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The fundamental relations of the quasi-static problem of thermoelasticity are written for a
finite layered orthotropic cylindrical shell of an antisymmetric structure. Under convective
heat transfer on the surfaces of this shell and under a linear dependence of temperature
on the transverse coordinate, the basic system of equations for the integral characteristics
of temperature is given. The method is proposed for solving the formulated problems of
thermoelasticity and thermal conductivity, using the double finite integral Fourier trans-
form with respect to the corresponding coordinates of the transformation and Laplace
transform with respect to the time. The results of a numerical analysis of temperature,
deflections, and stresses for the considered two-layer shell hinged at the edges under local
heating by the initially specified temperature field are presented.
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1. Introduction

Cylindrical shells of a layered structure are widely used in many branches of modern technology, in
particular, in aircraft and space constructions, to increase the strength and rigidity of structures and
protect them from low-temperature or high-temperature thermal effects. Therefore, estimating of
temperature stresses in such structures is a significant engineering task.

Elements of layered structures have been studied by many scientists [1–4]. There are developed
refined models taking into account the characteristic features of composite materials, in particular,
high anisotropy in the transverse direction [3–5]. The exact solutions of thermoelasticity problems for
layered shells are constructed on the base of three-dimensional equations in [6,7]. Using the equations of
classical and various refined theories, the analytical solutions are obtained in [8–10]. Using the equation
of interrelated thermoelasticity, the influence of the coupling coefficient on the dynamic behavior of
composite shells is analyzed in [11]. The method of finite elements for studying thermoelastic processes
in shells of a layered structure was used in [12]. In [13], the focus was on the thermoelectromechanical
analysis of multilayer piezoelectric cylindrical shells of an open profile. The thermoelastic properties
of a functional-gradient isotropic cylindrical shell locally heated by heat sources are considered in [14].
The stress-strain state of a layered cylindrical surface under its local convective heating is investigated
in [15]. Detailed overviews of various models and methods are given in [1–3].

The aim of this article is to investigate the change in temperature, deflection, and stresses of a
two-layer circular cylindrical shell of a regular antisymmetric structure under its local heating by an
initially specified temperature field based on the equations of thermoelasticity and heat conduction
equation of the six-modal theory of layered shells.

2. Formulation of the problem and system of basic equations

Consider an inhomogeneous orthotropic circular cylindrical shell with the constant thickness 2h and
a finite length l. We refer the points of the shell space to the cylindrical coordinate system (x, θ, z)
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denoting the axial, circular, and radial coordinates, respectively. We place the origin of the coordinates
in the middle surface of the shell with the radius R. Hereafter, the indices 1, 2, 3 correspond to these
coordinates.

Let the shell be under the external force action, and let it be heated by heat sources and environment
through convective heat exchange. To study the thermoelastic behavior of such a shell, let us use a
mathematical model with six degrees of freedom, which is based on assumptions about the linear
distribution of the displacement vector Ui(x, θ, z, τ), i = 1, 2, 3, and the temperature t(x, θ, z, τ) in the
shell thickness

Ui(x, θ, z, τ) = ui(x, θ, τ) + zγi(x, θ, τ), (1)

t(x, θ, z, τ) = T1(x, θ, τ) +
z

h
T2(x, θ, τ), (2)

where ui are components of the mid-surface points displacement vector; γi are components of the
vector of normal rotation angles; Tn = 2n−1

2hn

∫ h
−h t z

n−1 dz, n = 1, 2, are integral characteristics of the
temperature.

In the general case, this model consists of interrelated systems of thermoelasticity equations and
heat conduction equations. If the effect of deformation on the temperature field change is neglected,
these systems are independent.

