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In this paper, we solve the Moroccan daily diet problem based on 6 optimization pro-
gramming (P ) taking into account dietary guidelines of US department of health, human
services, and department of agriculture. The objective function controls the fuzzy glycemic
load, the favorable nutrients gap, and unfavorable nutrient excess. To transform the pro-
posed program into a line equation, we use the integral fuzzy ranking function. To solve
the obtained model, we use the Hybrid Firefly Genetic Algorithm (HFGA) that combines
some advantages of the Firefly Algorithm (FA) and the Genetic Algorithm (GA). The
proposed model produces the best and generic diets with reasonable glycemic loads and
acceptable core nutrient deficiencies. In addition, the proposed model showed remarkable
consistency with the uniform distribution of glycemic load of different foods.
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1. Introduction

Health conditions such as diabetes, cardiovascular disease, obesity, and cancer are greatly influenced by
unbalanced diets [1–5]. To maintain a high life quality, healthy diets help control the development of
chronic diseases and attenuate the risks of these diseases. It is all about answering the demands of the
human body in an optimal manner, at all age levels. In this contribution, we propose several optimal
daily regimes based on fuzzy quadratic programming, a suitable fuzzy integral ranking function, and
a Hybrid Firefly Genetic Algorithm (HFGA) [6]. Through time, the dietary optimization problem has
called the attention of many scientists whose suggestions diverge only with respect to the objective
functions being considered. Stigler and Danzig still the first group to implement the first optimization
framework in which the target function is the cost of the solution whilst the constraints reflect the
demands for the correct balance of the solution [7]. In [8], the objective function of the proposed model
mediates between the different meals utilizing the penalty mechanism. In this context, authors take
into account the regular meals: a snack and a portion of fruit. The suggestion of G. Masset [9] was
to monitor the gap between the real intake and the recommended intake that matched the nutritional
requirements. Additional research has proposed supplemental diets and nutritional menus at minimal
cost for children [10]. To control multiple goals simultaneously, other researchers have used multi goal
mathematical models [10,11]. V. Mierlo considered nearly the similar scenario by substituting the cost
of the diet with the minimization of fossil fuel depletion [12]. Cholesterol intake and glycemic load are
supposed to be main factors contributing to childhood obesity and were the subject of two objective
functions of the proposed multi-objective model in [13, 14].
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Because of the stochastic nature of food knowledge, including glycemic loads that vary with cooking
method and maturity, it is necessary to transform the models proposed in the literature so that the best-
known optimization methods can be used to estimate optimal diets. Robust programming considers
nominal central values and maximum deviation when transforming the models [15–17]. This increases
the complexity of these models: other terms are added to the objective function, the number of
variables doubles, and the number of constraints becomes very large. The decomposition of fuzzy
or interval programming problems increases the number of constraints and leads to multi-objective
optimization problems that are very difficult to solve [18, 19]. The simplest transformation consists in
considering the average values or the maximum values of the wave data [20]. But, the optimization
methods will lose all information on the marginalized values because there is an infinite number of
intervals having the same maximum value or the same center. In this work, we propose several optimal
daily diets that can be part of secure regimes. To do so, we model the dietary problem in terms of
an original fuzzy quadratic optimization programming that make compromise between the glycemic
diet, favorable, and unfavorable daily requirements. To pass from fuzzy representation to real one, we
use integral fuzzy ranking function that makes compromise between the critical values of the fuzzy
glycemic load function [21]. To solve the obtained model, we use the hybrid firefly genetic algorithm
that combines some advantages of the firefly algorithm and the genetic algorithm [6].

The remainder of the document is structured the following: In the second section, we introduce
the triangular fuzzy number theory and the integral fuzzy ranking function. In the third section, we
propose an original diet model using fuzzy quadratic programming. In the fourth section, we give the
principle of the hybrid firefly genetic algorithm. In the fifth section, several experimental results are
presented.

2. Integral fuzzy ranking function to triangular fuzzy numbers

Given a universe of discourse X and E a subset of X, we denote by µA(x) the membership grade of
the element x in the set A which is a real number form the interval [0, 1] (see [22, 23]).

A fuzzy number A = (a, b, c) is called triangular fuzzy number if a 6 b 6 c; in this case, the
membership function of A is given by Eq. (1):

µÃ(x) =











x−a
b−a

, a 6 x 6 b,
x−c
b−c

, b 6 x 6 c,

0, otherwise.

(1)

A triangular fuzzy number (a, b, c) is said to be non-negative if 0 6 a. Two triangular fuzzy numbers
A = (a, b, c) and B = (a′, b′, c′) are said to be equal if and only if a = a′, b = b′, c = c′. From now on,
we consider these two triangular fuzzy numbers in the rest of this section.

