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In this work, we are interested in the existence, uniqueness, and numerical simulation of
weak periodic solutions for some semilinear elliptic equations with data measures and with
arbitrary growth of nonlinearities. Since the data are not very regular and the growths are
arbitrary, a new approach is needed to analyze these types of equations. Finally, a suitable
numerical discretization scheme is presented. Several numerical examples are given which
show the robustness of our algorithm.
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1. Introduction

Periodic equations play an important role in the development of mathematical analysis of differential
and partial differential equations. These problems appear in the modeling of many real-world phe-
nomena, including fluid mechanics, pseudo-plastic flows, chemical reactions (resistivity of materials),
nerve impulses (Fitzhugh–Nagumo problem), population dynamics (Lotka–Volterra system), combus-
tion, morphogenesis, genetics, etc. Hundreds of articles on periodic problems have been published in
various journals and conference proceedings, although there are still more questions than answers. We
refer the reader to [1–10] for a good introduction to periodic problems. These references contain re-
view articles on ordinary periodic differential equations, which focus on the mathematical modeling of
nonlinear equations and expose different solving methods. Among them are degree theory, variational
methods, compactness methods, monotone methods, lower and upper solutions techniques, etc.

The purpose of this paper is to conduct a mathematical analysis and a numerical simulation of
weak solutions for the semilinear equation with periodic boundary conditions.

Consider the following model equation
{

u(t)− u′′(t) + j(t, u(t)) = f in (0, T ),
u(0) = u(T ), u′(0) = u′(T ),

(1)

where T > 0 is a period, j : [0, T ]×R → [0,+∞[ is measurable continuous function with respect to u,
T-periodic with respect to t, i.e., j(0, r) = j(T, r) ∀r (it allows to expand j into a continuous periodic
function on R, by j(t, r + kT ) = j(t, r) ∀r ∈ (0, T )) and f is a given positive bounded Radon measure
on ]0, T [, T-periodic in the sense of the following definition.

Definition 1. We denote by M+
B(0, T ) the set of positive bounded Radon measures on ]0, T [.

f ∈ M+
B(0, T ) is said to be T-periodic if there exists fε ∈ C([0, T ])+ such that fε(0) = fε(T ) and

∀φ ∈ C([0, T ]), 〈f, φ〉 = lim
ε→0

∫ T

0
fε(t)φ(t) dt.
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An example of a Radon measure to be 1-periodic is f = δ 1
2

since the Lorentzian sequence:

fε(t) =
1

πε

1

1 + (t−1/2)2

ε2

(2)

is 1-periodic continuous (in the sense that fε is defined on [0, 1] by (1), and its extension beyond ]0, 1[
is given by fε(t + k) = fε(t) with k ∈ Z and t ∈ (0, 1). One can prove that fε is convergent in the
sense of measure to δ 1

2
.

The case: j ≡ 0 corresponds to the linear periodic problem. It has been widely studied in the
literature due to the regularity of f . When f is T-periodic and f ∈ C([0, T ]) and r −→ j(t, r)
is globally Lipschitz, Coster et al. [10] proves the existence of a periodic solution u ∈ W 1,2([0, T ]).
Takemura et al. [11] considered the case where f is 1-periodic and f ∈ L2(0, T ) and they prove
existence and uniqueness of a periodic solution u ∈ H2(0, 1), in addition u is expressed as

u(t) =

∫ T

0
G(t− s)f(s) ds (0 < t < T ),

where G is the Green function given by

G(t− s) =











1
T

e
(t−s)

T
−1

(e−1−1)2

(

1 +
(

e−1 − 1
) (t−s)

T

)

(0 < s 6 t < T ),

1
T

e
(t−s)

T

(e−1−1)2

(

e−1 +
(

e−1 − 1
) (t−s)

T

)

(0 < t < s < T ).

In the case where j actually depends on t and u, i.e. j = j(t, u(t)), the problem is said to be semilinear.
It has been analyzed by Ciarlet et al. [12], by using an optimization method and under the following

assumptions: f ∈ C([0, T ]), r → j(t, r) is differentiable nondecreasing and ∀t ∈ [0, T ],
∣

∣

∣

∂j(t,r)
∂r

∣

∣

∣
is

bounded on the bounded set of R.
In the present work, we are particularly interested in cases where f is irregular and the growth

of j with respect to u is arbitrary. Obviously, classical methods fail to prove the existence and new
techniques must be used. We describe some of them here.