3. Divergence measure for FFSs

3.1. System of thermoelasticity equations

The kinematic relations for the components eij of the deformation tensor at an arbitrary point of the
shell have the following form

e11 = ε11 + zκ11, e22 = (ε22 + zκ22)/(1 + z/R), e33 = ε33,

e12 = (ε12 + zκ12 + z2ω12)/(1 + z/R),

e13 = ε13 + zκ13, e23 = (ε23 + zκ23)/(1 + z/R). (3)

Here, the components εij , κij of the deformation tensor of the mid-surface in terms of generalized
displacements ui, γi are expressed by formulae

ε11 = ∂1u1, ε22 = (u3 + ∂2u2)/R, ε33 = γ3,

ε12 = ∂2u1/R + ∂1u2, ε23 = γ2 + (∂2u3 − u2)/R,

ε13 = γ1 + ∂1u3, ω12 = ∂1γ2/R,

κ11 = ∂1γ1, κ22 = (γ3 + ∂2γ2)/R, κ13 = ∂1γ3,

κ12 = ∂1γ2 + ∂2γ1/R+ ∂1u2/R, κ23 = ∂2γ3/R. (4)

Physical equations for stresses and deformations can be written as follows
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Here cij(z) are the elasticity coefficients; βt
ii(z) = ci1α

t
11 + ci2α

t
22 + ci3α

t
33 are coefficients of thermal

elasticity; αt
ij(z) are coefficients of linear thermal expansion.

Physical equations for internal forces Nij and moments Mij are obtained from the relations

{N11, N12, N13} =

∫ h

−h
{σ11, σ12, σ13}(1 + z/R) dz, {N22, N21, N23} =

∫ h

−h
{σ22, σ12, σ23} dz,

{M11,M12,M13} =

∫ h

−h
{σ11, σ12, σ13}(1 + z/R) z dz, {M22,M21,M23} =

∫ h

−h
{σ22, σ12, σ23} z dz,
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N33 =

∫ h

−h
σ33(1 + z/R) dz. (6)

The equilibrium equations:

∂1N11 + ∂2N21/R = −q1,

∂1N12 + ∂2N22/R+N23/R = −q2,

∂1N13 + ∂2N23/R−N22/R = −q3,

∂1M11 + ∂2M21/R−N13 = −m1,

∂1M12 + ∂2M22/R−N23 = −m2,

∂1M13 + ∂2M23/R −M22/R −N33 = −m3, (7)

where qi, mi denote the external load, ∂1 =
∂
∂x , ∂2 =

∂
∂θ .

Using the above relations, we write the system of equilibrium equations (7) in terms of generalized
displacements in the form

6
∑

k

Lrkyk = br (r, k = 1, 2, . . . , 6) . (8)

Here yi = ui, y3+i = γi (i = 1, 2, 3). Differential operators Lrk (Lrk = Lkr) and absolute terms br are
described by the expressions:

L11 = A11∂
2
11 +A66/R

2∂2
22, L12 = (A12 +A66)/R ∂2

12, L13 = A12/R∂1,

L14 = B11∂
2
11 +B66/R

2∂2
22, L15 = (B12 +B66)/R ∂2

12,

L16 = (A13 +B12/R)∂1, L22 = A66∂
2
11 +A22/R

2∂2
22 − k′A55/R

2,

L23 = (A22 + k′A55)/R
2∂2, L24 = (B12 +B66)/R ∂2

12,

L25 = B66∂
2
11 +B22/R

2∂2
22 + k′A55/R, L26 =

(

A23/R + (B22 + k′B55)/R
2
)

∂2,

L33 = −k′A44∂
2
11 − k′A55/R

2∂2
22 +A22/R

2, L34 = (B12/R− k′A44)∂1,

L35 = (B22/R− k′A55)/R ∂2, L36 = −k′B44∂
2
11 +

(

B22 − k′B55∂
2
22

)

/R2 +A23/R,

L44 = D11∂
2
11 +D66/R

2∂2
22 − k′A44, L45 = (D12 +D66)/R ∂2

12,

L46 = (D12/R +B13 − k′B44)∂1, L55 = D66∂
2
11 +D22/R

2∂2
22 − k′A55,

L56 =
(

(B23 − k′B55)/R +D22/R
2
)

∂2,

L66 = A33 + 2B23/R +D22/R
2 − k′D44∂

2
11 − k′D55/R

2∂2
22,

b1 = At
11∂1T1 +Bt

11/h ∂1T2 − q1, b2 = At
22/R ∂2T1 +Bt

22/(Rh)∂2T2 − q2,

b3 = At
22/R T1 +Bt

22/(Rh)T2 + q3, b4 = Bt
11∂1T1 +Dt

11/h ∂1T2 −m1,

b5 = B22/R ∂2T1 +Dt
22/(Rh)∂2T2 −m2,

b6 =
(

At
33 +Bt

22/R
)

T1 +
(

Dt
22/R+Bt

33

)

/hT2 +m3.