Let α be a real number. In the following, we give the operations that we need to reach our goals
in this paper [22]. The sum of two triangular fuzzy numbers is given by A⊕B = (a+ a′, b+ b′, c+ c′).
The multiplication of the triangular fuzzy number A by the constant α is given by:

αA =

{

(αa, αb, αc), α > 0,

(αc, αb, αa), α < 0.

Consider the set of convex fuzzy numbers C = {C1, . . . , Ci, . . . , Cm} and the application R mapping
from C to the set of real numbers R.

Definition 1. The application R is said to be a ranking function if it verifies the following clauses:
(P1): If Ci < Cj , then R(Ci) < R(Cj),
(P2): If Ci = Cj , then R(Ci) = R(Cj),
(P3): If Ci > Cj , then R(Ci) > R(Cj).

Definition 2. Consider the triangular fuzzy number A = (a, b, c). The functions fL,A(x) =
x−a
b−a

and

fR,A(x) =
x−c
b−c

are called the left and the right membership function of the triangular fuzzy number
A, respectively.
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The functions gL,A(y) = a+(b−a)y and gR,A(y) = c+(b− c)y, y ∈ [0, 1] are the inverse of the left
and the right membership function of the fuzzy number A, respectively. In [21], the authors define the
ranking function by: Rα(A) = αIR(A)+(1−α)IL(A), where α ∈ [0, 1], IL(A) =

∫ 1
0 gL,A(y)dy = 1

2(a+b),

and IR(A) =
∫ 1
0 gR,A(y)dy = 1

2(b+ c). Thus Rα(A) =
α
2 (b+ c) + 1−α

2 (a+ b) = 1
2(αc+ b+ (1− α)a).

The non-negative number α represents the degree of optimism of a decision maker. A larger α

indicates a higher degree of optimism. In our case, we consider the moderate decision and we set
α = 0.5; the ranking function becomes:

Rα(A) =
a+ 2b+ c

4
. (2)

Example 1. Let us consider the following optimization problem:






























min (2, 3, 4)x + (2.5, 1, 1.5)y.

Subject to:

(1, 1.5, 1.6)x + (0, 0.5, 1)y > (8.5, 9.5, 10.5),

(3, 4, 5)x + (5.8, 6, 6.2)y > (8.5, 9, 10.5),

x, y > 0.

Then the fuzzy model converted to the crisp model by using the ranking function is the following:






























min 6x+ 2y.

Subject to:

2.8x+ y > 19,

8x+ 12y > 18.5,

x, y > 0.

To solve the diet problem using a heuristic method, first, we present the glycemic load of different
foods using fuzzy triangular numbers; then, we use the integral fuzzy ranking function to transform
the obtained problem into line optimization program.

3. Fuzzy quadratic optimization programming to optimal diet

The fuzzy quadratic optimization programming (P ) that minimizes the total glycemic load, minimizes
the favorable, and unfavorable nutrients gaps is given by the equation:

(P ) :



























































min gTx+ µ(Ax− b)T (Ax− b) + β(Ex− f)T (Ex− f).

Subject to:

cTcarx > 0.55(Ctx),

cTp x > 0.18(Ctx),

cTtfx 6 0.29(Ctx),

cTsfx 6 0.078(Ctx),

0 6 x 6 6u, x ∈ RNF .

(3)

Where:

— NF is the number of foods,
— x = (xj)j=1:NF is the vector of the foods serving sizes,
— g = (gl, gn, gu) is the matrix formed by the triangular fuzzy numbers of the foods’ glycemic load.

Here, the triangular fuzzy number of the food i is given by the nominal glycemic load value gni,
the minimal glycemic load value gli, and the maximal glycemic load value gui,

— A is the matrix of the favorable nutrients, b is the vector of the favorable nutrients requirements,
E is the vector of unfavorable nutrients, and f is the maximum of positive nutrients that the diet
must contain,
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— C is the column of different foods calories, ccar is the vector of calories from carbohydrates, cp is
the vector of calories from potassium, ctf is the vector of calories from total fat, and csf is the
vector of calories from saturated fat,

— µ and β are penalty parameters that make balance between the objective function components. u

is the vector of ones from RNF .

The constraints represent the Dietary Guidelines for Americans recommendations [24]: the maximum
percentage of daily calories should be set for these nutrients with respect to the total daily calorie
intake for a healthy and balanced daily diet.