The other analysis that we deal with in this paper, is the simulation of the periodic solution of (1).
Several methods for numerical analysis and simulation of periodic equations have been proposed in
the literature. One of the numerical methods is the collocation method, see [13, 14]. Samoilenko [15]
proposed another quasi-linear numerical method. Here we will present the complete discretization of
equation (1) by finite differences. Then we reduce the search for a periodic solution to the solution of a
nonlinear system whose dimension is the number of nodes of the considered mesh. We then develop an
algorithm based on the Newton–Raphson method to numerically simulate a large system and obtain
an approximation of our periodic solution.

The rest of this paper is organized as follows. In Section 2, we present the exact problem statement
and main results. In Section 3, we give the existence proof for the semilinear problem, if f ∈ L2(0, T ).
In Section 4, we construct an approximate problem for (1) with regular data whose existence will be a
consequence of the previous section. After performing a priori estimations, we pass to the limit in the
approximated problem and prove the main existence result. The last section is devoted to numerical
simulation of our general problem. After proposing a numerical scheme based on finite differences,
we present several numerical examples to demonstrate the efficiency and robustness of our proposed
algorithm.

2. Statement of the main theoretical result

Throughout this paper we assume:
A1) f ∈ M+

B(0, T ) T-periodic (in the sens of Definition 1);
A2) j : [0, T ] × R → [0,+∞[ a mesurable T-periodic function;
A3) ∀t, r → j(t, s) is continuous and nondecreasing and j(t, 0) = 0;
A4) ∀r ∈ R, j(t, r) ∈ L1(0, T ).
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Consider for 1 6 p 6 ∞,

W 1,p
per(0, T ) =

{

u ∈ W 1,p(0, T ), such that u(0) = u(T )
}

equipped with the norm induced by W 1,p(0, T )

‖u‖1,p = ‖u‖p + ‖u′‖p.

In the case p = 2, this space is noted by H1
per(0, T ).

Now we introduce the notion of weak periodic solution of the problem (1) used here.

Definition 2. A function u is said to be a weak T-periodic solution of the problem (1), if
{

u ∈ W
1,1
per(0, T )

∫ T
0 u(t)φ(t) dt +

∫ T
0 u′(t)φ′(t) dt+

∫ T
0 j(t, u(t))φ(t) dt = 〈f, φ〉 for all φ ∈ W

1,∞
per (0, T ).

(3)

Remark 1.

i) for all 1 6 p 6 ∞, W 1,p
per(0, T ) ⊂ C([0, T ]) with compact injection.

ii) 〈, 〉 denotes the duality bracket between MB(0, T ) and L∞(0, T ).
iii) if u ∈ W

1,∞
per (0, T ), since j satisfy (A4), then j(t, u(t)) ∈ L1(0, T ), therefore all terms in (3)

make sense.

Till the end of this paper, we denote by C every generic and positive constant. We have the
following main result.

Theorem 1. Assume that (A2) − (A4) holds. Then for all f ∈ M+
B(0, T ) T-periodic, there exists a

weak nonnegative T-periodic solution u of (1).

3. An auxiliary existence result

Consider f ∈ L2(0, T ). One can obtain the following result.

Theorem 2. Let f ∈ L2(0, T ) be T-periodic and j satisfy (A2)-(A4). Then there exists a unique
nonnegative weak T-periodic solution of the problem
{

u ∈ H1
per(0, T )

∫ T
0 u(t)φ(t) dt +

∫ T
0 u′(t)φ′(t)dt+

∫ T
0 j(t, u(t))φ(t) dt =

∫ T
0 f(t)φ(t) dt for all φ ∈ H1

per(0, T ).
(4)

In addition, if f > 0 then u(t) > 0 ∀t ∈ [0, T ] .

Proof. Let us define the functional

J :

H1
per(0, T ) → R

v →
1

2

∫ T

0
|v(t)|2dt+

1

2

∫ T

0
|v′(t)|2dt+

∫ T

0
Jp(t, v(t)) dt −

∫ T

0
f(t)v(t) dt,

where Jp(t, r) =
∫ r
0 j(t, s) ds. Since Jp and ‖u‖21,2 are convex then J is convex. Now we will prove that

J is lower semi-continous. Consider for C ∈ R, the set

A = [J 6 C] = {v ∈ H1
per(0, T ) such that J(v) 6 C}.