Here

{Aii, Bij ,Dij} =

∫ h

−h
cij{1, z, z

2} dz, {At
ii, B

t
ii,D

t
ii} =

∫ h

−h
βt
ii{1, z, z

2} dz,

k′ is the shear factor [14].
For the solution uniqueness of the system (8), it is necessary to impose the appropriate boundary

conditions. For the shell of a finite length, it is necessary at its ends x = 0 and x = l to put one value
from each of the following pair: {N11, u1}, {N12, u2}, {N13, u3}, {M11, γ1}, {M12, γ2}, {M13, γ3}.

The system of equations (8) with the boundary conditions constitutes the boundary value problem of
quasi-static thermoelasticity for inhomogeneous anisotropic cylindrical shells in terms of displacements.
By means of the known displacements, we determine the deformations of the mid-surface from the
relation (4), and the forces and moments from the equations of state
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,

(

N13
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)

= k′
(

A44 B44

B44 D44

)(

γ1 + ∂1u3
∂1γ3

)

,

(

N23

M23

)

= k′
(

A55 B55

B55 D55

)(

γ2 + (∂2u3 − u2)/R
∂2γ3/R
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. (9)

The temperature deformations and stresses in the shell are found using the formulae (3) and (5).

3.2. System of heat conduction equations

The integral temperature characteristics T1 and T2 included in the absolute terms of the system (8)
and in the state equation (9) can be determined from the corresponding equations of heat conduction
under the boundary conditions imposed on the surfaces z = ±h and at the ends of the shell. For
convective heat exchange on the surfaces z = ±h, the system of heat conduction equations provided
the linear dependence of temperature on the transverse coordinate (2) can be written in the form:

∆(1)T1 − εt1T1 +∆(2)T2 +

(

λ
(1)
33

hR
− εt2

)

T2 − C(1)∂τT1 − C(2)∂τT2 = −f1,

∆(2)T1 − εt2T1 +∆(3)T2 +

(

λ
(2)
33

hR
−

λ
(1)
33

h2
− εt1

)

T2 − C(2)∂τT1 − C(3)∂τT2 = −f2. (10)

Here

∆(k) = Λ
(k)
11 ∂

2
11 +

Λ
(k)
22

R2
∂2
22;

{

Λ
(k)
ij , C(k)

}

=

∫ h

−h
{λij , cε}

( z

h

)k−1
dz, (k = 1, 2, 3) ; ∂τ =

∂

∂τ
;

fj = tz1ε
t
j + tz2ε

t
3−j +W t

j = Qj(x, θ)Fj(τ); εtj = α+
z − (−1)jα−

z ; tzj =
1

2

(

t+c − (−1)jt−c
)

;

W t
j =

∫ h

−h
wt

( z

h

)j−1
dz, (j = 1, 2);

λij(z) are the coefficients of thermal conductivity; cε(z) is the specific volumetric heat capacity; τ is a
time variable; α±

z are the coefficients of heat dissipation from the surfaces z = ±h; t±c is the ambient
temperature on these surfaces; wt is the power of heat sources.

For the solution uniqueness of the system (10) at the edges x = 0 and x = l we need to specify a
combination of values a0T1+a1

∂T1

∂x , a2T2+a3
∂T2

∂x , where ai = const; and at the initial moment of time
we need to specify the value of temperature characteristics T1 and T2.

