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The demand for efficient solutions to optimization problems with uncertain and stochastic
data is increasing. Probabilistic traveling salesman problem (PTSP) is a class of Stochastic
Combinatorial Optimization Problems (SCOPs) involving partially unknown information
about problem data with a known probability distribution. It consists to minimize the ex-
pected length of the tour where each customer requires a visit only with a given probability,
at which customers who do not need a tour are just ignored without further optimization.
Since the PTSP is NP-hard, the usage of metaheuristic methods is necessary to solve the
problem. In this paper, we present the Ant Colony Optimization (ACO) algorithm com-
bined with the Levy Flight mechanism (LFACO), which is based on Levy distribution to
balance searching space and speed global optimization. Experimental results on a large
number of instances show that the proposed Levy ACO algorithm on the probabilistic
traveling salesman problem allows to obtain better results compared with the classical
ACO algorithm.
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1. Introduction

Stochastic combinatorial optimization problems (SCOPs) are complex problems that involve identifying
the best possible solution in situations where there is uncertainty or variability. Advanced mathematical
and algorithmic techniques are used to solve them, but these techniques can be very costly in terms of
time and resources. Nevertheless, solving these problems can have a significant impact on the world
by helping businesses be more efficient and profitable, as well as helping people move more quickly
and easily. SCOPs have an extensive applications in the real world, and stochastic techniques are
particularly appropriate for solving them.

This paper investigates a class of static stochastic combinatorial optimization problems, called the
probabilistic traveling salesman problem (PTSP) introduced by Jaillet [1], which is a generalization of
the traveling salesman problem (TSP). In the TSP, the goal is to find the shortest Hamiltonian cycle
through a set of customers given the distances between all pairs of clients. However, in the PTSP,
each customer has a probability of needing a visit, and the objective is to find a tour of the minimum
expected length while respecting the given probabilities at which customers who do not need a tour
are ignored without further optimization.

The PTSP is a challenging problem with various applications, and it has been extensively studied
in the literature [1–3]. In this paper, a new stochastic method for solving the PTSP is proposed and
its effectiveness is demonstrated through numerical experiments.

Several approximate methods have been proposed to solve the PTSP. M. Abdellahi Amar et al. have
proposed an application and parallel tabu search algorithm for solving the PTSP [4], a parallel branch
and bound algorithm for the probabilistic TSP [5], Balaprakash et al. have presented a hybrid opti-
mization approach using ant colonies [6], Bianchi et al. have presented various ant colony optimization

1132 c© 2023 Lviv Polytechnic National University



Investigation of ant colony optimization with Levy flight technique for a class of stochastic . . . 1133

approaches [7], while Branke and Guntsch have proposed a hybrid optimization approach using ant
colonies [8]. Gutjahr has proposed an SACO ant based approach [9], while, Marinakis and Marinaki
have proposed a hybrid multi swarm optimization algorithm [10] and a hybrid bee mating optimization
algorithm [11].

Ant Colony Optimization (ACO) is an optimization algorithm that mimics the behavior of ants
searching for the shortest path between their nest and a food source. The algorithm works by main-
taining a population of artificial ants, which gradually constructs a solution to the problem by in-
crementally building a path. The probability of selecting an edge is determined by the quantity of
pheromone deposited by the ants. In the context of the PTSP, the ACO algorithm constructs a tour
by probabilistically choosing the next customer to visit, taking into account the probability of needing
a visit and the amount of pheromone deposited on the edge connecting the current customer to the
next.

The Levy flight technique is a type of travel trajectory that intersects frequent short distances and
occasional long distances. It was first introduced by French mathematician Paul Levy (1886–1979) in
1937. This technique has been applied to a variety of optimization problems, including Anomalous
diffusion by Greenenko, Chechkin, and Shul’ga [12], two-species competition model by Hanert [13],
artificial bee colony algorithm with Levy flight [14], and novel ant colony optimization with Levy
flight [15], non-local search and simulated annealing presented by Pavlyukevich [16]; in addition to
another application in image processing, where it has been used for multi-threshold segmentation [17],
and the Levy flight based particle swarm optimization [18].

Experimental studies [15, 17, 19] have demonstrated that Levy’s flight model is highly effective in
searching for food in uncertain environments. This is because the model’s frequent short-distance
jumps enable individuals to conduct detailed local searches within a limited area, while the occasional
long-range jumps allow them to escape from local optima and reach global ones.