We are going to prove that A is a closed set in H1
per(0, T ). Let us consider a sequence vn ∈ A and

vn → v in H1
per(0, T ), we have

1

2

∫ T

0
|vn(t)|

2dt+
1

2

∫ T

0
|v′n(t)|

2dt+

∫ T

0
Jp(t, vn(t)) dt −

∫ T

0
f(t)vn(t) dt 6 C. (5)

Since H1
per(0, T ) ⊂ C([0, T ]) with a compact injection, we can extract a subsequence vnk such that

vnk → v in C([0, 1]),

since v ∈ H1
per(0, T ) we get also

∫ T
0 fvnk

→
∫ T
0 fv and by using Fatou’s Lemma, we get

∫ T

0
Jp(v(t)) dt 6 lim inf

k→+∞

∫ T

0
Jp
(

t, vn(t)k
)

dt.

Passing to the limit in (5), we obtain J(v) 6 lim inf
n→+∞

J(vnk) 6 C. Therefore v ∈ A.
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Now we prove that J is infinite at infinity. We have

J(v) >
1

2
‖u‖21,2 − ‖v‖1,2‖f‖L2

then

lim inf
n→+∞

J(v)

‖u‖1,2
= +∞.

Consequently, J attains a unique global minimum

inf
v∈H1

per(0,T )
J(v) = min

v∈H1
per(0,T )

J(v) = J(u).

Let us finally show that u is a solution of (4). By choosing v = u+ sφ for any s in the neighborhood
of 0 and any φ ∈ H1

per(0, T ), we get:

1

2

∫ T

0
|u(t) + sφ(t)|2dt+

1

2

∫ T

0
|u′(t) + sφ′(t)|2dt+

∫ T

0
Jp(t, u(t) + sφ(t)) dt

−
1

2

∫ T

0
|u(t)|2dt−

1

2

∫ T

0
|u′(t)|2dt−

∫ 1

0
Jp(t, u(t)) dt > s

∫ T

0
f(t)φ(t) dt.

We divide the inequality by s > 0, then s < 0, the limit when s approaches 0 gives us:

lim
s→0

J(u+ sφ)− J(u)

s
= 0,

then
d

ds |s=0
J(u+ sφ) = 0.

Which, in turn, yields
∫ T

0
u(t)φ(t) dt+

∫ T

0
u′(t)φ′(t) dt+

∫ T

0
j(t, u(t))φ(t) dt =

∫ T

0
f(t)φ(t) dt ∀φ ∈ H1

per(0, T ).

Finally, suppose f > 0 a.e. in (0, T ), since j is nonnegative, we consider the equation (1) with

ĵ(t, r) =

{

j(t, r) if r > 0,
0 if r < 0

instead of j. It is clear that if r > 0, ĵ = j.
We introduce the function sign− defined on R by

sign−(r) =

{

−1 if r < 0,
0 if r > 0,

as sign− is an increasing function, we consider the convex function ρε, which is a twice differentiable
function such that

ρ′ε(r) → sign−r when ε → 0.

Let us take ρ′ε(u) as a test function, then, we get
∫ T

0
u(t)ρ′ε(u(t)) dt +

∫ T

0
u′2(t)ρ′′ε(u(t)) dt +

∫ T

0
ĵ(t, u(t))ρ′ε(u(t)) =

∫ T

0
ρ′ε(u(t))f(t) dt

using the convexity of ρε, we deduce that
∫ T

0
u′2(t)ρ′′ε(u(t)) dt > 0

for the other terms, we have

lim
ε→0

∫ T

0
ĵ(t, u(t))ρ′ε(u(t)) dt = lim

ε→0

∫

[u>0]
ĵ(t, u(t))ρ′ε(u(t)) dt +

∫

[u<0]
ĵ(t, u(t))ρ′ε(u(t)) dt

=

∫

[u<0]
ĵ(t, u) dt = 0.