If we transform the proposed model using robust programming [15, 16], we obtain the following
mathematical model:

(PR) :







































































































min gnTx+
∑

j∈J0
p0j + φ0ω0 + µ(Ax− b)T (Ax− b) + β(Ex− f)T (Ex− f).

Subject to:

ω0 + p0 > (guj − gnj)yj ∀j ∈ J0,

−yj 6 xj 6 yj ∀j,

ω0 > 0,

p0j > 0 ∀j ∈ J0,

yj > 0 ∀j,

cTcarx > 0.55(Ctx),

cTp x > 0.18(Ctx),

cTtfx 6 0.29(Ctx),

cTsfx 6 0.078(Ctx),

0 6 x 6 6u, x ∈ RNF .

(4)

Where J0 is the set of index in {1, . . . , 176}, gj ∈ [gnj , gnj + dj ], and φ0 is a constant from [0, |J0|].
Robust programming remarkably increases the complexity of the studied problem:

(1) Two linear terms are added to the objective function which increases the number of local minima;
(2) The number of variables passed from 176 to 353 + |J0|;
(3) The number of constraints passed from 180 to 538 + |J0|.

It is possible to consider x as a fuzzy triangular number (xL, xM, xU) [18]. Then, we decompose
the objective function f of the problem (P ) into three objective functions fl, fm, and fu where the
stochastic glycemic vectors are substituted by gl, gm, and gu, respectively; the constraints are also
decomposed. In this case, four major problems arise:

(1) This transformation leads to a multi-objective problem which is very difficult to solve compared
to a mono-objective problem;

(2) The number of the variables becomes 3NF instead of NF ;
(3) The number of counterparts will be multiplied by 3;
(4) A solution of the form (xl, xm, xu) is hard to exploit by nutrient experts.

One can consider gnj instead of gj in the problem (P ). But, we lose several important knowledge
about the initial mathematical model. For instance, there are an infinite number of intervals that have
gnj as center. It is possible to replace gj with guj in (P ) [20]. But, the optimization method loses
knowledge about the bounds because there are an infinite number of intervals with the maximum guj .

In this work, we use, for the first time in the literature, the integral constraint ranking function
in the diet problem to transform the glycemic load to real numbers considering two steps: initially,
we associate a membership function to each glycemic interval (glj , gnj , guj), then we use the ranking
function to transform the obtained triangular fuzzy numbers. In our case, we consider the moderate
decision and we set α = 0.5; the mathematical model (P ) becomes:
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(P ′) :



















































min (gl+2gn+gu)
4

T
x+ α(Ax− b)T (Ax− b) + β(Ex− f)T (Ex− f).

Subject to:

cTcarx > 0.55(Ctx),

cTp x > 0.18(Ctx) pieces of

cTtfx 6 0.29(Ctx),

cTsfx 6 0.078(Ctx),

0 6 x 6 6u, x ∈ RNF .

(5)

This transformation results in a deterministic model, taking into account all the glycemic limits,
without adding any variables or constraints with almost the same objective function. In the experi-
mental section, we use HFGA to solve the quadratic diet mathematical model (P ′).

4. Hybrid firefly-genetic algorithm

In this part, we present an hybrid firefly genetic algorithm that combines some advantages of the firefly
algorithm and the genetic algorithm [6]. To point out the principals of this version, we work on the
kernel versions of FA and GA.

4.1. Firefly algorithm

The Firefly Algorithm (FA) is inspired by firefly behavior based on light intensity (I) and attractiveness
(β) [25]. Essentially, FA employs 3 rules:

(a) Fireflies are single-gender and a firefly might be attracting another firefly whatever its gender.
(b) Attraction is directly correlated to brightness. If two fireflies are blinking, the darker one will

move closer to the lighter one. If there is no firefly with more light, then a random firefly will
change its place.

(c) The luminosity of a firefly is decided based on the cost function of the problem to be solved.

Given the current position of the ith xti and jth xtj fireflies, the position of the ith firefly is updated
by:

xt+1
i = xti + δij

(

xtj − xti
)

+ αtε
t
i, (6)

αt is a global random series of parameters and εti is personalized local random series of parameters
linked to the ith firefly. Algorithm 1 presents the different steps of the FA algorithm.