In the context of using ACO to solve PTSP, ACO can sometimes get trapped in local optima,
where ants repeatedly visit a suboptimal subset of cities and fail to find better solutions. To address
this issue, the Levy flight technique is employed to increase exploration of the search space by allowing
the ants to make occasional long-distance moves, this feature helps to prevent being trapped in local
optima and to find better solutions. By incorporating Levy flights into the ACO algorithm, the ants
are able to explore more of the search space to find the global optimum.

The rest of this paper is structured as follows: in section 2, we present the mathematical model of
the PTSP and some cases study, some properties of the PTSP. The ant colony optimization for the
PTSP is presented in section 3. Section 4 is devoted to the adaptation of the ACO with Levy flight
for PTSP. In section 5, numerical results are presented for standard instances showing the efficiency of
the ACO algorithm with the introduction of Levy flight technique to better approach the considered
problem by also reducing the time necessary to reach it.

2. Mathematical model

2.1. Problem setting

The traveling salesman problem (TSP) is a widely studied problem in operations research that involves
finding the shortest route for visiting a given set of clients. In a probabilistic context, the problem
consists of determining the expected length of the optimal tour, accounting for the uncertainty in the
presence of clients. To formulate the problem, a graph G(N,B,D) is defined, where N is the set of
nodes representing clients, B is the set of arcs connecting the nodes of N , and D is a distance matrix
where d(i, j) is the distance between node i and j. The goal is to find a Hamiltonian circuit of graph
G, represented by T = (i1, . . . , i|N |, i1), which is a sequence of nodes that visits each client only once

and has the minimum length LT given by the mathematical formula: LT =
∑|N |

j=1 d(ij , ij+1), where
i|N |+1 = i1.
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The nodes of the graph G are classified into two sets: N1 consists of nodes that must be visited
at the beginning of each tour T , and N2 contains nodes that do not need to be visited in every tour.
Each node in N2 is present with a fixed probability p (independently of each other). It is assumed that
N1 ∪N2 = N and N1 ∩N2 = ∅.

2.2. Special cases of PTSP

Bellalouna [20] presented several important results regarding the relationship between PTSP and TSP.

— Firstly, if D is a non-negative over-triangular matrix and the shortest path between nodes 1 and n
is (1, n), then PTSP is equivalent to TSP.

— Secondly, if D is a non-negative over-triangular matrix and for i < j we have di,j 6 dk,j ∀i + 1 6

k 6 j − 1, then PTSP is also equivalent to TSP. Furthermore, it was demonstrated by Henchiri
and Toulouse [21] that constant matrices are the only ones to have the same expected cost for any
tour T , with

E(LTptsp) = p(1− p)n−1LT 0
tsp
. (1)

— Finally, Bellalouna also proved that for a distribution matrix D, the expected cost of the PTSP
tour LTptsp is lower-bounded by

p(1− p)n−1
n
∑

i=1

dii. (2)

2.3. Combinatorial properties of PTSP

In this subsection, we will explore the combinatorial properties of probabilistic traveling salesman
problem (PTSPs)and their relationship to the TSP.

Proposition 2 (Jaillet [1]). Let G = (N,B,D) be a given graph with m cities always present, and
n cities present with probability p, the TSP solves the PTSP for any graph G (TSP≡PTSP) if and
only if:

1) D is symmetric and n+m 6 4; if m = 0 this is true for n = 5;
2) D is not symmetric and m+ n 6 3.

Proposition 3 (Jaillet [1])). When the n nodes are placed on their convex envelope, TSP≡PTSP.

Proposition 4 (Bellalouna [20]). Let Tptsp be the optimal tour of the PTSP through n vertices, if
n odd (n = 2k + 1), then

E(LTptsp) > p2L
(0)
Tptsp

1− (1− p)n−1

1− (1− p)k
. (3)

2.4. Objective function for the PTSP

We consider an instance of the probabilistic traveling salesman problem (PTSP) where there is a
complete graph with nodes representing a set N of customers, each with a probability pi of requiring
a visit. The goal is to find a tour T that visits all nodes in N , and the objective is to minimize
the expected tour length E(LT ). This objective function is defined as the sum of the product of the
distance required to visit a subset S of customers, denoted by LT (S), and the probability P (S) for the
subset of customers S to require a visit [7]:

E[LT ] =
∑

S⊆N

P (S)LT (S), (4)

here S is a subset of the node set N , and the probability P (S) can be computed as the product of the
probabilities pi for customers in S to require a visit, and the probabilities (1 − pi) for customers not
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in S to not require a visit [7]:

P (S) =
∏

i∈S

pi
∏

i∈N−S

(1− pi). (5)

The problem of the probabilistic traveling salesman can be approached through the use of mathematical
models. One such model is the Campbell equation, which calculates the probability and expected cost
resulting from any arc that may occur in the tour. The expected cost of an arc (i, j) is influenced by
the realization of customers i and j, with the condition that no intermediate customers k between them
(k = i + 1, . . . , j − 1) are realized. In the Campbell equation the probability of a customer requiring
a visit and the distances between them are taken into account, the equation is a summation of three
terms, each representing the expected cost resulting from different scenarios in the tour [22]:

n
∑

j=1

pjd0j

j−1
∏

k=1

(1− pk) +

n−1
∑

i=1

n
∑

j=i+1

pipjdij

j−1
∏

k=i+1

(1− pk) +

n
∑

i=1

pid0i

n
∏

k=i+1

(1− pk). (6)

— The first term of the Campbell equation represents the expected cost of travel from the starting
point (node 0) to the first customer node (node j). It takes into account the distance between
node 0 and node j (represented by pj), and the probabilities that no nodes between 1 and j − 1
need to be visited (represented by the product of (1− pk) for k = 1 to j − 1.

— The second term in the Campbell equation represents the expected cost of traveling from customer
node i to customer node j, where i and j are not the starting node. This is calculated by taking
into account the distance between i and j, the probabilities that node i and j need to be visited,
and the probabilities that no nodes between i+ 1 and j − 1 need to be visited.

— The third term in the Campbell equation represents the expected cost of traveling from the last
customer node n back to the starting node 0. This is calculated by taking into account the distance
between node i and 0, the probability that node i needs to be visited, and the probability that no
nodes between i+ 1 and n need to be visited.

By utilizing the Campbell equation, it is possible to calculate the probability and expected cost of
each possible arc in the tour. This information can then be used to construct a more efficient tour
that minimizes the total expected cost. This mathematical approach to solving the PTSP can be a
valuable tool for businesses and organizations that need to optimize their delivery or service routes.

3. Ant colony optimization for PTSP

The PTSP is known to be an NP-hard combinatorial optimization problem which makes its resolution
very difficult. Therefore, we can exploit metaheuristic methods. In particular, the standard ACO algo-
rithm has been shown to perform well in a variety of challenging combinatorial optimization problems,
including many routing problems like PTSP. One of the key inspirations behind ACO can be traced
back to the work of Deneubourg et al., however, ACO was first introduced by Dorigo, Maniezzo, and
Colorni [23]. Here, we adapt Dorigo and Gambardella’s ACO algorithm [24] for TSP to PTSP, as
described in their work.

3.1. ACO principle

The ACO algorithm is comprised of three main procedures: initialization, solution construction, and
pheromone update [25]. To construct a solution, we first group the nodes already visited by the ants,
which defines the possible movements at each step when ant k is on city i: Nk

i , next, we consider the
visibility between nodes, which can be calculated as the reciprocal of the distance between city i and
city j: ηi,j =

1
di,j

.

To determine the quantity of pheromone deposited on a path connecting two customers, we use
the proportional transaction random parameter defined by Kube and Bonabeau (1998). According to
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Dreo et al. [25], the selection probability of an edge (i, j) by ant k at time t can be expressed as follows:

pki,j(t) =







[τi,j(t)]
α[ηi,j ]

β

∑
l/∈Nk

i
[τi,l(t)]αη

β
i,l

, if j /∈ Nk
i ,

0, otherwise,
(7)

where the relative importance of trail intensity and visibility is controlled by two parameters, namely
α and β. After completing a full tour, each ant leaves a certain amount of pheromone ∆τi,j(t) on the
edges it traversed, which depends on the quality of the solution found. The pheromone is updated
using the expected values of the circuit, as in TSP with ACO, but with a different quantity of reinforced
pheromone, specifically, we have [25]:

∆τki,j(t) =

{

Q
E(Lk(t))

, if (i, j) ∈ T k(t),

0, otherwise,
(8)

where Q is a fixed parameter that represents the weight to the amount of pheromone deposited by each
ant, E(Lk(t)) is the expected path length of ant k at time t, and T k(t) is the path chosen by ant k.