4. The method of solving the basic systems of equations

Let us consider a cylindrical shell being antisymmetric relative to the middle surface, composed of an
even number of orthotropic layers with the same thickness and properties, the material axes of which
are oriented at the angle of 0◦ or 90◦ to the axis of the shell. Let the edges x = 0 and x = l of the shell
be hinged and assumed to have a zero temperature. Then we have the following boundary conditions
for the defining functions:

u3 = u2 = 0, γ3 = γ2 = 0, N11 = M11 = 0, (11)

T1 = T2 = 0. (12)

At the initial moment of time, the temperature characteristics T1, T2 are given as coordinate functions:

T1(x, θ, 0) = T 0
1 (x, θ), T2(x, θ, 0) = T 0

2 (x, θ). (13)
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4.1. Finding the temperature field

The equations (10), after applying the double finite Fourier transformation with respect to the coor-
dinates (x, θ), according to the boundary conditions (12), take the form:

dT1mn

dτ1
+ g1T1mn + g2T2mn = f1mn,

dT2mn

dτ1
+ g3T1mn + g4T2mn = f2mn. (14)

Here g1 = L
(1)
11 µ

2
n+L

(2)
22 δ

2m2+Bi1, g2 = L
(2)
11 µ

2
n+L

(2)
22 δ

2m2−δ+Bi2, g3 = C̃
(

L
(2)
11 µ

2
n+L

(2)
22 δ

2m2+Bi2
)

,

g4 = C̃
(

L
(3)
11 µ

2
n + L

(3)
22 δ

2m2 + Bi1 + 1
)

, µn =
πnh

l
, δ =

h

R
, τ1 =

Λ
(1)
33

h2C(1)
τ, C̃ =

C(1)

C(3)
,

L
(j)
ii =

Λ
(j)
ii

Λ
(1)
33

, Bii =
εtih

2

Λ
(1)
33

, f1mn = Q1mn(x, θ)F1(τ) = Bi1t
z
1mn + Bi2t

z
2mn +W t

1mn

h2

Λ
(1)
33

,

f2mn = Q2mn(x, θ)F2(τ) =

(

Bi2t
z
1mn + Bi1t

z
2mn +W t

2mn

h2

Λ
(1)
33

)

C̃.

The solution of the system (14) under the initial conditions (13) is obtained by the method of the
integral Laplace transform in the form:

T1mn =

2
∑

j=1
k 6=j

{

(pj − g4)Q1nmZ
(j)
1 (τ) + g2Q2nmZ

(j)
2 (τ) +

[

(pj − g4)T
0
1nm + g2T

0
2nm

]

e−pjτ1
}

pj − pk
,

T2mn =

2
∑

j=1
k 6=j

{

(pj − g1)Q2nmZ
(j)
2 (τ) + g3Q1nmZ

(j)
1 (τ) +

[

(pj − g1)T
0
2nm + g3T

0
1nm

]

e−pjτ1
}

pj − pk
. (15)

Here

pj =
g1 + g4

2
+ (−1)j

√

(g1 − g4)2

4
+ g2g3,

{

Qjnm, T 0
jnm

}

=
ς

πl

∫ l

0

∫ π

−π

{

Qj , T
0
j

}

(x, θ) sin
πn

l
x cosmθ dx dθ, ς =

{

1, m = 0,
2, m 6= 0,

(16)

Z
(j)
k =

∫ τ1

0
Fk(u) e

−pj(τ1−u)du, (k, j = 1, 2). (17)

The temperature characteristics T1, T2 through the Fourier coefficients T1mn, T2mn are described
by formulae

{T1, T2} =

∞
∑

n=1

∞
∑

m=0

{T1mn, T2mn} sin
πn

l
x cosmθ. (18)

4.2. Finding the generalized displacements

The solution of the system of equilibrium equations (8), which satisfies the boundary conditions (11),
under the known temperature field (18) is found by the method of finite double Fourier transforms with
respect to the coordinates x, q. As a result, we obtain a system of algebraic equations for determining
the Fourier coefficients ykmn of the sought functions. Let us write this system in a matrix form:

AY = ST1mn +GT2mn. (19)

Here the matrices A = (ark)6×6, Y = (ykmn)6×1, S = (sk)6×1, G = (gk)6×1, while yimn = Uimn are
the Fourier coefficients for displacements ui, and y3+i,mn = Γimn are the Fourier coefficients for γi
(i = 1, 2, 3). The coefficients ark, sk and gk of the specified matrices we calculate from the expressions
of the differential operators of the system (8).
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From the system (19), we obtain the solution:

ykmn =
1

|A|

6
∑

r=1

(srT1mn + grT2mn)Brk, (k = 1, 2, . . . , 6),

where |A| is the determinant of the matrix A, and Brk is the algebraic adjunct to the element ark of
this matrix.

