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In comparison to fuzzy sets, intuitionistic fuzzy sets are much more efficient at represent-
ing and processing uncertainty. Distance measures quantify how much the information
conveyed by intuitionistic fuzzy sets differs from one another. Researchers have suggested
many distance measures to assess the difference between intuitionistic fuzzy sets, but
several of them produce contradictory results in practice and violate the fundamental
axioms of distance measure. In this article, we introduce a novel distance measure for
IFSs, visualize it, and discuss its boundedness and nonlinear characteristics using appro-
priate numerical examples. In addition to establishing its validity, its effectiveness was
investigated using real-life examples from multiple fields, such as medical diagnosis and
pattern recognition. We also present a technique to solve pattern recognition problems,
and the superiority of the proposed approach over existing approaches is demonstrated by
incorporating a performance index in terms of “Degree of Confidence” (DOC). Finally, we
extend the applicability of the proposed approach to establish a new decision-making ap-
proach known as the IFIR (Intuitionistic Fuzzy Inferior Ratio) method, and its efficiency
is analyzed with other established decision-making approaches.

Keywords: intuitionistic fuzzy set; distance measure; similarity measure; medical diag-
nosis; multi-attribute decision making; pattern recognition.
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1. Introduction

Researchers have developed a variety of effective tools and methodologies to handle imprecision and
uncertainty in decision-making theory. Prior to Prof. Zadeh [1] revolutionary idea of fuzzy sets, prob-
ability theory was the only way to measure uncertainty and imprecision. Because of its ability to
recognize human knowledge and perception, this extraordinary idea has achieved great success in di-
verse fields. The fuzzy set allocates a membership function to every element of the universe set in the
unit interval to specify the grades. However, because of the presence of hesitation degrees in many
real-life situations, the membership and non-membership grades in fuzzy sets are not complementary
to each other. To resolve this issue, Atanassov |2, 3| suggested intuitionistic fuzzy sets (IFSs), which
consist of a membership function, a non-membership function, and a hesitancy parameter. The main
advantage of IFSs over FSs is that IFSs separate the membership and non-membership grade of an
element in the set under consideration and reflect more consistently the hesitancy present in human
behaviour. This advancement has motivated the researchers to investigate new information measures
for IFSs and other extended environments.

The comparison of object descriptions is a common operation in diverse fields, including pat-
tern recognition, image processing, clustering analysis, medical diagnosis and decision-making. This
comparison of object descriptions is accomplished through various distance and similarity measures to
calculate the extent to which the descriptions are similar or differ from one another. Distance measures
play a very significant role in comparing the information carried between the IFSs and have inspired
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the researchers from diverse fields, including decision-making [5-11]|, pattern recognition [17-20]|, and
medical diagnosis [21-23].

Many researchers have contributed to the introduction of new information measures based on
IFSs from different perspectives. Gau and Buehrer [24] invented the concept of vague sets as an
extended version of FSs. Bustince and Burillo [25] identify that IFSs and vague sets are coincident.
Szmidt and Kacpzzyk [28] suggested four methods for enumerating the basic distances between IFSs
by considering all three parameters characterizing the IFSs with geometric interpretation. Wang
and Xin [29] proposed an advanced distance measure between IFSs by pointing out some limitations
presented in the definition of Szmidt and Kacprzyk’s introduced measures. They invented a number of
new distance measures and utilized them to solve pattern recognition problems. Hang and Yang [30-32]
presented several IF'Ss similarity measures using L, metric and Hausdorff distance that can be applied
to linguistic variables effectively. Grzegorewski [33] introduced a few new methods of calculating
IFSs distances using Hausdroff metrics. However, Chen [34] later pointed out that there are some
restrictions on Grzegorzewski’s distance measure and exhibited certain counter-intuitive results. Yang
and Chiclana [35] proposed 3D distances for IFSs and demonstrated that 2D and 3D distances produce
conflicting results when applied to same set of three IFSs. Hatzimichailidis et al. [18] established an
IFS distance measure using matrix norm and fuzzy implication. This distance measure organizes
the information in each set as a matrix, and matrix norms associated with fuzzy implications can
be used to determine the IFSs distances. Luo and Zhao [23] proposed a new measure by extending
Hatzimichailidis et al distance measure that overcomes the counter-intuitive cases and applied in diverse
fields. Garg and Rani [12-15] investigated several distance and similarity measures among IFSs based
on transformation techniques with some advantages over existing measures.

The distance measure on IFSs evaluates the degree of distance between the IFSs based on the
information or data available. After analyzing some existing approaches, and it is observed that
majority of them produce contradictory results when applied to a variety of practical applications, and
few of them are linear and unable to meet the axiomatic definition of a distance measure. For example,
if P =(0,0), @ =(0.5,0.5), R = (1,0), and S = (0, 1) then it is obvious that IF'Ss P, Q are more close
in comparison with IFSs P, R and P, S i.e. Dy (P, Q) < Dw (P, R) and Dy (P, Q) < Dw (P,S). But
the distance measures Dyg, Dy, Dyr, Dyp, D}JD, D%D violate this ordering and provides equal
distance for these different pairs (P, Q), (P,R), (P,S) of IFSs and Dxj, Dzp violate boundedness
axioms as mentioned in Table 1. Furthermore, some of the existing approaches produce indeterminate
results when membership and non-membership grades are close to zero. For example, if G = (0,0) = H
the distance measure Dx violate the identical property of distance. So, defining an improved and
efficient distance measurement technique for IFSs is still a matter of further investigation.

The main motivation of introducing this article are (1) to establish and validate a new distance mea-
sure (2) to demonstrate the effectiveness and superiority of the suggested approach over well-established
approaches by showing that proposed distance can solve the counter-intuitive cases produced by these
approaches (3) a new algorithm based on proposed distance measure has been establish to solve pattern
recognition problems (4) to construct similarity measure using the proposed distance to solve MADM
problems (5) to introduce a novel MADM approach based on the suggested approach.

This work is structured as: in Section 2, we quickly recall some existing literature concerned with
IFSs; in Section 3, we introduce a novel distance for IFSs and investigate its significant properties from
both theoretical and geometrical points of view; in Section 4, numerical comparisons are performed
for supremacy and consistency of the proposed result in diverse fields; in Section 5, a novel MADM
approach has been developed by pointing out some drawbacks of IFS-TOPSIS; in Section 6, a compar-
ative analysis has been executed to establish the consistency and reliability of the introduced result.
Final conclusion and further development are demonstrated in Section 7.
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2. Preliminaries

In this section, some basic concepts associated with IFSs are recalled, and all over in this communica-
tion, K stands for universal set, and IFS(K) represents the set of all IFSs on K.