To avoid being stuck in suboptimal solutions, the ACO algorithm accepts worse solutions to escape
from possible local optima. We achieve this by introducing an evaporation factor γ, which represents
the rate at which the pheromone disappears. The pheromone are updated using the formula [25]:

τi,j(t+ 1) = (1− γ)τi,j(t) +

m
∑

k=1

∆k
i,j(t), (9)

where m is the total number of ants used.

3.2. ACO Algorithm for PTSP

The presented algorithm is ant colony optimization for the PTSP. It initializes the pheromone intensity
of each edge to a starting value τ0. For each ant, the algorithm starts by placing the ant at the starting
node, which is the same for all ants, and stores this information in Tabuk to ensure that the tour starts
and ends at the same node and that each city is visited only once. The tour for each ant is constructed
by choosing the next node that is not in Tabuk, based on the probability equation presented in the
algorithm. After choosing the next node, the ant updates the local pheromone for the chosen edge.
The algorithm updates the global pheromone by calculating the expected value of the tour for each
ant, applying a local improvement method to the routes of all ants, and recalculating E(LTk

), as well
as storing the shortest tour found so far and its minimal expected value. Finally, the algorithm checks
if the stopping condition is met and if not, the algorithm clears all Tabuk and restarts.

4. Ant colony optimization with Levy flight for PTSP

According to the PTSP function of Campbell, it is decided to position all ants at the same starting
point, which corresponds to the depot, during the initialization phase to ensure that the tour forms a
closed loop that starts and ends at the depot. However, as mentioned before, this strategy can lead to
artificial ants getting trapped in local minima of the search space, despite pheromone updates, which
can prevent the algorithm from finding an optimal solution.

To address this issue, the ant colony optimization uses Levy flight (LFACO). This strategy allows
artificial ants to make random jumps of varying lengths to regions of the search space with a higher
density of solutions. Thus, Levy flight is used to improve the exploration of the search space without
compromising the closed loop constraint. Therefore, the starting point remains the depot for each ant.

4.1. ACO with Levy’s flight

Several algorithms have been developed in the literature to generate random numbers that follow
the Levy distribution. Among these methods, Mantegna’s algorithm (Mantegna, 1994) stands out
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Algorithm 1 ACO for the PTSP.

1: Step 1: initialization: t← 0, τi,j(0)← τ0;
2: Step 2: starting node
3: for each ant k
4: Place the ant on the starting node and store this information in Tabuk;
5: Step 3: build a tour for each ant
6: for i from 1 to n
7: for all k from 1 to m
8: choose the next node j, j /∈ Tabuk where j is chosen according to the probability:

pki,j(t) =
[τi,j(t)]

α[ηi,j ]
β

∑

l/∈Tabuk
[τi,l(t)]α[ηi,l]β

9: Local update of the trail for chosen edge (i, j):

τi,j(t) = (1− ψ)τi,j(t) + ∆τi,j(t) with ∆τi,j = τ0;

10: Step 4: global update of the trail
11: for each edge (i, j) ∈ Cycle∗

12: Update the trail according to:

τi,j(t+ 1) = (1− γ)τi,j(t) +

m
∑

k=1

∆τki,j(t)

13: with ∆τki,j(t) =
Q

E(Cycle∗) if k ∈ (i, j), and 0 otherwise;
14: t← t+ 1
15: Step 5: condition of termination
16: if not (end-test) then

17: Empty all Tabuk and go to Step 2;
18: else

19: stop.

as one of the most efficient and straight forward approaches for generating symmetric values of the
Levy distribution. In this algorithm, the step size, denoted by s, can be calculated as follows (Saji et
al. 2021) [26]:

s =
u

|v|
1

λ

. (10)

Here, λ ∈ [1, 2], and u, v are Gaussian-centric distributions.
Unlike other commonly used distributions, such as the Gaussian or Cauchy distributions, Levy

distributions are characterized by heavy tails. However, the calculation of the original Levy flight
using formula (10) is complex and cannot be directly used in the ant colony optimization (ACO)
algorithm. To address this issue, a Levy flight conversion formula is proposed for the candidate
selection mechanism using formula (13), while formula (11) is an improved version of formula (10) (Liu
et al., 2021) [27]:

Snew =

{

1
A
∗ 1−Pthreshold

1−PLevy
, if Snew > 1;

1, else;
(11)

1− Pnew =
1

Snew
∗ (1− Pnow); (12)

Pnew =

{

1−A ∗
1−PLevy

1−Pthreshold
∗ (1− Pnow), if PLevy > Pthreshold;

Pnow, else.
(13)
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Here, Snew represents the new step length for Levy’s flight, with Snew > 1, and A is a fixed parameter
for the Levy flight altering ratio (A > 0). Pthreshold is a fixed parameter for the Levy flight threshold
(0 < Pthreshold < 1). PLevy is a uniformly distributed variable (0 < PLevy < 1) that represents the
probability of turning on/off the Levy flight altering mechanism. Similarly, Pnow is also a uniformly
distributed variable (0 < Pnow < 1) that denotes the original selection probability before the Levy
flight-altering mechanism. Finally, Pnew is a uniformly distributed variable (0 < Pnew < 1) that
represents the final selection probability after the Levy flight altering mechanism.

4.2. LFACO for PTSP

The Levy ACO algorithm is an improved version of ACO that incorporates the Levy flight mechanism
to enhance candidate selection. This is done by using the step length of the Levy flight to alter the
original random number used to select the next site. Formulas (10) and (11) are then used to implement
the Levy flight mechanism in the candidate selection process, resulting in more diversified solutions.
Predefined parameters such as Pthreshold and A are used to tune the algorithm for efficiency.

To illustrate the application of the LFACO algorithm to solve PTSP, we propose the following
diagram that shows the different steps of the resolution process.

Initialization

Create antsm

Place ants on the depotm

Start moving from depot

For each ant in colony:k

Do this for all ants

Update pheromone level

Stopping criterion?

End

Y
es

No

Mark all nodes as unvisited

Select next node using

transition rule

Add selected node to route

and mark it as visited

All nodes visited

Y
es

Return to the depot

No

The next node be selected

using from candidate listPnew

Generate an uniform random

Yes
N
o

Fig. 1. Diagram illustrating the different steps of applying the LFACO algorithm to solve PTSP.
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5. Computation experiment

In this section, we present the results of our experiments comparing the ACO and LFACO algorithms
to solve the PTSP problem. To evaluate the performance of our proposed algorithms, we conducted
experiments on reference instances from Campbell and Thomas (2008). We considered two different
probability settings. The first one involved generating each customer’s probability from a random
number between 0 and 1, providing insight into the impact of having a larger range of customer
probabilities. The second setting involved assigning probabilities of either 0.1 or 1 randomly. We
referred to these two datasets as Range and Mixed, respectively, in Tables 2 and 3.

Table 1. The parameters
for different approaches.

Parameters Values

τ0 1
m 7
α 1
β 2
γ 0.5
ψ 0

Pthreshold 0.8
A 1
Q 1

We measured the computation time required to run each al-
gorithm and evaluated the quality of the obtained solutions. Our
approach is developed entirely in Python and executed on a ma-
chine equipped with an Intel Core i5-7200U processor at 2.50 GHZ,
8GB of RAM, and a 64-bit operating system with an x64 proces-
sor. The parameter settings for the different approaches used in
this paper are presented in Table 1.

Table 1 presents the parameter settings for the different ap-
proaches used in our experiments to solve the PTSP problem.
These parameter values were chosen to balance computation time
and solution quality. The PTSP problem involves finding the
shortest possible route to visit a set of cities with a minimum
expected value.

We selected the value of ψ=0 based on Dennis’ paper, which found that the parameter ψ, which
controls diversification, did not significantly affect the quality of the algorithms’ solutions. The best
value for ψ = 0, suggests that diversification does not play a crucial role in this setting. This information
can be useful in guiding parameter selection for solving the probabilistic traveling salesman problem.

Table 2. Comparison of ACO and LFACO based on
expected values for the PTSP problem.

Table 3. Comparison of ACO and LFACO based on
CPU values for the PTSP problem.