The generalized displacements in terms of Fourier coefficients are given by the formulae:

{u1, γ1} =

∞
∑

n=0

∞
∑

m=0

{U1mn,Γ1mn} cos
πn

l
x cosmθ,

{u2, γ2} =
∞
∑

n=1

∞
∑

m=1

{U2mn,Γ2mn} sin
πn

l
x sinmθ,

{u3, γ3} =

∞
∑

n=1

∞
∑

m=0

{U3mn,Γ3mn} sin
πn

l
x cosmθ. (20)

Based on the known generalized displacements (20) and the temperature field (18), all other char-
acteristics of the stress-strain state of the shell are determined by the formulae (3), (4), (5) and (9)
given above.

5. Numerical analysis of the thermoelastic state of a two-layer cylindrical shell of a
regular antisymmetric structure

We assume that the shell is heated by the temperature field given at the initial moment of time:

T
(0)
1 (x, θ) = φ(x, θ), T

(0)
2 = 0, or the shell is heated by the environment with temperature t+c (x, θ, τ) =

φ(x, θ)S+(τ), t
−
c (x, θ, τ) = 0 given respectively on the surfaces z = ±h of the shell by convective heat

exchange. There are no heat sources.
As the function of temperature distribution depending on the coordinates (x, θ), we choose the

function ϕ(x, θ):

ϕ(x, θ) = T ∗

(

1−
(x− x0)

2

d2

)(

1−
θ2

η2

)

[S−(x− x0 + d)− S+(x− x0 − d)] [S−(θ + η)− S+(θ − η)] .

Here T ∗ = const, 2d and 2η are the width and angle of the heating area, respectively; (x0, 0) are the

coordinates of the middle of this area, S+(x) =

{

1, x > 0,
0, x 6 0,

S−(x) =

{

1, x > 0,
0, x < 0

are asymmetric

unit functions.
Fourier coefficients T 0

inm, Qinm included in the solution (15) are calculated according to the for-
mula (16). We obtained the expressions:

{

T 0
1n0, Qin0

}

=

{

1,
Bi

2

}

16

3

ηT ∗

π3n2(d/l)2

(

1

πn
sin

πnd

l
−

d

l
cos

πnd

l

)

sin
πnx0
l

, T 0
2n0 = 0,

{T 0
1nm, Qinm} =

{

1, Bi
2

}

32T ∗

π3n2m2η2(d/l)2

(

1
πn sin πnd

l − d
l cos

πnd
l

) (

1
m sinmη − η cosmη

)

sin πnx0

l , T 0
2nm =

0, (m 6= 0). Accordingly, the function of time Z
(j)
k (τ), which is determined by the formula (17), will

have the form:

Z
(j)
k (τ) =

1

pj

(

1− exp(−pjτ1)
)

S+(τ).

The layers of the shell are made of orthogonal reinforced composite with the following physical and
mechanical properties [1, 2]: EL = 150GPa, ET = 110GPa, GLT = 35GPa, GTT = 41GPa, νLT =
νTT = 0.33, αL = 7.6 · 10−6 1/K, αT = 14.0 · 10−6 1/K, λL = 105W/m·K, λT = 75W/m·K, where the
indices L and T indicate the parallel and perpendicular direction to the fibers of reinforcement.

The values of the other parameters are as follows: h/R = 0.05, l/R = 5, η = π/4, d/l = (R/l) sin η,
x0 = l/2, k′ = 5/6, Bi = 1.
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During the numerical experiment, there are calculated: the dimensionless temperature field T ′
1 =

T1

T ∗
, the deflection w′ = w

RαLT ∗
, and the stresses σ′

i =
σii

ELαLT ∗
, σ′

23 = σ23

ELαLT ∗
(i = 1, 2) for the four

values of dimensionless time τ ′ = λT τ
cεh2 : 0.01, 0.1, 0.4, and 1.