Definition 1 (Ref. [1]). A FSG in K is defined as G = {(zp, g (2p)) |2p € K}, where pug: K — [0,1]
is membership function. The value j1g(2p) € [0, 1] is the membership degree of z, € K in G.

Definition 2 (Ref. [2]). An IFS G in a finite universal set K = {z1,29,...,2,} is defined as
G = {(zppg(2zp),vg(%p)) |2p € K}, where pug: K — [0,1] and vg: K — [0,1] are respectively, the
membership and non membership function such that 0 < pg(zp) + vg(2y) < 1 Vz, € K. Further,
the number mg(%p) = 1 — pg(2p) — vg(zp) denote the intuitionistic index or hesitancy degree. Taking
7g(2p) = 0 implies vg(zp,) = 1 — pg(zp) Vzp € K. Thus IFSs G becomes a FS. Hence F'Ss are particular
case of IF'Ss.

Definition 3 (Refs. [2,3]). Let K = {z1,22,...,2,} be the finite universal set. For any G, H €
IFS(K) the following operations are valid:

(1) G CH if and only if pg(zp) < pn(zp) and vg(zp) = vy (2p) Vzp € K;

(2) G=H ifand only if G CH and H C G;

(3) G° = {{zp, v (z0). g (z) 2 € K}

() GUH = {{zy maxtyig(zp), i)} min{ug(z), vu(z)] 2 € K}

(5) GNH = {{zmin{ug(zp), r3elzp)}, max{vg (zp). vre(op) 2 € K}

For an IFS, the pair (ug(%p),vg(%p) is called an intuitionistic number (IFN) and denoted as ¢ =
(e, Ve), Where pg, vy € [0,1] and 0 < pg + vy < 1.
Definition 4 (Refs. [39,40]). For any F,G,H € IFS(K), a mapping Syr: IFS(K) x IFS(K) —
[0,1] is called similarity measure of IFSs if Sy satisfies:
(SP1) 0<Sm(G,H)<1;
(SP2) Sum(G,H)=1ifand only if G = H,;
(SP4) IfF CG CH, then Sy (F,H) < Syu(F,G) and Sy (F, H) < Sm (G, H).

Definition 5 (Ref. [29]). For any F,G,H € IFS(K), a mapping Dy : IFS(K) x IFS(K) — [0,1]
is called distance measure of IF'Ss if Dy, satisfies:

(DP1) 0<Dw(G,H)<1;

(DP2) Dw(G,H) =0 if and only if G = H;

(DP3) Dy (0, H) = D (H.G);

(DP4) If F C G CH, then Dy (F,H) = Dw(F,G) and Dy (F,H) = Dw (G, H).

Definition 6 (Ref. [47]). A mapping N: [0,1] — [0,1] is known as fuzzy negation if
(1) N(©0)=1, N(1)=0

(2) N is decreasing.

Furthermore,

(3) N is strong if N(N(z)) = z Vz € [0,1];

(4) N is non-filling if N(z) =1 < 2 =0;

(5) N is non-vanishing if N'(2) =0 < 2 = 1.

Let AV be non-filling fuzzy negation on [0,1] and D(G,H) be distance measure. Then Syr(G, H) =
N (D(G,H)), [48] is similarity measure for IFSs G, H.

Distance measures. Szmidt and Kacprzyk [28] distance measure:
e The Hamming distance:

l\’)l»i

k
Dup(G,H) Z (lug(2p) = pw(zp) + g (2p) — v (2p)] + |G (2p) — T (2p)1);
p=1
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e The Normalized Hamming distance:

Dnu(G,H) %Z g (2p) — hae(2p)| + Vg (2p) — vi(2p)| + 17 (2p) — Tu(2p)]);

The Euclidean distance:

k
1
Dpp(G.H) = J 5 2 (16(z0) = ()" + (va(z) —vu(z)” + (w6 (z) — (=)
p=1
e The Normalized Euclidean distance:

2 2 2
DnEe(G,H) J ok Z NG Z:n - MH Zp)) + (VG(Z:D) - V?-L(Zp)) + (Wg(zp) - 777-[('2;7)) ;
o  Grzegorzewski [33] dlstance measure:

Dep(G.H) = + ZmaX{lug 2p) — n(2p)s [vg (%) — vae(2p)l 15

Wang and Xin [29] distance measure:

DW(Q ) Z g (2p) — pw(2p)| 1‘ lvg(2p) —vn(2p)| 4 maX{‘NQ(Zp)_NH(Zg)’= ‘VQ(Zp)_VH(Zp)‘}7

Dy (G, H) = %Z ( kg (2p) — (2] —2|- lvg(zp) — yH(zp),> |

p=1
e Yang and Chiclana [35] distance measure:

Dyr(G,H) Zmax{‘,ug zp) — 2(2p)ls [vg (2p) — vau(2p)l, Img(2p) — mau(2p)1}

e Park J. et al. [50] dlstance measure

k
1
Djp(G,H) = 1 E ’Mg (2p) ,UH(Zp)‘ + ’Vg(zp) - VH(Zp)‘ + ’779(217) - WH(ZP)‘
-1

+ 2max{\,ug(zp) - NH(%)L ‘VQ(Zp) - VH(%)L ‘Wg(zp) - WH(ZP)‘});
e M. Luo and Zhao [23] distance measure:
1I + |[1(vg) — (v + |[I(7wg) — (7
Dy (G H: f) = 1M1 ) — () || + [ITIC g)3k ()|l + [[M(7g) — TI( H)H,
where IT = v/ Amax, A is the greatest non negative eigenvalue of positive definite Hermitian matrix IT7TI

e Luo X. et al. [38] distance measure:

o

DZO g 7‘[ = Z K1 Zp + K2 Z;n) +/{3(z20)]

_1
3k =
where

r1(2p) = % [l1g(zp) — 1ae(2p)] + lvg(2p) — vau(zp)l + (g (2p) + 1 — vg(2p))l — (ma(2p) + 1 — vye(2p))]

2 mg(zp) + mau(z)],

H2(Zp) = 9 [

K3(2p) = max UNQ(ZP) — (%), [vg (2p) — va(2p)ls %‘Wg(zp) - WH(%)H%
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e Xiao [43] distance measure:

1 Mo 2p1g(zp) o 2p134(2p)
Px1(0,#) = kZ:[ (ot 108 L) e R 08 )
2wg(s,) i (zy)

+ vg(zp) log ] + vy(2p) log

vg(2p) + vu(2p vg(2p) + vu(2p)

