

v = 0, u = Uw(x) + L
∂u

∂y
, T = Tw at y = 0,

u→ U∞(x), T → T∞ as y → ∞, (4)

where u and v are assumed to be the velocity components along x and y-direction, respectively, where
x-axis is measured along the stretching/shrinking sheet and the y-axis is measured normal to it. q is the
fluid density, P is the pressure, K is the permeability of the porous medium and T is the temperature
of the fluid.

The governing equations (1)–(3) associated with the boundary conditions (4) are transformed to
ODEs by applying the similarity transformations as shown below:

ψ = (axU∞)
1

2 f(η), η =

(

U∞

ax

)
1

2

y, θ(η) =
T − T∞
Tw − T∞

,

u = axf ′(η), v = −(αa)
1

2 f(η),

where the variable of similarity is η and function of stream is ψ described as u = ∂ψ
∂y and v = −

∂ψ
∂x , that

comply with Eq. (1) equivalently. After done with the fransformations, Eqs. (2) and (3) and boundary
conditions (4) can be written as the system of differential equations in ODEs as follows

Pr f ′′′ + ff ′′ + 1− f ′2 +K(1− f ′) +M2(1− f ′) = 0, (5)

θ′′ + fθ′ = 0 (6)

subjected to the conditions below

f(0) = 0, f ′(0) = c+Af ′′(0), θ(0) = 1,

f ′(η) → 1, θ(η) → 0 as η → ∞, (7)

where c = b
a in which c > 0 for a stretching case, c < 0 for a shrinking case and A = L(a/α)

1

2 .

Pr = ν
α is the Prandtl number, K = ν

ak1
is the permeability parameter and M = (σ/aρ)

1

2B0 is the
magnetic parameter.

The quantities of physical interest are the skin friction or shear stress coefficients Cf and the local
Nusselt number Nux, which are given as follows

Cf =
τw
ρU2

∞

, Nux =
xqw

k(Tw − T∞)
, (8)

where τ is the shear stress of the stretching or shrinking sheet and qw is the heat flux from the surface
of the stretching or shrinking sheet, which are defined as

τw = µ

(

∂u

∂y

)

y=0

, qw = −k

(

∂T

∂y

)

y=0

. (9)

Replace equation (9) into (8), we obtain

Cf =
Pr1/2f ′′(0)

Re
1/2
x

, Nux = −Pe1/2x θ′(0),

where ν = µ/ρ is the dynamic viscosity, Pr = ν/α is the Prandtl number, Rex = ax2/ν is the local
Reynolds number and Pex = U∞x/α is the local Peclet number.
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3. Results and discussion

The transformed equations (5) and (6) subjected to the boundary conditions (7) have been solved
numerically using the shooting method in Maple software. This study considered certain values of
the governing parameters, including the magnetic parameter M , the velocity slip parameter A, the
stretching/shrinking parameter c and the permeability parameter K when the Prandtl number Pr
remains constant. Just as in the earlier problems, the computation is performed until the solution
exists up to the smallest value of c where the results for the skin friction coefficient f ′′(0) and the local
Nusselt number −θ′(0) are both convergent. The comparison of f ′′(0) for the shrinking case (c < 0)
with those obtained by Bhattacharyya et al. [32] for several values of c are shown in Table 1. The
comparison shows an excellent agreement.

Table 1. Comparison of the results for skin friction coefficient
f ′′(0) when Pr = 1 and M = K = A = 0.

c Bhattacharya et al. [32] Present Results

−1.2465 0.55429 0.58429
−1.15 1.08223 1.08224
−1 1.32882 1.32882
−0.75 1.48929 1.48930
−0.5 1.49566 1.49567
−0.25 1.40224 1.40224

The variation of the skin fric-
tion coefficient f ′′(0) and the local
Nusselt number −θ′(0) with stretch-
ing/shrinking parameter c for selected
values of the velocity slip parameter A
are shown in Figures 1 and 2, respec-
tively. It is observed that in the shrink-
ing case where c < 0; dual solutions ex-
ist, while in the stretching case where
c > 0, unique solution exist, and when

c is equal to the critical value, there is no solution. As with dual solutions, the first solution is assumed
to be physically stable and generally exists in nature, while the second solution is not physically ac-
complished. This can be confirmed by conducting a stability analysis, but this is beyond the reach of
the present research. However, this analysis can be found in the paper written by Merkin et al. [33].
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Fig. 1. Variation of f ′′(0) with c for different values
of A when M = 1, K = 1 and Pr = 0.5.

Fig. 2. Variation of −θ′(0) with c for different values
of A when M = 1, K = 1 and Pr = 0.5.

The value of f ′′(0) is equal to zero when c = 1, as can be seen in Figure 1. This is because the fluid
and the solid boundary travel with the same velocity, and therefore there is no friction at the fluid-
solid layer. However, as seen in Figure 2, heat transfer occurs at the boundary, even in the absence
of friction, because the fluid and solid surface temperatures are different. It is further shown that
the skin friction coefficient f ′′(0) decreases with increasing the slip parameter A, but, the opposite
effect has been observed in Figure 2, where the rise in A would lead to a decrease in the local Nusselt
number −θ′(0).