It follows that

lim
ε→0

∫ T

0
u(t)ρ′ε(u(t)) dt 6 lim

ε→0

∫ T

0
ρ′ε(u(t))f(t) dt,
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which implies that
∫ T

0
u−(t) dt 6 −

∫ T

0
f(t) dt 6 0,

which allows us to conclude that u(t) > 0 a.e. t in [0, T ]. �

4. Proof of the main result

Since f ∈ M+
B(0, T ) T-periodic then there exist fn ∈ C([0, T ]) fn(0) = fn(1), fn > 0 such that

‖fn‖L1 6 ‖f‖MB
and which converge to f in M+

B(0, T ). According to the Theorem 2, there exists un,
nonnegative weak T-periodic solution of

{

un ∈ H1
per(0, T ), un > 0,

∫ T
0 un(t)φ(t) dt+

∫ T
0 u′n(t)φ

′(t) dt+
∫ T
0 jn(t, un(t))φ(t) dt =

∫ T
0 fn(t)φ(t) dt ∀φ ∈ H1

per(0, T ).
(6)

We have the following estimates.

Lemma 1. Let un be the sequence defined as above, then we have:
i)

∫ T
0 |un| dt 6 ‖f‖MB

;

ii)
∫ T
0 |jn(t, un)| dt 6 ‖f‖MB

;

iii)
∫ T
0 |u′′n(t)| 6 C‖f‖MB

.

Proof. Take φ ≡ 1 in (6), and as j(·, un) > 0, it comes that
∫ T

0
un(t) dt+

∫ T

0
jn(t, un(t)) dt =

∫ 1

0
fn(t) dt 6 ‖f‖MB

,

since un and j(t, un) > 0, then we obtain i) and ii).
Finally, we deduce from (6) that







u′′n = un + j(t, un)− fn in D′(0, T ),
un(0) = un(T ),
u′n(0) = u′n(T ).

(7)

Since un, j(t, un), fn ∈ L1(0, 1), then u′′n ∈ L1(0, T ) and one get
∫ T

0

∣

∣u′′n(t)
∣

∣ dt 6 C‖f‖MB
,

which proves iii).
Furthermore, u′n is continue and u′n(0) = u′n(T ), then there exists t0n such that u′n(t0n) = 0, hence

u′n(t) =
∫ t
t0n

u′′n(s) ds. According to ii) of Lemma 1, we get
∫ T
0 |u′n(t)| dt 6 C‖f‖MB

. Then un is

bounded in W
1,1
per(0, T ).

Since W
1,1
per(0, T ) ⊂ C([0, T ]) with compact injection, then there exists u ∈ W

1,1
per(0, T ) and a sub-

sequence noted by un such that un → u in C[0, 1]. Therefore, due to (A3), j(t, un) → j(t, u) in
L1(0, T ).

This allows us to go to the limit in the equation (6) and obtain that u is a weak periodic solution
of the equation (1). �

5. Numerical simulation

In this section, we propose a numerical simulation of the equation (1) using finite differences. The first
subsection is devoted to discretizing our periodic problem using the finite difference method, and then
we present a solution algorithm based on the Newton–Raphson method. In the second subsection, we
show numerical results obtained depending on the case where the source f is a regular function or a
Radon measure.
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5.1. Discretization and numerical algorithm

For that we discrete the interval [0, T ] in N + 1 points xk = (k − 1) ∗ h, for k = 1, . . . , N + 1, where
h = T

N . Let us set uk = u(xk) and add two fictious points x0 = −h, xN+2 = T + h. Let us denote
u0 = u(x0) and uN+2 = u(xN+2). Therefore, since u is periodic we have uN+1 = u1, u0 = uN and
uN+2 = u2, we then have N unknowns uk, k = 1, 2, . . . , N .

Our problem (1) can then be discretized in space as follows:














u1 −
1
h2 (uN − 2u1 + u2) + j(0, u1) = f(0),

ui −
1
h2 (ui+1 − 2ui + ui−1) + j(xi, ui) = f(xi) for 2 6 i 6 N − 1,

uN − 1
h2 (u1 + uN−1 − 2uN ) + j(xN , uN ) = f(xN ).