271G (%p) 2myy(2p) z,
+7g(2p) log m(2p) + mu(2p) malap) log mg(2p) + WH(Zp)ﬂ 7

e Song et al. [44] distance measure:

k
Dsg(6.H) =1 o 1[2\/ug(2p)uﬂ(zp)+2\/Vg(2p)VH(Zp)+\/Wg(zp)ﬂy(zp)

/(1= 1g(2) (1= aae(29) + /(1 = v(z)) (1 - uwp))];

e Chen and Deng [45] distance measure:

DLy (@) %Z (1(e) — () + ) = vt (1 3

si7o(er) — euz) ).

k
D2p(G.H) = o > (11g(z0) — ()] +1va(z) — vae(zp)]) cos (% [ma(zp) — ma(zp)]) |

1

2|2
D3 (G, H) = %Z (ug<zp>—mzp>>2+(ug<zp>—uﬂ<zp>>2(1—§|wg<zp>—m<zp>|>] ;

e Gohain et al. [54] distance measure:

141 g (20) = ()| + Vo (2) — vau(2)]
Paold 1) =5 ; [2{ (RN | (R o e e ) ey }

i ). v i G o)) o s, ) - G o) v )

3. A novel distance measure for IFS

In this section, we introduce a new two-dimensional distance measure for determining the degree of
difference between IFSs.

Definition 7. Let K = {z1,22,...,2,} be a finite universe of discourse. Distance between any
G,H € IFSs(K) is defined as
1o~ 2max {|ug(2p) — pa(zp)]; v (2p) — va(zp) [}
(g H) Z P P P P (1)

1+ max {|ng(zp) — 1w (2p)l, v (2p) — vu(zp)l}
Where G = {(ng(2p), vg(2p)|zi € K>} and  H = {{uu(zp), vu(zp)|2p € K)} -

Note. Distance measure and metric are two different measurement tools. There is an axiomatic
difference between these measurement tools. The metric transfer using the function f(d) = 1 i d [37] is
always metric. But it is not necessary that transformation of distance measure always be a distance
measure. For example if d is distance measure, then d € [0,1] and for kK = 3, 0 < f(d) < 1.5. Hence,
the function f(d), violates the axiom (DP1) of distance measure.

Theorem 1. D,,(G,H) is the degree of the distance between IFSs G and H in K = {z1,22,...,2n}.

Mathematical Modeling and Computing, Vol. 10, No. 2, pp.359-378 (2023)



364 Kumar R., Kumar S.

Proof. Axiom (DP1): for G,H € IFSs(K), it is evident that

0 < lpug(2p) = pn(2p)l; [vg (zp) — va(zp)| < 1.
This implies that 0 < max{|ug(zp) — pn(2p)l, [vg(2p) — vu(2p)|} < 1. Since for all z € [0, 1], we have
0< % < 1. This implies that

2max {|pg (2p) — pae(2p)l; [vg(2p) — vu(zp)[} <1
1+ max {|ug(zp) — pa(2p)l; [vg(2p) — v (2p)[}
Hence from definition (1), we have 0 < D,,(G,H) < 1. Also axioms (DP2), (DP3) are direct

consequence of definition (1). To show that axiom (DP4) is satisfied by D,,. Let us consider
G,H,Z € IFS(K) such that G C H C Z. Then by definition

Do(G,H) = %Zn: 2max {|pg(2p) — pu(zp)l, [vg(2p) — vu(2p)|}

o 1+ max{|ug(2p) — palzp)ls [vG () = vau(zp) [}

and
n

L Qs 2max{lpig (z0) — )l g o) — vl
Pul6:0) = 3 2 T e (g o) = el oo ) — v
Since G C ‘H C Z, for each 2z, € K
106(z) = 1z(z0)| > g ) — )l Iw(z) — va()| > () — ()|
= max (g (zy) — izl () — vr(z)l} > max {lug(z) — ()| v () — va(z)13. Since for

all s,t € [0,1] and s < ¢t , we have 12—4:: < 12—42 This proves the inequality D,,,(G,Z) = D (G, H).

Similarly, we can prove the inequality D,,(G,Z) > D,,(H,Z). Hence, D,,(G,H) is distance measure
between IFSs G and H. [

Corollary 1. IfG = (1,0) and H = (0,1), then D,,(G,H) = 1.

Proof. Proof is trivial. ]
Corollary 2. If G = (0,0) and X = (0,0), then D,,(G,H) = 0.

Proof. Proof is trivial. |
In general, if for each z, € K, we assign a weight w, {p =1,2,...,n}, where 0 < w, < 1 such that
Z;‘Zl wp, = 1. We defined a novel weighted distance measure for IFSs as follows.

Definition 8. Let K = {z1,29,...,2,} be a universal set. For any G,H € IFS(K), a weighted
distance measure DY : IFS(K) x IFS(K) + [0, 1] is defined by

- 2max {|ug(zp) — g (zp)l; [Va(zp) — v (zp) [}
Dp(G,H)=>» w [ .
pZ:; P+ max {[ug(zp) — pn(zp)]; Ive (2p) — va(zp) |}
Theorem 2. DY(G,H) is the degree of the distance between the IFSs G and H in K =
{21,22,...,,2”}.

Proof. The proof is identical to proof of Theorem 1, when w,, = % for {p=1,2,...,n} then DX (G, H
converted to Dy, (G, H). [
Remark: Let K = {z} be the universal set. Consider three IFSs as follows: G = (z,0.3,0.6),
H = (2,0.4,0.5), T = (2,0.7,0.3).

Obviously, G € H# C Z. Then, Dp(G,H) = 0.1818, Dyn(G,Z) = 0.5714, Dp(H,T) = 0.4615,
i.. Dyu(G.T) > Dyn(G,H), Din (G, T) > Don(H, ).

For, Song et al. [44] Dsc (G, H) = 0.0055, Dsc(G,T) = 0.0825, Dsc(H,T) = 0.0504, Dsc(G,T) >
Dsc(G,H), Dsc(G,Z) > Dsa(H,I).