Algorithm 1 Firefly algorithm.

x =
[

x1, x2, . . . , xN
]

;

2 : f(x) =
[

f(x1), f(x2), . . . , f(xN )
]

;
I = f(x) is the light intensity.
γ is the absorption coefficient.
while (t < FES) do

for i← 1 : N (all N fireflies) do

for j ← 1 : N (all i fireflies) do

if Ii > Ij then

xj ← xj move firefly i towards j ;
end if

Attractiveness varies with distance r via exp(−βr),
where β ← 0.
Evaluate new solutions and update light intensity I

end for j
end for i
Rank the fireflies and find the current best
t = t+ 1;

end while
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4.2. Genetic algorithm (GA)

The genetic algorithm is a global search optimization process that imitates the mechanisms of natu-
ral evolution based on the reproduction and survival of the most successful individual [26]. In GA,
individual solutions progress iteratively through genetic transactions like selection, crossing over and
mutation. Solutions are scored using the fitness function. The new top solutions substitute for the
former bad ones in the succeeding generations:

Initialization: the first generation is performed in a random way, allowing to cover the wide spectrum
of all possible solutions. Occasionally, solutions may be “segregated” in regions in which it is likely
that best solutions can be reached.

Selection: In each following generation, a subset of the surviving population is screened to breed
a newer generation [27]: roulette Wheel selection, rank Selection, Steady State Selection, Tournament
Selection, Elitism Selection, and Boltzmann Selection.

Crossover: is a genetic process that aims to merge the DNA data of two individuals in order to
breed a new child.

Mutation: Heuristics.
Algorithm 2 gives the kernel version of the genetic algorithm.

Algorithm 2 Genetic algorithm.

Set of parameters
Choose encode method
Generate the initial population
while i < MaxIter and BestF itn < MaxFitn do

Fitness calculation
Selection
Crossover
Mutation

end while

Decode the individual with maximum fitness
return the best solution

Some proposed hybrid versions are not justified and are based on algebraic tests without any
relation with the principal of FA and GA [6]. The proposed hybridization version recommends genetic
and firefly operations by studding the well-known phenomena in the heuristic field.

If the difference in brightness between two fireflies is large enough, it is beneficial to move one firefly
towards another and improvement is most likely;

If the difference between the brightness of two fireflies is average, we can assume that both solutions
are good but that they do not come from the same regions and that crossing will improve the quality
of both solutions;

If the difference between the brightness of two fireflies is very small, the solutions are very similar
and there is no benefit in moving one of two fireflies to the other, here the mutation will move away
from the current region if it is very bad.

In HFGA [6], we create N fireflies at random and sort them depending on their light intensity I.
At every iteration, given two fireflies indf1 and indf2, we perform the crossover operator on both indf1
and indf2 if I(indf1) > I(indf2) else the mutation operator is performed on indf1 and indf2. Two new
solutions substitute the former ones in the iteration Algorithm and their light intensity is equal to the
average light intensity of the used parents. Thus, HFGA offers various ways to select individuals for
crossover and mutation in a genetic algorithm. The steps of HFGA are described in Algorithm 3.

Certainly, other versions of HGFA have been proposed in the literature [28, 29]. In our case, we
use the version suggested in [6] because it is powerful and simple to implement. In this context, the
authors of HGFA have shown, experimentally, the superiority of this hybridization over GA and FA
on academic problems. In this work, we test and we compare FA, GA, and HFGA for different values
of different parameters.
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Algorithm 3 Hybrid genetic firefly algorithm.

Objective function f(x), x = (x1, x2, . . . , xd)
T

Initialize the firefly population xi (i = 1, 2, . . . , N)
Evaluate solutions, update light intensity I and sort of fireflies
γ is the absorption coefficient.
Tr1 and Tr2 decision threshold.
while Stopping criteria are not met

Keep the old solutions
for j ← 2 : N

j ← 1 : i− 1
if |Ii − Ij | > Tr1 then

if Ii < Ij then

Move firefly i towards j

else

Move firefly j towards i
end if

else

if Tr2 < |Ii − Ij | < Tr1 then

yij , zij ← crossover(xi, xj)
a, b← argmax{Ii, Ij ; I(yij), I(zij)}
xi ← a;xj ← b

update(Ii), update(Ij)
else

yi ← mutate(xi)
zj ← mutate(xj)
a, b← argmax{Ii, Ij ; I(yi), I(zj)}
xi ← a;xj ← b

update(Ii), update(Ij)
end if

end if

end for

end while

Postprocessing results and visualization.

5. Numerical experiments

We used HFGA to solve the diet problem based on our mathematical model (P ′) where µ = 0.3 and
β = 0.5. According to this choice, we inform the HGFA algorithm that the total glycemic load weights
the most for us when we prepare meals for diabetic patients. Moreover, the number of favorable
nutrients is 15 while the number of unfavorable nutrients is 4, thus ‖Ax − b‖ ≫ ‖Ex − f‖. For this,
HGAFA is informed, through µ < β, to make balance between these two terms.