Figures 3 and 4 show the variation of the skin friction coefficient f ′′(0) and the local Nusselt number
−θ′(0) with stretching/shrinking parameter c, respectively, for M = 0.2, 0, 5 and 1. The solution for
a specific value of the parameter M is shown to exist up to a critical value of c = cc(< 0), where the
boundary layer separates from the sheet. The critical values of f ′′(0) for the corresponding values of
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Fig. 3. Variation of f ′′(0) with c for different values
of M when A = 1, K = 1 and Pr = 0.5.

Fig. 4. Variation of −θ′(0) with c for different values
of M when A = 1, K = 1 and Pr = 0.5.

magnetic parameter M are shown in Table 2. Moreover, it can be inferred from Figures 3 and 4 that
as M increases, the values of f ′′(0) and −θ′(0), respectively, increases. These values first rise to the

Table 2. Variation of cc for different values of
magnetic parameter M when Pr = 0.5, K = 1

and A = 1.

M 0.2 0.5 1.0

Values of cc −5.041 −5.506 −7.238

maximum value before decrease to zero. If the effect
of the magnetic field is strong, the maximum value is
higher. This is due to the presence of a magnetic field,
which can result in the deceleration of the fluid’s mo-
mentum and thereby increase the skin friction coeffient
f ′′(0) on the surface.
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Fig. 5. Variation of f ′′(0) with c for different values
of K when A = 1, M = 1 and Pr = 0.5.

Fig. 6. Variation of −θ′(0) with c for different values
of K when A = 1, M = 1 and Pr = 0.5.

Figures 5 and 6 illustrate the effect of permeability parameter K on the skin friction coefficient f ′′(0)
and the local Nusselt number −θ′(0), respectively. These results show that as the value of K increases,
so does the value of both f ′′(0) and −θ′(0). Besides, it can be deduced that there exists a dual solution
for the shrinking case (c < 0). It is seen that as the permeability parameter K increases, the critical
value cc increases. Moreover, these figures also demonstrate that as the value of K increases, which
signifies a lower porosity of the porous medium, the range of solutions increases. In conclusion, it can
be noted from Figures 1 to 6 that the range of c for which the solutions exists for equations (5) and
(6) is wider than stated by Lok et al. [17] due to the presence of the magnetic field and permeability
parameters in the present study. These parameters could widen a solution domain, which would delay
the separation of boundary layers.

Figures 7 and 8 show the impact of permeability parameter K on velocity f ′(η) and temperature
θ(η) profiles using different values of c, assuming that other parameters remain constant. From these
figures, it can be shown that the velocity decreases with the increasing values of the permeability
parameter K, but the opposite pattern is seen for the temperature profiles. For higher values of
the permeability parameter K, the velocity and temperature profiles are almost identical for the first
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solution in which the boundary layer is bound to a very thin region. These figures support the validity
of the numerical findings acquired in this research as the boundary condition (7) was asymptotically
satisfied.
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Fig. 7. Velocity profiles for different values of K and
c when A = 1, Pr = 0.5 and M = 1.

Fig. 8. Temperature profiles for different values of K
and c when A = 1, Pr = 0.5 and M = 1.

4. Conclusion

In the present study, we investigated numerically the problem of MHD stagnation point flow over a
stretching or shrinking sheet in a porous medium with velocity slip. The various parameters that affect
the flow characteristics, including velocity slip, magnetic and permeability are taken into consideration.
Dual solutions have been found for shrinking cases. The presence of magnetic and permeability param-
eter increases the magnitude of the skin friction coefficients and local Nusselt number. In summation,
velocity slip, magnetic, and permeability parameters all increase the critical value and thus increases
the range of solutions. The magnetic and permeability parameters have a positive relationship with
the skin friction coefficients and the local Nusselt number for the MHD problem.
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МГД потiк в точцi застою на листi, що розтягується або
стискається, у пористому середовищi зi швидкiстю ковзання

Джапiлi Н., Розалi Х., Бачок Н.

Кафедра математики та статистики,
Факультет природничих наук,
Унiверситет Путра Малайзiя,

43400 UPM Серданг, Селангор, Малайзiя

У цiй роботi дослiджується магнiтогiдродинамiчний потiк через точку застою у по-
ристому середовищi зi швидкiстю ковзання. Визначальна система диференцiальних
рiвнянь в частинних похiдних перетворена на систему нелiнiйних звичайних диферен-
цiальних рiвнянь методами перетворень подiбностi. Перетворенi рiвняння вирiшенi
чисельно з допомогою методу стрiльби у програмi MAPLE. Отриманi та представленi
графiчно коефiцiєнт поверхневого тертя та локальне число Нуссельта. Дослiджено
вплив керуючих параметрiв, у тому числi швидкостi ковзання, магнiтного параметра
та проникностi. Встановлено, що коефiцiєнт поверхневого тертя та локальне число
Нуссельта збiльшуються зi збiльшенням магнiтного параметра та проникностi.

Ключовi слова: МГД потiк у точцi застою, пористе середовище, розтягнен-
ня/стискання листа, швидкiсне ковзання.
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