For, Gohain et al. [54] distance measure, Do (G, H) = 0.0855, Dao(G,Z) = 0.3278, Dao(H,Z) =
0.2424. This implies Dgo(G,Z) > Deo(G,H), Dao(G,Z) > Deo(H,Z). Hence, our proposed measure

D, as well as some known measure justifies the property (DP4) of distance measure.
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Boundedness and non-linearity

Example 1. Let A,B € IFS(K), defined on K = {2z} s.t A = (u,v) and B = (v, u), where p and
v represent the membership and non-membership grades which satisfies the conditions 0 < pu+ v < 1
as represented by Figure 1. Further, Figure 2 represents the distance measured by D,,, with respect to
variation in g and v. It is clear from Figure 2 that as p and v varies in the unit interval then D,, (A, B)
is bounded i.e. 0 < D, (A, B) < 1 and when A = B, then distance D,, (A, B) = 0. Also for A= (0,1),
B = (1,0) and vice-versa distance D,, (A, B) = 1. The graphical representation in Figure 3 shows that
distance measure D,,, is nonlinear.

e

Proposed distance measur

o v 0 01 “ 0

Fig. 1. Variation of x4 and v in unit Fig. 2. Distance measure D,,, w.r.t variation
interval s.t p+v < 1. in g and v.

Nonlinear characteristics of proposed distance measure

Distance Measure Dy, (G, H)
f=}
=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
W

Fig. 3. Variation of distance measure D,,, with fixed v = 0.40.

Example 2. Let G,H € [FS(K) defined on K = {z} st G = (a,) and H = (v,1 — v) with
v € [0,1], for different choices of G as mentioned below:

(@ G=(1,0) (b ¢=(01 () G=1(04,04) (d G=/(0.1,04).

Figure 4 express the different variation of D,,(G,H) as v varies in [0, 1], which demonstrate the bound-
edness and non-linearity of the suggested result.
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Fig. 4. Variation of distance measure D,,, w.r.t v for some fixed G.

4. Applications of proposed distance measure

4.1. Counter-intuitive cases

In this section, supremacy of the introduced measure is established with the help of numerical examples

over some well-known distance measures.

Table 1. Numerical comparisons.

Distances (P,Q) (P,R) (P,S) Comment
DnNH 1.000 1.000 1.000 Ineffective
DnNE 1.000 1.000 1.000 Ineffective
Dw x 0.500  0.750  0.750 Logical
Dxr NaN NaN NaN Violated property (DP1)
Dyc 1.000 1.000 1.000 Ineffective
Dap 0.500  1.000  1.000 Logical
Dzu 1.300 1.300 1.300 Violated property (DP1)
Dhe 0.250 0.250 0.250 Ineffective
D3 0.430 0.430 0.430 Ineffective
D}, 0.250  0.350  0.350 Logical
Dsa 0.530  0.670  0.670 Logical
Dip 1.000 1.000 1.000 Ineffective
Dao 0.250 0.750 0.416 Logical
Proposed (D,,) 0.666  1.000  1.000 Logical

Abbreviation: NaN, stand for not a number, Bold denotes ineffective results

Example 3.

Consider IFSs P = (0,0), @ = (0.5,0.5), R = (1,0) and S = (0,1) defined on universal

set K = {z}. The problem is to find out which of IFS from Q, R, S is close to P. Minimum the
distance between the pairs of IFS is termed to be more close. Since the IFSs (P, Q), (P,R), (P,S) are
all different, so equal distance for these different pairs of IFSs is not justified. We apply the existing
and suggested results on these distinct pairs of IFSs (P, Q), (P,R), (P,S) as tabulated in Table 1.
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But the distance measures Dyyg, Dnvg, Dyr, Dyp, D}JD, D%D produce equal distance and Dx, Dzg
violate axiom (DP1) for these different pairs of IFSs. Hence these measures are illogical. On the other
hand suggested result D,,, justifies the intuition and this logic is also supported by the existing measure
Dwx, Dap, DlDC, Dsq. Hence the suggested approach is more reasonable and logical.

Example 4. Let A;,B; € IFS(K) defined on the finite universe K = {z1, 22,23} as mention in
Table 2.

Table 2. Numerical comparisons (Counter-intuitive cases in boldface).

A, {(0.5,0.3),(0.7,0.1), (0.6,0.1)} {(0.5,0.3),(0.7,0.1), (0.6,0.1)}
B;  {(0.9,0.1),(0.5,0.3),(1.0,0.0)} {(1.0,0.0),(0.5,0.2), (0.9,0.0)}

DNH 0.33 0.33
DnEg 0.31 0.31
Dep 0.33 0.33
Dyr 0.33 0.33
Dyt 0.29 0.29
Dy 0.33 0.33
Dyp 0.33 0.33
D, 0.49 0.48

Table 2 indicates that A; = Az, and By # Bs, distance between A;, B; are compared with the
suggested measure and some established distance measures. The distance measures which produce
equal distance for different pairs of IFS are against the intuition. On analysing the outcomes of
different distance measures it is observed that the distance measures Dyy, Dng, Dap, Dyr, Dy,
DW21, D jp produce Counter-intuitive results marked in the boldface in column two and three of Table 2.
On the other hand, proposed measure D,,, can solve the Counter-intuitive results produced by existing
distance measure. This demonstrates the effectiveness of the proposed result.

4.2. In medical diagnosis

The symptoms of a disease are strongly related with its proper diagnosis. But the symptoms of a
disease may vary with time and some times different diseases may have common symptoms. This
proliferates the uncertainty. The IFSs theory introduced by [2] is sophisticated tool for dealing with
uncertainty. The medical community has recognized the continuous behavior of IFSs and applied the
notation of continuity in logical thinking. Different researchers like [17,22,26] have investigated in
fuzzy set theory and applied various approaches in medical diagnosis with different view points. In
this subsection, the introduced distance measure is utilized to diagnose the symptoms of patients using
intuitionistic fuzzy relations to make appropriate decisions in the medical field.

Table 3. Symptoms characteristics for patients.

S S, Ss S, Ss
P, (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6)
Py (0.0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8)
Ps (0.8,0.1) (0.8,0.1) (,0.0,0.6) (0.2,0.7) (0.0,0.5)
Py (0.6,0.1) (0.5,04) (0.3,0.4) (0.7,0.2) (0.3,0.4)

Example 5 (Refs. [21-23,27]). Let us consider four patients P = {P1, Ps, P3, P4} with set of
diagnosis D =(Viral Fever: D;, Malaria: Ds, Typhoid: Ds, Stomach problem: D,, Chest problem:
Ds) and a set of symptoms S=(Temperature: Sy, Headache: S, Stomach Pain: Ss, Cough: Sy,
Chest Pain: S5). Table 3 describes the intuitionistic fuzzy relation among patients having particular
symptoms (P — S). Table 4 represents the intuitionistic fuzzy relation between symptoms of patients
and all possible diagnosis (P — D).
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Table 4. Symptoms characteristics for diagnosis.