The favorable and unfavorable nutrients daily requirements [30, 31] are given by: Calories
(2000 kcal), Protein (91 g), Carbohydrate (271 g), Potassium (4044mg), Magnesium (380mg), Cal-
cium (1316mg), Iron (18mg), Phosphorus (1740mg), Zinc (14mg), Vb6 (2.4mg), Vb12 (8.3µg), VC
(155mg), VA (1052µg), VE (9.5mg), Saturated fat (17 g), Sodium (1779mg), Total fat (65 g), and
Cholesterol (230mg). The optimal diets are estimated based on 176 foods available in the Moroccan
market.

We tested the HFGA for different population sizes (40 6 popSize 6 100) and for different attraction
coefficient token from the interval (1 6 β0 6 2.5). Concerning the other parameters, we adopt the
following configurations:

Genetic algorithm: initialization (random), crossover operator (multiple), crossover rate (0.8), num-
ber of iteration (5000), population size (300), mutation (gaussian), and selection function (stochastic-
uniform).
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Firefly algorithm: maximum iterations (500), number of fireflies (40), light absorption coeffi-
cient (1), mutation coefficient (0.2), mutation coefficient damping ratio (0.98), and mutation range
(uniform: 0.05 ∗ (V arMax− V arMin)).

Hybrid genetic firefly algorithm: light absorption coefficient (1), mutation coefficient (0.2), mutation
coefficient damping ratio (0.98), number of iteration (100), and mutation rate (0.03).

Concerning the transformation of the fuzzy vector g of different goods to deterministic vector, we
consider the means nominal values, the worst case, and the integral fuzzy ranking transformation.
Table 1 gives the total glycemic load, total favorable nutrients gaps, and total unfavorable nutrients
excess of the diets produced by FA algorithm for fuzzy ranking transformation, mean nominal values,
and worst case for different values of FA attraction coefficient β0; the number of iterations is fixed to
500. The diets associated to β0 less or equal to 1.5 are rejected because their total glycemic load (almost
562.08–2.9e+3), the total favorable nutrients gap (almost 3.3e+4–1.2e+5mg), and total unfavorable
nutrients excess are very large (almost 2.4e+3–3.6e+4mg). Diets corresponding to a β0 between 1.75
and 2.5 are acceptable and can be consumed by people with diabetes.

Table 1. Total glycemic load, total favorable nutrients gap, and Total unfavorable nutrients excess of daily
diets produced by FA for different attraction coefficient base Values (β0 between 1 and 2.5) for 500 iterations.
Three transformations are considered: fuzzy ranking, the total favorable nutrients gap, and total unfavorable

nutrients excess.

FA Attr. Coeff.
Tot. Glyc. Load Tot. Fav. Nutr. Gap(mg) Tot. Unfav. Nutr. Exc. (mg)
Fuz. Mean. Wor. Fuz. Mean. Wor. Fuz. Mean. Wor.

1 2.7e+3 2.9e+3 3.0e+3 1.2e+5 1.2e+5 1.1e+5 3.9e+4 3.6e+4 3.0e+4
1.25 2.2e+3 2.0e+3 2.2e+3 9.5e+4 9.7e+4 9.4e+4 2.0e+4 2.8e+04 2.6e+4
1.5 612.40 818.37 562.08 3.5e+4 3.5e+4 3.3e+4 2.4e+3 2.9e+03 2.7e+3
1.75 23.97 13.92 11.65 19.33 18.68 16.46 41.42 53.91 65.80
2 12.09 8.82 13.32 13.15 65.05 7.25 50.17 18.85 51.43
2.25 18.44 11.42 12.19 3.28 4.48 7.87 42.04 56.84 71.66
2.5 11.34 13.88 8.62 10.27 15.14 23.37 60.47 68.25 53.92

Table 2 gives total glycemic load, total favorable nutrients gap, and total unfavorable nutrients
excess of the diets produced by GA algorithm for fuzzy ranking transformation, mean nominal values,
and worst case for different population size of GA (between 200 and 800); the number of generations
is fixed to 5000. All the produced diets by GA are rejected because their total glycemic load (almost
61–4e+3), the total favorable nutrients gap (almost 9.8–10.0e+4mg), and total unfavorable nutrients
excess are massive (almost 1.6e+4–4e+4mg a part from the first diet). These diets are dangerous even
for healthy people.

Table 2. Total glycemic load, total favorable nutrients gaps, and total unfavorable nutrients excess of the diets
produced by GA algorithm for fuzzy ranking transformation, mean nominal values, and worst case for a different

population size of GA; the number of generations is fixed to 5000.