0 60 120 q
o

0

0.2

0.4

0.6

0.8

1

0.4

0.1

t =0.01
T1

0 60 120 q
o

0

-2

2

4

w

1

0.4

0.1

t =0.01

Fig. 1. Change in average temperature T ′

1
along guid-

ing line x′ = 0.5.
Fig. 2. Change of radial deflection w′ along guiding

line x′ = 0.5.

0 60 120 q
o

-0.8

-1.2

-0.4

0

s1

1

0.4

0.1

t =0.01

0 60 120 q
o

-1.5

-2

-1

0

s2

-0.5

1

0.4

0.1

t =0.01

Fig. 3. Change in axial stress σ′

1
along guiding line

x′ = 0.5.
Fig. 4. Change in circular stress σ′

2
along guiding line

x′ = 0.5.

In Figures 1–4, the changes in the average temperature T ′
1, in the radial deflection w′, as well as in

the axial σ′
1 and circular σ′

2 stresses along the guiding line x′ = 0.5 from the middle of the heated area
to the middle of the unheated area (0 6 θ 6 π) are illustrated.
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Fig. 5. Change in shear stress σ′

23
along guiding line

x′ = 0.5.

The maximum values of temperature and ra-
dial deflections are observed in the middle of
the heated area. The values of deflections along
the guiding line alternate between positive and
negative values, and along the generator they
monotonically decrease to zero. The normal
stresses σ′

1, σ
′
2 are calculated on the outer sur-

face z′ = z/h = 1, where at the initial mo-
ment of time in the heated area the stresses are
compressive, and their maximum values are ob-
served at the point (0.5; 0). Over time, stresses
and displacements in the heated area and out-
side it are equalized.

Figure 5 illustrates the change in the shear
stress along the guiding line. The shear stresses
are calculated on the middle surface of the shell.
It was found that these stresses reach their max-
imum values at the interface of heated and unheated areas. When passing through the middle of these
areas, these stresses change their sign.

6. Conclusion

Based on the equations of the six-modal linear shear theory of the first order, the algorithm for
determining the stress-strain state of a layered orthotropic circular closed cylindrical shell, which
is heated by the temperature field specified at the initial moment, is proposed. Using the integral
Fourier transforms of spatial variables and Laplace transform with respect to the time variable, a
closed solution of the non-stationary problem of thermal conductivity and the quasi-static problem
of unbound thermoelasticity for a finite hinged cylindrical shell supported at the ends is written.
A numerical analysis is performed for a two-layer shell of a regular antisymmetric structure. The
regularities of temperature, deflection, and stress dependence on the circular coordinate at different
moments have been established.
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Визначення i аналiз термопружного стану шаруватих ортотропних
цилiндричних оболонок

Мусiй Р., Жидик У., Свiдрак I., Шиндер В., Морська Н.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. C. Бандери, 12, Львiв, 79013, Україна

Записано вихiднi спiввiдношення квазiстатичної задачi термопружностi для скiнчен-
ної шаруватої ортотропної цилiндричної оболонки антисиметричної структури. За
конвективного теплообмiну на поверхнях даної оболонки i лiнiйної залежностi темпе-
ратури вiд поперечної координати приведено вихiдну систему рiвнянь на iнтегральнi
характеристики температури. Запропоновано метод розв’язування сформульованих
задач термопружностi i теплопровiдностi, який використовує подвiйне скiнченне iнте-
гральне перетворення Фур’є за вiдповiдними координатами перетворення i Лапласа за
часом. Приведено результати числового аналiзу температури, прогинiв i напружень
для розглядуваної двошарової шарнiрно обпертої по краях оболонки за локального
нагрiву початково заданим температурним полем.

Ключовi слова: ортотропна; шарувата; цилiндрична оболонка; температура;

термонапружений стан; теплообмiн.
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