S S, Ss Sy Ss
D; (0.4,0.0) (0.3,0.5) (0.1,0.7) (0.4,0.3) (0.1,0.7)
D, (0.7,0.0) (0.2,0.6) (0.0,0.9) (0.7,0.0) (0.1,0.8)
Ds  (0.3,0.3) (0.6,0.1) (0.2,0.7) (0.2,0.6) (0.1,0.9)
Dy (0.1,0.7) (0.2,0.4) (0.8,0.0) (0.2,0.7) (0.2,0.7)
Ds (0.1,0.8) (0.0,0.8) (0.2,0.8) (0.2,0.8) (0.8,0.1)

In Table 5 distance between patients and diagnosis evaluated through the proposed distance mea-
sure. Which shows that patients Py, Po, P3, P4 are recommend diagnosis for disease malaria, stomach
problem, typhoid, viral fever, respectively.

Table 5. The outcome determined by the proposed measure.

D, Dy Dy Dy Ds
P1 0.183 0.169 0.197 0.321 0.329
Py 0.2524 0.2935 0.2241 0.1212 0.2330
P 0.2325 0.2678 0.2086 0.2795 0.3478
Py 0.2032 0.2214 0.2717 0.3116  0.3478

0.6 -
I D, : Viralfever
[1Dy: Malaria
B D3 : Typhoid

Distance measure from proposed method

05 B Dy : Stomachproblem
I D;: Chestproblem

Ps

Patients

Pa

Fig. 5. IFS distances of all possible diagnosis from each symptoms.

Table 6. Comparison of outcomes.

Patients Our outcomes

Other’s outcomes

P1

Malaria Malaria [21,23,26,38,51] ,Viral Fever [27]

Pa Stomach problem

Ps

Typhoid
Py Viral Fever

Stomach problem |21,
Typhoid [23,26,27,38,51|, Malaria [21]
Viral Fever (26,38, 51|, Malaria [21,23,27]

23,26,27,38,51]

For each patient, Figure 5 displays the distance between all possible diagnoses and symptoms in
relation to the proposed distance measure. In Table 6 performance of suggested distance measure is
analyzed with currently available distance measures. The output of the introduced measure coincides
with the output of the distance measures [26,38,51|. It is clear that patient P2 has a stomach problem
because all approaches yield the similar outcomes. Five out of six demonstrate that patients Py, P are
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suggested the diagnosis for Malaria and Typhoid, respectively. But three out of six distance measures
suggest the diagnosis for Viral fever for the patient Py and other three indicate Malaria. In this
situation, it is very challenging task to recognize symptoms of patient P4 because these two symptoms
are involved with each other. So some particular symptoms lead to some specific diagnosis. Hence in
some specific cases a further analysis should be done to arrive at a conclusion.

4.3. Application to pattern recognition

Algorithms based on proposed measure: let K = {z,29,...,2,} be a finite universe.
Suppose there exist n patterns G = {Gi,G2,...,G,} which are represented by IFSs as G; =
{(zi,1g,(2)),vg,(2)))| z € K} and [ test samples H = {H1,Ha--- ,H;} which are represented by
IFSs as Hi = {(zi, pu,, (2i), v, (2:))| zi € K}. The goal is to recognize the test samples in accordance
with the given patterns. The procedure for recognition is as follows.

Step 1. Calculate the distance between the given pattern G; and test sample Hj, using the new
distance measure

n.o9 (2,) — e (2,) —
Doy 1) = 15 2 {10, ) — o)l b, () — )
n 1 + max {|:ugj (Zp) = Ky (zp)|7 |ng (Zp) — VH, (zp)|}
Step 2. Choose the minimum value between the IFSs G; and H,, using the equation
Dm(gaa Hk) = 1%12n Dm(gja Hk)

p=1

Step 3. Then the text sample Hy, is classified to the pattern G,, where
a = arg min Dy,(Gj, Hy).

RVAS

Step 4. Calculate degree of confidence (DoC'), where

DoC(®) = Z |,Dm(gj’Hk) — Di(Gas Hy)|
j=1
i#a
Example 6 (Refs. [18,32,36]). This example corresponds to a three-class, three-attribute pattern
classification problem, as represented by the patterns,

My ={(21,0.1,0.1) , (22,0.5,0.1) , (22,0.1,0.9) } ,
My = {(21,0.5,0.5), (22,0.7,0.3) , (23,0.0,0.8) } ,
Ms ={(21,0.7,0.2) , (22,0.1,0.8) , (23,0.4,0.4) }
in universe of discourse K = {z1, 22, 23}. Our goal is to recognize the unknown test sample
N ={(21,04,0.4),(22,0.6,0.2) , (23,0.0,0.8)}

in to one of the patterns My, My, Ms.
The recognition process is as follows.
Step 1. The distances D,, between the test sample A" and M,, (p = 1,2,3) are calculated as follows:

Dp(M1,N) =027, D, (M2, N)=0.12, D,,(M3,N)=10.59
Step 2. The minimum distance between the test sample A and given patterns M, (p = 1,2,3) is
given by
Din(Mo, N) = 0.12.
Step 3. Hence class My is classified using o = 2, N < M.
Step 4. DoC® = 0.62.
Table 7 and Figure 6 demonstrate that Moy is the classified pattern. This result is consistent with

the findings in [18,32,36]. Hence classification results from the other approaches described in Table 7,
agree with the outcome of the suggested approach. Furthermore, Table 7 and Figure 6 clearly indicate
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that suggested distance measure D,, has a higher confident measure in comparison to other established
approaches as mentioned in Figure 6. This demonstrates that proposed measure D,,, can improve the
pattern recognition accuracy.

Table 7. Computed values of distance measures.

Distances dist(M1,N) dist(Ma, N) dist(M3,N) Classification Results DoC?)

Dnu 0.33 0.13 0.43 M, 0.50
DNE 0.33 0.14 0.42 M, 0.47
Dep 0.17 0.07 0.40 M, 0.43
Dyc 0.33 0.13 0.43 M, 0.50
Dyt 0.17 0.07 0.42 M, 0.45
Dy 0.17 0.07 0.40 M, 0.43
Deo 0.11 0.05 0.36 M, 0.37
D 0.27 0.12 0.59 Mo 0.62

Pattern classification by different distance measures and DoC
T T T T T T

0.7 T
. dist(M,N)
[ 1dist(Ma,N)
06| HE dist( M3, N)
T DoC

05 -1

041 - —

0.33 0.33 0.33

03} -

Distance measures

02 -

01 -

Dnu Dap Dyc Dy Dy DnE Dco Dm
Different Methods
Fig. 6. Comparative analysis with different distance measures.