GA Pop. size
Tot. Glyc. Load Tot. Fav. Nutr. Gap(mg) Tot. Unfav. Nutr. Exc. (mg)
Fuz. Mean. Wor. Fuz. Mean. wor. Fuz. Mean. Wor.

200 61.36 85.33 87.74 9.0e+3 1.1e+4 1.2e+4 0 0 0
300 2.6e+3 1.7e+3 1.9e+3 8.6e+4 8.6e+4 9.0e+4 2.8e+4 2.0e+4 1.6e+4
400 3.1e+3 2.1e+3 2.3e+3 9.8e+04 8.1e+4 9.4e+4 2.1e+4 1.5e+4 2.1e+4
500 3.0e+3 3.0e+3 2.4e+3 10.0e+4 10.0e+4 9.3e+4 3.4e+4 1.9 e+4 3.1e+4
600 2.6e+3 3.1e+3 2.8e+3 8.9e+4 1.2e+5 9.3e+04 2.2e+4 2.5e+4 2.0e+4
700 2.5e+3 2.5e+3 2.3e+3 1.1e+5 9.3e+4 9.0e+4 2.3e+4 1.8e+4 2.9e+4
800 2.3e+3 3.0e+3 2.7e+3 1.1e+5 1.1e+5 1.1e+05 3.2e+4 2.2e+4 3.4e+4

Tables 3 give the total glycemic load, total favorable nutrients gap, and total unfavorable nutrients
excess of the diets produced by HFGA for fuzzy ranking transformation, mean nominal values, and
worst case for different population sizes (between 40 and 100). The attraction coefficient is randomly
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chosen. The number of generations is fixed at 100. All the produced diets by HFGA are acceptable
because their low total glycemic load (between 16 and 39), their low total favorable nutrients gap
(between 5mg and 38mg), and their acceptable total unfavorable nutrients excess (between 1mg and
26mg). All these diets can be consumed by diabetic patients without any risk. Compared to fairly
algorithm, HFGA requires very small number of iterations to produce good diets.

Table 3. Total glycemic load, total favorable nutrients gap, and total unfavorable nutrients excess of the
regimes produced by HFGA for fuzzy ranking transformation, mean nominal values, and worst case for different

population sizes (between 40 and 100).

HFGA Pop. size
Tot. Glyc. Load Tot. Fav. Nutr. Gap(mg) Tot. Unfav. Nutr. Exc. (mg)
Fuz. Mean. Wor. Fuz. Mean. Wor. Fuz. Mean. Wor.

40 38.09 27.23 21.93 21.62 16.95 7.68 5.34 13.8843 25.62
50 21.07 23.56 30.12 20.23 12.40 10.43 8.42 18.89 21.01
60 19.34 24.37 25.23 13.97 28.65 12.50 10.36 1.30 17.11
70 18.54 21.25 27.60 1.22 10.25 16.84 16.09 7.62 22.49
80 28.67 16.26 20.81 6.19 17.77 5.72 9.03 12.96 18.52
90 20.21 26.50 37.47 10.17 32.31 8.18 15.56 2.57 5.07
100 18.72 29.71 21.90 10.79 6.00 19.70 2.50 2.86 2.96

The best diets produced by the system [(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-HFGA]
correspond to the population of size 80. To improve the performance of the system [(P )-(fuzzy ranking
‖ mean nominal ‖ worst case)-HFGA] for this size, we solve several instances for different values of the
attraction coefficient β0. Table 4 gives total glycemic load, total favorable nutrients gap, and total un-
favorable nutrients excess of the diets produced by HFGA algorithm for fuzzy ranking transformation,
mean nominal values, and worst case for different values of the attraction coefficient β0 for population
of size 80; the number of iterations is only to 100. Considering three performance criterions, the worst
diets are the ones corresponding to attracted coefficient of value 1: Tot. Glyc. Load (14.2–40.3),
Tot. Fav. Nutr. Gap (28–40.3mg), and Tot. Unfav. Nutr. Exc. (19.48–77.84); will the best ones
are the diets produced by the system [(P)-(fuzzy ranking ‖ mean nominal ‖ worst case)-HFGA] for
β0 = 1.75: Tot. Glyc. Load (7–26), Tot. Fav. Nutr. Gap (2–18 mg), and Tot. Unfav. Nutr. Exc.
(9–19 mg). But all the diets produced by HFGA are good and can be used to save the diabetic people
with complications and can avoid that the diabetic people to become pre-diabetic and can help them
to be normal people [17].