This can be written in matrix form:

G(U) = (IN −
1

h2
A) ∗ U + J(U)− F = 0, (8)

where U = (ui)16i6N is the unknows vector, F = (f(xi))16i6N , IN is the identity matrix of order N ,
the matrix A is given by

A =





















−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 1 −2 1
1 0 · · · 0 1 −2





















and the nonlinear term vector J(U) is given by

J(U) =













j(0, u1)
. . .

j(xi, ui)
. . .

j(xN , uN )













We will use the Newton–Raphson method to solve equation (8) starting from the initial U0 which is
the solution of the linear system:

(IN −
1

h2
A) ∗ U0 = F. (9)

Our algorithm is therefore the following.

Algorithm 1

Input: choose kmax the maximum number of iterations, the tolerance ε0, we get N +1 points xi = (i−1)∗h,
h = T

N

set k = 0 and set U = U0

repeat
set k = k + 1
if (k = kmax) then exit convergence
endif
set Y = G(U)
solve (IN − 1

h2A+DJ(U)) ∗D = −Y

set U = U +D

until ‖D‖ < ε0
Output: U
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5.2. Numerical examples

We present some numerical examples depending on the cases if the source f is regular or not. The first
example is the following

{

u(t)− u′′(t) + u(t)4 = 1 + t sin(πt) in (0, 1),
u(0) = u(1), u′(0) = u′(1).

(10)

The simulation we give here corresponds to T = 1, ε0 = 1 e−9, N = 400, kmax = 8.
Figure 1 shows the shape of the periodic solution and Figure 2 shows the decrease of the norm

between two successive iterations as a function of the iteration number.

1 2 3 4 5 6 7 8 9

0
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0.07

0.08

0.09

0.1

Fig. 1. Shape of the periodic solution of (10). Fig. 2. Error of Newton.

The second example is the following
{

u(t)− u′′(t) + u4(t) = δ 1
2

in (0, 1),

u(0) = u(1), u′(0) = u′(1).
(11)

We have approximated the Dirac mass δ 1
2

by the sequence of Lorentzian 1-periodic function (fε) we

defined before (2). The simulation we give here corresponds to T = 1, ε = 1 e−12, ε0 = 1 e−9, N = 500,
kmax = 8.

Figure 3 shows the shape of the periodic solution and Figure 4 shows the decrease of the norm
between two successive iteration as a function of the iteration number.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
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0.1

Fig. 3. Shape of the periodic solution of (11). Fig. 4. Error of Newton.
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6. Conclusions

In this work, we have been interested in the mathematical analysis and numerical simulation of a class
of periodic nonlinear equations with non-regular data. If the data is regular, we prove the existence and
uniqueness of the periodic solution through optimization methods. With the data only nonnegative
measure, we construct a sequence of periodic solutions based on the regular case, and after obtaining
a priori estimates, we show that we can extract a subsequence that converges to the solution to the
problem we consider. We then propose a numerical algorithm to simulate these periodic solutions,
giving some examples of when the data is regular or irregular. Numerical simulations demonstrate
that our algorithm is efficient and robust. Besides, in the future we will focus on analyzing other
numerical methods for simulating periodic equations, such as FEM (Finite Element Method), ANN
(Artificial Neural Networks), LBM (Lattice Boltzmann Method) etc. and analyzed the performance
differences between these methods, comparing their accuracy, time consumption, etc.
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Напiвлiнiйне перiодичне рiвняння з довiльною нелiнiйнiстю
зростання та мiрою даних: математичний аналiз

та чисельне моделювання

Ель Габi М., Алаа Х., Алаа Н. Е.

Лабораторiя LAMAI, факультет науки i технiки, Унiверситет Кадi Айяд,

40000 Марракеш, Марокко

У цiй роботi цiкавимося iснуванням, єдинiстю та чисельним моделюванням слабких
перiодичних розв’язкiв для деяких напiвлiнiйних елiптичних рiвнянь iз мiрами да-
них та з довiльними нелiнiйностями зростання. Оскiльки данi не дуже регулярнi, а
зростання є довiльним, необхiдний новий пiдхiд для аналiзу цих типiв рiвнянь. Накi-
нець, наведено вiдповiдну чисельну схему дискретизацiї. Наведено декiлька числових
прикладiв, якi демонструють надiйнiсть запропонованого алгоритму.

Ключовi слова: перiодичний розв’язок; напiвлiнiйне рiвняння; метод оптимiзацiї;

чисельне моделювання.
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