Example 7 (Refs. [18,39]). Assume that there are three patterns
G1 ={(#1,1.0,0.0), (22,0.8,0.0), (23,0.7,0.1) } ,

g2 = {(Zl, 0.8, 0.1), (Zg, 1.0, 0.0), (23, 0.9, 00)} s

Gs = {(#1,0.6,0.2), (22,0.8,0.0), (23,1.0,0.0) }

and unknown pattern ‘H = {(z1,0.5,0.3), (22,0.6,0.2), (23,0.8,0.1)} are characterized by IFSs in a
fixed set K = {z1, 29, 23, }. Our goal is to classify the unknown pattern using diverse existing distance
measures and proposed measures.

In Table 8 and Figure 7 proposed distance measure’s results are compared with the outcomes
of the other established approaches. The outcome of the proposed distance measure indicate that
Din(Gs,H) < Dy (G1,H) < Dy (G2, H). This demonstrates that test sample belongs to class three, and
this result agrees with the conclusions drawn from other distance measures.

A careful analysis of the results obtained by the distance measures Dy, Dap, Dyc, Dy, DW21 in
Table 8 shows that they can not be used to classify the known patterns Gr, Go and the unknown pattern
‘H because they provide an equal distance between these patterns, as shown in bold face in second and
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third column of Table 8. Also the distance measures Dyg, Dap, Dy provide the consistent results
between the known patterns and unknown pattern.

On the other hand Table 8 indicates that introduced distance measure D,, and existing distance
measure Dyp are much efficient to recognize the difference between known patterns and unknown
pattern but level of confidence of the novel distance measure D,,, is higher then the other approaches
as mentioned in Table 8. This indicates that the suggested approach obtain, for some specific cases, a
much better performance than the referenced distance measures in recognizing the test sample correctly
with a higher degree of confidence.

Table 8. Computed values of distance measures.

Distances dist(Gi, H) dist(Go, H) dist(Gs,H) Classification Results DoC®)

Dnm 0.27 0.27 0.17 Gs 0.20
DNE 0.28 0.26 0.17 Gs 0.21
Dep 0.27 0.27 0.17 Gs 0.19
Dyc 0.27 0.27 0.17 Gs 0.20
Dy 0.24 0.24 0.16 Gs 0.16
DW21 0.22 0.22 0.15 Gs 0.14
Dco 0.27 0.27 0.19 Gs 0.16
D 0.39 0.40 0.28 Gs 0.23

Distance from each pattern and DoC

T
I dist (G, H)
| 1 dist(Ga, H)
I dist(Gs, H)
E DoC

0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

0.24 0.24
(.22 0.22

Distance measures

DNH DGD 'Dyc le DW21 DNE DGO Dm
Different Methods
Fig. 7. Comparison with different existing approaches.

5. Multi-attribute decision making (MADM) approach

5.1. Disadvantage of IFS-TOPSIS Method

TOPSIS method depends on the basic principle to choose an alternative nearest to the positive ideal
solution (PIS) and far from the negative ideal solution (NIS) and relative closeness coefficient is deter-
mined as follows:
D-
RCH = ———.
D+ +D-
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Table 9. Example of performance of the intuitionistic fuzzy alternatives.

Alternatives I Iy DT D~ RCT Rank
7 (02,01) (04,02) 0.1667 0.1818 05218 3
T (0.4,02) (0.4,0.3) 0.1818 0.2575 05861 2
Js (0.4,01) (0.3,0.3) 0.0909 0.1666 0.6469 1

However, it is not necessary that an alternative chosen by IFS-TOPSIS always have closest to PIS
and far from the NIS as illustrated in Table 9. In Table 9, we have three alternative J1, J2, J3 and two
attribute Z7, Zo. We calculate the positive separation measure D, and negative separation measure
D~ using the proposed distance measure. Table 9 shows that alternative J3 is the compromise solution
chosen by the classical TOPSIS method. However, the alternatives J5 and J; are both at the greatest
distance form NIS in comparison with the chosen alternative [J3 as shown in bold face in Table 9.

Hence to overcome this weakness, we suggest a novel MADM technique known as intuitionistic
fuzzy inferior ratio(IFIR) method based on the same methodology as adopted in classical TOPSIS
method.

5.2. Proposed method: Intuitionistic fuzzy inferior ratio method

In this section, a novel MADM approach is presented to make an appropriate decision based on
all the available alternatives and criteria using the concept of similarity measure. Different expert
ratings are expressed in terms of IFNs. Let J = (J1,J2,..., Jm) be the set of m-alternative and
I = (1h,Is,...,Z,) be collection of n-attributes with associated weight vector x = (x1,X2,---,Xn)
such that x; > 0 and > 7, x; = 1.

The proposed MADM method’s computational procedure is as follows.
Step 1. Construct the IF-decision matrix A = (a;;)mxn, Where a;; = (i 5, v4,;) denote the IFNs.
Step 2. Calculate the normalized IF-decision matrix B = (b;j)mxn, where

e = (i3, Vi) for benefit attribute,
Y (aij)¢ = (vij,pi;) for non-benefit attribute.

Step 3. Calculate the positive ideal IFS J = {(us+(2i),v7+(2)) |2z € K}, where pz+(zi) =
max {p7,(2)} ,v7+(z) = min {vz,(z)} and negative ideal IFS J~ = {{u7-(z),v7-(2)) |z € K},
j j

where p7-(2;) = m]m {,ujj (z)},vg- () = mjax {V@(zi)}.

Step 4. Compute the distance between alternative J; and J*/J~, using the proposed distance
measure.

Step 5. Compute the similarity Sy(G,H) = N (D (G, H)) [48] generated from proposed distance
measure.

Step 6. Calculate Sy(JT) = max Sn (Ji, JT) and therefore, the alternative J; that satisfies

Sn(TT) =8Sn (Ji, TT) is closest to IFS-PIS.

Step 7. Calculate Sy(J7) = 1I<ni<n Sy (Jiy J~) and therefore, the alternative J; that satisfies
Sv(T ) = Sn (T, T ) is farthest to IFS-NIS .

Step 8. Calculate &(7;) = SN(TeTY) _ SnlTid ) Clearly £(J;) measure the degree to which an

Sn(T+ Sn(T™)
alternative J;, ¢+ = 1,2,...,m, is the closest to IF-PIS and far from IF-NIS simultaneously. An

alternative J; for which £(J;) = 0 is the best alternative.
Step 9. Compute the IFS-IR 7; for each alternative, where n; =

(L)
min §(J;)°

1<i<m

Step 10. Rank the alternative’s jl-’s according to ascending order of values of IFS-IR 7;.