Table 4. Total glycemic load, total favorable nutrients gap, and total unfavorable nutrients excess of the
regimes produced by HFGA algorithm for fuzzy ranking transformation, mean nominal values, and worst case

for different values of the attraction coefficient β0 for population of size 80.

HFGA Attr. Coeff.
Tot. Glyc. Load Tot. Fav. Nutr. Gap(mg) Tot. Unfav. Nutr. Exc. (mg)
Fuz. Mean. Wor. Fuz. Mean. Wor. Fuz. Mean. Wor.

1 34.83 14.20 16.92 40.30 28.62 28.49 19.48 35.40 77.84
1.25 18.99 21.46 23.77 9.06 15.22 5.35 8.92 19.16 17.37
1.5 24.95 23.79 33.46 10.38 13.70 8.63 16.49 1.79 7.20
1.75 28.67 16.26 20.81 6.19 17.77 5.72 9.03 12.96 18.52
2 21.51 40.18 21.08 16.33 9.15 11.57 17.12 12.33 5.31
2.25 21.64 21.07 25.11 14.19 15.39 8.26 7.59 9.03 15.69
2.5 28.14 21.65 31.16 25.48 2.52 9.74 9.83 3.44 30.22

Figure 1 gives fitness evolution with iterations, of HFGA with β0 = 1.75 and 80 as population size
for fuzzy ranking function, means nominal value, and worst case value. HFGA needs a small number
of iterations to produce acceptable diets (considering the three performance criterions). Unfortunately,
Figure 1 points out a well-known phenomenon in the optimization field: HFGA stops very early in val-
leys that represent local minima. To overcome this problem, one can increase the mutation probability
to escape from bad local minima, but the search risks becoming arbitrary.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 338–350 (2023)



Hybrid firefly genetic algorithm and integral fuzzy quadratic programming to an optimal . . . 347

0 50 100 150 200

Iterations

10
2

10
3

10
4

10
5

10
6

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Fitness associated with fuzzy ranking function

a Fitness function vs iterations of
HFGA for fuzzy ranking function.

0 50 100 150 200

Iterations

10
2

10
3

10
4

10
5

10
6

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Fitness associated with mean ranking function

b Fitness function vs iterations of
HFGA for mean nominal value.

0 50 100 150 200

Iterations

10
2

10
3

10
4

10
5

10
6

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Fitness associated with worst glycemic case

c Fitness function vs iterations of
HFGA for worst nominal value.

Fig. 1. Fitness evolution, with iterations, of HFGA with β0 = 1.75 and 80 as population size for fuzzy ranking
function, means nominal value, and worst case value.

Let us come back to the system [(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-FA]. Figure 2
shows that the total glycemic load (a) and the total favorable nutrients gap (b) of the diets produced by
[(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-HFGA] are inferior than the ones produced by [(P )-
(fuzzy ranking ‖ mean nominal ‖ worst case)-FA] for β0 inferior than 1.75, and they become almost the
same for β0 superior than 1.75. But, the total unfavorable nutrients excess (c) of the diet produced by
[(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-HFGA] are always smaller than the ones produced
by [(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-FA-HFGA]. That is why the authors recommend
to use [(P )-(fuzzy ranking ‖ mean nominal ‖ worst case)-HFGA] to solve the diet problem.
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Fig. 2. Total glycemic load (a), Total favorable nutrients gap (b), and Total unfavorable nutrients excess (c)
associated with daily diets produced by HFGA and FA for different values of β0 and for different nominal values.

To compare different glycemic representations (fuzzy ranking, means nominal glycemic, and worst
glycemic), we generate 50 instances of the problem (P ) whose the glycemic values of different foods
are generated via uniform densities from the intervals [gl, gu]. Then, we solve these instance using
HFGA(population size =80, β0 = 1.75), the glycimic load of the obtained diets form a vector of size
50 that we denote TGL. Then, we construct three vectors:

(a) DTGLF=TGL-TGLF, where TGLF is the total glycemic load of the diet obtained by the system
[(P )-Fuzzy ranking-HFGA(population size =80, β0 = 1.75)];

(b) DTGLN=TGL-TGLN, where TGLN is the total glycemic load of the diet obtained by the
system [(P )-means glycemic-HFGA(population size =80, β0 = 1.75)];

(c) DTGLW=TGL-TGLW; where TGLW is the total glycemic load of the diet obtained by the
system [(P )-worst glycemic-HFGA(population size =80, β0 = 1.75)].
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Fig. 3. Total glycemic load gap of the diet obtained by
solving (P ) using HFGA for Fuzzy ranking, means, and

worst glycemic.