Probability Range Mixed

Data set LFACO ACO LFACO ACO
22 148.16 164.20 66.87 71.44
42 175.6 177.38 163.46 195.99
62 300.98 328.82 199,91 201.25
102 412.57 420.60 382.35 400.86
152 719.37 767.56 626.50 691.98

Probability Range Mixed

Data set LFACO ACO LFACO ACO
22 1 1 1 1
42 11 14 8 13
62 60 67 69 75
102 162 239 203 228
152 513 529 154 284

Tables 2 and 3 offer a comprehensive comparison between the performance of ACO and LFACO
for the PTSP in terms of expected values and CPU time (in seconds). Table 2 indicates that LFACO
consistently outperforms ACO across all data sets and problem types, with lower expected values
obtained by LFACO. For example, LFACO achieved an expected value of 382.35 for the mixed problem
type with a 102-city data set, which is 5.12% lower than ACO’s expected value of 400.86. Furthermore,
LFACO exhibited a significant improvement in the mixed problem type for the 102-city data set, with
a 14.27% improvement over ACO. Table 3 indicates that LFACO requires less CPU time than ACO
to obtain the same quality of solution, with a substantial difference observed in data set 152, where
LFACO significantly outperforms ACO in terms of CPU time. These results suggest that LFACO is
a promising algorithm for solving the PTSP problem, particularly for Range and Mixed probability
types, and could potentially be useful for other stochastic combinatorial optimization problems.
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Fig. 2. Comparing ACO and LFACO for PTSP Using
Expected Values and Probability Range Analysis.

Fig. 3. Comparing ACO and LFACO for PTSP Using
Expected Values and Probability Mixed Analysis.
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Fig. 4. Comparing ACO and LFACO for PTSP Using
CPU Values and Probability Range Analysis.

Fig. 5. Comparing ACO and LFACO for PTSP Using
CPU Values and Probability Mixed Analysis.

6. Conclusion

This paper focuses on solving the probabilistic traveling salesman problem (PTSP) using mathemat-
ical modeling and the ant colony optimization (ACO) technique with the Levy-flight strategy. The
presented results demonstrate the effectiveness and promise of the proposed method. Specifically, the
LFACO algorithm outperforms the classical ACO algorithm in terms of solution quality and compu-
tation time, as shown in the results obtained for different standard instances of PTSP.

The proposed approach is applicable to various fields such as industry, transportation, or logistics for
optimizing large datasets. These promising results can assist in solving real-world practical problems
at a large scale with high solution quality. In conclusion, the ACO technique with the Levy-flight
strategy is an efficient method for solving the PTSP and offers improved performance compared to
existing methods for large datasets.
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Дослiдження оптимiзацiї мурашиної колонiї за допомогою технiки
польоту Левi для класу задач стохастичної комбiнаторної

оптимiзацiї

Ель Асрi Ф., Таянi К., Фахурi Х.

Команда SMAD, Полiдисциплiнарний факультет Лараш,

Унiверситет Абдельмалека Ессаадi, Тетуан, Марокко

Запит на ефективнi розв’язки задач оптимiзацiї з невизначеними та стохастичними
даними зростає. Iмовiрнiсна задача комiвояжера (PTSP) — це клас стохастичних ком-
бiнаторних задач оптимiзацiї (SCOP), якi мiстять частково невiдому iнформацiю про
данi задачi з вiдомим розподiлом ймовiрностей. Вона полягає в мiнiмiзацiї очiкуваної
тривалостi туру, коли кожен клiєнт вимагає вiдвiдування лише з певною ймовiрнiстю,
за якої клiєнти, яким тур не потрiбен, просто iгноруються без подальшої оптимiзацiї.
Оскiльки PTSP є NP-складною, для розв’язування цiєї задачi необхiдно використо-
вувати метаевристичнi методи. У цiй статтi подано алгоритм оптимiзацiї мурашиної
колонiї (ACO) у поєднаннi з механiзмом польоту Левi (LFACO), який базується на
розподiлi Левi, щоб збалансувати простiр пошуку та прискорити глобальну оптимi-
зацiю. Експериментальнi результати на великiй кiлькостi прикладiв показують, що
запропонований алгоритм Левi ACO для iмовiрнiсної задачi комiвояжера дає кращi
результати порiвняно з класичним алгоритмом ACO.

Ключовi слова: стохастична комбiнаторна оптимiзацiя; iмовiрнiсна задача ко-

мiвояжера; метаевристика; оптимiзацiя мурашиної колонiї; полiт Левi.
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