Example 8 (Ref. [48,52]). A municipal library is being built in a city. The main challenge a
city development administrator faces is deciding what type of air-conditioning system install in the
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library. The constructor proposes five possible options J;, (i = 1,2,...,5), which could be used to the
library’s physical structure. Assume that in the installation problem, three attributes Z; (economic),
7 (functional), and Z3 (operational) are considered. Suppose that the features of the alternatives J;
are expressed by IFSs as follows:

= {(Z1,0.2,0.4), (I,0.7,0.1), (Z3,0.6,0.3)} ,
= {(Z1,0.4,0.2), (I,0.5,0.2), (Z3,0.8,0.1)} ,
= {(71,0.5,0.4), (I5,0.6,0.2), ( )
)
)

,(Z5,0.9,0.0)}
J1 = {(71,0.3,0.5), (Z2,0.8,0.1), (J3,0.7,0.2)} ,
= {(Z1,0.8,0.2), (Z»,0.7,0.0), (Z3,0.1,0.6)} .

Calculation steps is as follows.
Step 1. On the basis of given alternatives and attributes Table 10 represent the intuitionistic fuzzy
decision matrix.

Table 10. Intuitionistic Fuzzy Decision Matrix.

Alternative e I I3
Ji (0.2,0.4) (0.7,0.1) (0.6,0.3)
T (0.4,0.2) (0.5,0.2) (0.8,0.1)
J3 (0.5,0.4) (0.6,0.2) (0.9,0.0)
T4 (0.3,0.5) (0.8,0.1) (0.7,0.2)
NG (0.8,0.2) (0.7,0.0) (0.1,0.6)

Step 2. Because all the attributes are of benefit type, so the normalized IFS decision matrix is identical
to the one as shown in Table 10.
Step 3. Compute the positive ideal IFS J+ = {(us+(2i),v7+(2:))|z € K}, where ps+(z) =
max {p7,(z)} ,v7+(2) = min {vz, ()} and negative ideal IFS J~ = {{u7-(2i),v7-(2)) |z € K},
J J
where p7-(z) = min {pg,(2)} ,v7- () = max {vz,(z)} of the alternatives J; (i = 1,2,...,5) re-
J J
spectively, as follows: J* = {(0.8,0.2), (0.8,0.0), (0.9,0.0)} and J~ = {(0.2,0.5), (0.5,0.2), (0.1,0.6) }.

Step 4. Compute the distance between alternatives J; and J*/J~, using the proposed distance
measure. The computational results are mentioned in Table 11

Table 11. Distance of J; from j*/J* w.r.t proposed measure.

Alternatives J1 T2 T3 Ju Is
'Dm(%, j+) 0.2322 0.2024 0.1325 0.1929 0.1784
'Dm(%, j_) 0.1969 0.2141 0.2553 0.2322 0.1805

Step 5. Compute the similarity generated from proposed distance measure with respect to various
similarity measures as mentioned in Tables 12, 13.

Table 12. Computed values of similarity for each alternatives from positive ideal.

(T T e;:f;l cos (%) V1-—22 }% 1—=z2
(j17 77) 06723 09342 09726 0.6231 0.7673
v (Jo, ) 07103 09498 0.9792  0.6633  0.7976
V(T T 1) 08038 0.9784  0.9911  0.7660 0.8675
A ( )
A ( )

Tu, T T 0.7225 0.9544 0.9811 0.6765 0.8071
T5, T+ 0.7416  0.9609 0.9839 0.6972 0.816
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Table 13. Computed values of similarity for each alternatives from negative ideal.

Sv (T, T ™) % cos (%) 1—22 %_T; 1—2z
Sy (J1,J7) 0.7172 0.9525 0.9804  0.6709 0.8031
Sy (J2, T7)  0.6951 0.9439 0.9768  0.6473 0.7859
Sn (T3, TJ7) 0.6435 0.9206 0.9673  0.5932 0.7447
Sy (J1, T7)  0.6722 0.9342 0.9726  0.6231 0.7678
Sn (J5,J~)  0.7388 0.9600 0.9835 0.6941 0.8195
Table 14. Compromise solution.
&(T) % cos (Z) V1-22 %_T; 1—2z
&(J) —0.2781 —0.0798 —0.0322 —0.3175 —0.189
&(J2) —0.1965 —0.0546 —0.0219 —0.2253 —0.1356
§(J3) 0 0 0 0 0
¢&(Jy) —0.1457 —0.0393 —0.0155 —0.01673 —0.1007
&(Js) —0.2256 —0.0606 —0.0240 —0.2599 —0.1598

Step 6. Choose the maximum value from each column of the Table 12 correspond to each similarity
measure.
Step 7. Choose the minimum value from each column of the Table 13 correspond to each similarity

measure.

Step 8. Calculate {(7;) = ng%zj.z)*) - ngg{yz)*)

tational results are mentioned in Table 14.

correspond to each similarity measure and compu-

Table 15. Computed values of “inferior ratio”.

—1

n(T) S5 cos (%) 1—22 % 1—2 Rank
n(J1) 1 1 1 1 1 5
n(J2)  0.7065 0.6842 0.6801  0.7096 0.7174 3
n(J3) 0 0 0 0 0 1
n(Jy)  0.5239 0.4924 0.4813  0.5262 0.5328 2
n(Js) 0.8112 0.7593 0.7453  0.8185 0.8455 4
Step 9. Calculate the IFS-IR n; for each alternative, where 7; = % computational results are

1<i<m
mentioned in Table 15.

Step 10. Arrange the alternative in ascending order of values of 7(/7;), the ranking of the alternatives
J; in ascending order as follows:

T3 =Tu = T2 = Ts = TJ1.

Hence, J3 is the best alternative, which coincides with the existing results of Du and Hu [48]. Tables 12
and 13 demonstrate that J3 is simultaneously nearest to PIS and far from NIS.

6. Comparative analysis with MULTIMOORA, CODAS and IFS-TOPSIS methods

In order to ensure the authenticity and efficiency of the introduced method, we compared it with differ-
ent decision-making approaches [49,52,53|. We conducted a comparative study with IFS-TOPSIS [52],
intuitionistic fuzzy MULTIMOORA [49], IFS-CODAS [53] on the problem illustrated in the last section
and outcomes of these different decision-making approaches and the proposed approach are tabulated in
Table 16. From Table 16, it is analyzed that optimal solution obtained from different decision-making
approaches [49,52,53] and the proposed approach is identical although the computational methodology
of existing approaches and proposed approach is different from each other. The ranking positions of
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[FS-CODAS (53], IFS-TOPSIS [52] coincide with the proposed approach but the optimal alternative
in the proposed approach is simultaneously close to PIS and far from NIS. Furthermore, the ranking
position of the IFS-MULTIMOORA approach [49] is different from the proposed method expect the
optimal solution. The reason for this variation in ranking position is that the IFS-MULTIMOORA
method is based on the RSA, RPA, and FMF, and the final MULTIMOORA ranking is obtained by
applying dominance theory to the rankings obtained from these approaches. As a result of the pre-
ceding discussion, it is clear that our proposed approach is reasonable, and its lower computational
ability to determine the optimal alternative demonstrates its superiority over other decision-making
approaches.