Figure 3 represents the series TGL-TGLF,
TGL-TGLN, and TGL-TGLW of the 50 in-
stances. Contrary to what was expected, it
is the representation fuzzy ranking that is
in the middle and not the mean glycemic
representation. This means that the fuzzy
ranking representation suggests a good com-
promise. For more precision, we calcu-
late the mean and standard deviation of
different series TGL-TGLF(mean=−0.4175),
TGL-TGLN (mean=3.8574), and TGL-TGLW
(mean=−5.6001). Exactly as expected, com-
pared to the other series, the average of TGL-
TGLF is very close to 0. This means that the
total glycemic load of the instance obtained by
fuzzy ranking transformation is closer to the to-
tal glycemic load of each of the 50 instances. We

conclude that fuzzy ranking transformation produces a representative nominal value that summary all
possible values in the intervals [gl, gu]. In addition, the three series have almost the same standard
deviation (10.1345) which proves the consistency of the proposed model with the studied phenomena.

6. Conclusion

We solved the Moroccan daily diet problem based on original fuzzy quadratic optimization program-
ming (P ) taking into account dietary guidelines of US department of health, human services, and
department of agriculture. The objective function makes a compromise between the fuzzy glycemic
load, the favorable nutria Figure and unfavorable nutrients excess. To transform the proposed program
into line equation, we used the integral fuzzy ranking function (R) that controls the critical values of
the fuzzy glycemic load membership functions. Several experimentations were realized using a hy-
brid firefly genetic algorithm to estimate the optimal daily diets based on 176 foods available on the
Moroccan market.

Compared to the systems [(P )-(mean glycemic load)-HFGA] and [(P )-(worst glycemic load)-
HFGA], the system [(P )- (R glycemic load)-HFGA] produced the best and generic diets with rea-
sonable glycemic loads and acceptable core nutrient deficiencies. In addition, the proposed model
showed remarkable consistency with the uniform distribution of the glycemic load of different foods.

Finally, even though [(P )- (R glycemic load)-HFGA] offered the best diets, we are not going to
reject all the diets offered by [(P )-(mean glycemic load)-HFGA] and [(P )-(worst glycemic load)-HFGA]
because not all of them are bad. This will provide patients with a variety of diets that we can use
to build long-term diets. Indeed, these diets do not have the same advantages or disadvantages, the
effective strategy is to alternate these diets over the course of the diet.
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Гiбридний генетичний алгоритм свiтлячка та iнтегральне нечiтке
квадратичне програмування для оптимальної марокканської дiєти

Ель Мутауакiл К.1, Ахураг А.1, Чакiр С.2, Каббадж З.3, Челлак С.2, Чеггур М.2, Байзрi Х.4

1Лабораторiя iнженерних наук, FPT Тази, USMBA Феса, Марокко
2Лабораторiя Morphoscience, FMP, CAU Марракеша, Марокко

3Лабораторiя медицинських наук, FMP, CAU Марракеша, Марокко
4Лабораторiя бiологiчних наук i медицинських дослiджень,

Ендокринологiчна служба дiабета i метаболiчних захворювань,

Вiйськовий госпiталь Авiцени, FMP, UCA, Марракеш, Марокко

У цiй статтi розв’язується марокканська проблема денного рацiону на основi 6 оп-
тимiзацiйних програм (P ) з урахуванням дiєтичних рекомендацiй Мiнiстерства охо-
рони здоров’я, соцiальних служб i Мiнiстерства сiльського господарства США. Цi-
льова функцiя контролює нечiтке глiкемiчне навантаження, сприятливий дефiцит
поживних речовин i несприятливий надлишок поживних речовин. Для перетворення
запропонованої програми в лiнiйне рiвняння використовується iнтегральна функцiя
нечiткого ранжування. Для вирiшення отриманої моделi використовуємо гiбридний
генетичний алгоритм свiтлячка (HFGA), який поєднує деякi переваги алгоритму свiт-
лячка (FA) i генетичного алгоритму (GA). Запропонована модель створює найкращi
та загальнi дiєти з прийнятним глiкемiчним навантаженням i прийнятним дефiцитом
основних поживних речовин. Крiм того, запропонована модель показала дивовижну
узгодженiсть з рiвномiрним розподiлом глiкемiчного навантаження рiзних харчових
продуктiв.

Ключовi слова: оптимальна марокканська дiєта; нечiтке квадратичне програму-

вання; трикутнi нечiткi числа; iнтегральне ранжування бiльшостi функцiй; гене-

тичний алгоритм; алгоритм свiтлячка.
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