Table 16. Comparative study results.

Methods J1 T2 J3 Ju NG Rank
The RSA 0.892 0.936 0.980 0.950 0.946 Ts=TJ1>=Ts = T2 =
The RPA 0.4444  0.3750 0.3333 0.4117 04717 T3> To>= Ty > TJ1 > Ts
The FMF —0.538 —0.264 —0.250 —0.400 —-0.624 J3>=Jo>=Ta>T1 > Ts
MULTIMOORA [49] T3 =T =TJs =T = Ts
IFS-CODAS [53| —1.614 0.104 0.888 0.208 —0.1065 J3>=TJ1>= T2 > Ts = T1
IFS-TOPSIS [52] 0.4838 0.5054 0.5551 0.5180  0.5009 J3>= Ty > T2 > Ts = JT1
Proposed method 1 0.7065 0 0.5239 08112 T3> Ty = To = Ts = J1

7. Conclusions

In information systems, various distance measures have been suggested for IFSs to handle the un-
certainty, but most of them are linear and only calculate the numerical difference between two IFSs
and produce counter-intuitive results. In the present work, we proposed a novel distance measure and
established its validity from both theoretical and geometrical points of view. We have applied the
suggested approach to solve the pattern classification problem, and numerical comparison is performed
between the suggested approach and well-established approaches. It is clear from the comparison pro-
cess that the suggested distance measure is a high-confidence measure and can classify the unknown
pattern much better in comparison with existing IFS compatibility measures. Also, the superiority
of the proposed measure is demonstrated via overcoming the counter-intuitive cases of well-known
existing measures. The numerical comparisons of novel distance measure are performed in the fields
of medical diagnosis to check the consistency of the introduced result. Finally, by identifying some
of the limitations of the IFS-TOPSIS method, a novel decision-making technique known as the IFIR
(Intuitionistic Fuzzy Inferior Ratio) method has been put forward. Also, the comparison process of
the present work with existing approaches reveals the consistency of the proposed measure.

In further development, we will explore the new distance measure to other extended fuzzy environ-
ments, including picture fuzzy sets, generalized hesitant fuzzy sets, pythagorean fuzzy sets, complex
intuitionistic fuzzy sets, complex pythagorean fuzzy sets.
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EaraTOKpMTeplaane l'lleVlHSITTSI pILIJeHb Ha OCHOBI HOBOI Mlpl/l
BI,EI,CTaHI B IHTyITVlBICTCbKOMy HeLIITKOMy cepep,OBmu_u

Kymap P.12, Kymap C.!

I Mamemamuuro-zymanimapruts darysvmem, M. M. Inocernepruti xonedorc,
Mazxapiwi Maprandewsap (ynisepcumem), Myanana-Ambanra, 133207, Xap’ana, Indis
2 Kagedpa mamemamuxu, deporcashuti koaedore, Katiman, 136027, Xapvana, Indisn

YV mopiBHsSHHI 3 HEUITKMMHU MHOXKWHAMW, IHTYIIIOHICTCHKI HEUITKI MHOXKUHU HabaraTo
edeKkTuBHINI B mofaHHI Ta 00poOIi HeBm3HadeHocTi. Mipu BifcTaHi KiJIbKiCHO BU3HA4YA-
I0Th, HACKLILKHY iH(OpMaILis, MO MepeJacTbCst iIHTYITUBICTCHKUMY HETITKUMI MHOXKITHAM,
BizpisuseThest oana Bifg omguol. Jocainuuku 3ampononyBan 6araTo BUMipIOBaHb BijcTaHi
JI7IsT OTIHKY PI3HUI MiK IHTYITIOHICTCHKMMEI HEIITKIMU HabOpaMu, aJjie JIesKi 3 HUX JaioTh
CylepewInBi pe3yJIbTaTh HA IIPAKTHUIN Ta MOPYIIYIOTH (DYHIAMEHTAIbHI aKCIOMU BUMIpIO-
BaHHs Bimcrani. ¥ 1iit crarTi mogano HOBY Mipy Bizcrami mys IFS, BisyastizoBano i1 Ta
00roBOpPEHO 11 0OMEXKEHICTD 1 HeJTiHIfHI XapaKTEepPUCTUKU HA BiIIIOBITHUX YHC/IOBUX IIPUK-
sagax. OKpiM BCTAHOBJIEHHsI 11 JJOCTOBIPHOCTI, €(DEKTUBHICTD JIOCJIJIZKEHO Ha IPUKJIAIaX
i3 peaJbHOrO KUTTA 3 6ararbox rajgysei, TAKUX sSK MEINIHA JTIArHOCTUKA Ta PO3Ii3Ha-
BaHHs1 00pa3iB. Takoxk MOJAHO TEXHIKY st BUPIMIEHHS IpOOJIeM PO3Ii3HABAHHS 00pa3iB,
1 ITepeBara 3aIrpOIIOHOBAHOTO MiXOy HAaJI ICHYIOUNMH ITiIXOTAME JIEMOHCTPYETHCS BKITIO-
YeHHSAM IHJIeKCYy poaykTusHOcTi B Tepminax “Crynins Buesuenocri” (DOC). Hakinenp,
PO3IINPEHO 3aCTOCOBHICTH 3aIIPOIIOHOBAHOIO IiIXO/Y [IJIsi BCTAHOBJIEHHSI HOBOI'O IiIXOIY
JI0 IPUHAHATTS pimenb, Binomoro sik metox IFIR (inryinionicrebkuit HeuiTkuit koeridieHT
HEIOBHOIUHHOCTI), 1 fioro edeKTUBHICTD aHAJI3YETHCS 3 HIMMMU YCTAJICHUMHE IIi1X0IaMU
JI0 TIPUIAHATTS PIllIE€Hb.

Knrouosi cnoBa: inmyimusicmevka Hewimxka MHOMCURA; Mipa eidcmani; mipa nodio-
Hocmi; meduuna diaenocmuka; bazamoampubymue NPUGHAMMA PIllens; DO3NIZHABAHHA
0bpa3sis.
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