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In this work, we present and analyze a fishery model with a price variation. We take into
account the evolution in time of the fish biomass and the harvesting effort, while the price
of fish is dependent on supply and demand. Assuming that the price variation occurs at a
fast time scale. We assume that the stock and the effort evolution follow a slow time scale.
Considering the different time scales, the model is reduced to a 2D model. We analyze
the obtained model, and depending on the value of a parameter, there are two main cases
that can arise: a fish exclusion case and a sustainable fishery. To avoid Fish Extinction
we introduce a control parameter and we study the impact of the number of sites on the
catch that allow the undesirable case to be avoided.
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1. Introduction

Mathematical models enable the prediction of the qualitative progression of fisheries, specifically identi-
fying significant patterns such as stock collapse or sustainability, shifts in fishing effort, and fluctuations
in market prices [1–3].

Bio-economic models consider both biological and economic factors in their analysis. We indicate a
classical major contribution by Clark in [4]. In most mathematical models, the first equation represents
the variation of the fish biomass in time which grows logistically and is harvested by fishing fleets which
is the capture. The capture is generally considered to be a Schaefer function [2].

Furthermore, we add another equation describing the variation in time of the harvesting efforts.
The equation differentiates between the costs of fishing activity and the catch function multiplied by
the price of fish in the market, which represents the profit of the fishery. When the net profit is greater
than the costs; the fishing activity is profitable [5, 6].

Several mathematical fishing models have assumed a fixed market price for the resource [3, 7, 8].
There has been a limited emphasis on incorporating the dynamic nature of fisheries into mathematical
models, specifically regarding the variability of market prices for the resources. Furthermore, classical
economic theory indicates that price changes are influenced by the disparity between consumer demand
(i.e. the quantity of fish purchased) and the limited supply. This highlights the need to recognize that
the price is not constant. Furthermore, classical economic theory suggests that price fluctuations
depend on demand and supply. This indicates the importance of recognizing that the price is variable
and not fixed [1, 9, 10].

As a result, an additional equation has been included, capturing the fluctuations in the resource’s
price based on the interplay of supply and demand. The demand is presented by a linear or nonlinear
function depending on the price, and supply is the catch.
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Several studies [1, 10, 11], have explored the price variation in the catch when the price is not
constant. In these works, a linear demand function D(p) = A − p was commonly assumed [11]. This
linear demand predicts that there exists a maximum price threshold. Beyond this threshold, demand
turns negative, indicating that there is no demand when prices become excessively high. Alternatively,
in [9, 12], a nonlinear demand function was utilized. Specifically, its was supposed to be inversely
proportional to the price, represented as D(p) = A

p
, where A corresponds to the demand when the

price is equal to 1.
In our paper, we use a nonlinear demand function that grows fast at the beginning (in relation to

demand) before decreasing later, that is, D(p) = 1
p
(a − b

p
) where a and b are positive parameters. In

this context, even when the price is very high, we can observe a positive demand.
This paper is outlined in the following sections. Section 2 provides a presentation of the bio-

economic model for the fishery, incorporating a price equation. The presence of two distinct time
scales leads to derive an aggregated model that governs the dynamics of the fishing effort and the fish
biomass, in Section 3. In Section 4, we proceed to a qualitative analysis of the obtained aggregated
model; we determine equilibrium points and we studied their stability. Numerical simulations are
presented in Section 5. Section 6 is dedicated to the introduction of a control parameter. In the last
section, we study the effect of the number of sites to avoid the fish extinction case.

2. The fishery mathematical model with price variation

The model examined in this manuscript consists of three equations with three main variables. Let
n(t) be the fish densities of the resource, E(t) the harvesting efforts, and p(t) the price per unit of fish
in the market. The following system can be described as follows on the fast time scale τ = t

ε
, where

ε ≪ 1:


























dn

dτ
= ε

[

rn
(

1− n

k

)

− qnE
]

,

dE

dτ
= εE(−c+ qnp),

dp

dτ
= α(D(p) − qnE).

(1)

Here, r denotes the inherent growth rate of the stock n, k represents the carrying capacities, and q

signifies the catchability coefficients of the fleet which is assumed constant, and α is a positive constant.
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Fig. 1. The graph of nonlinear demand function
for a = b = 1.

We consider a nonlinear demand function D(p) =
1
p
(a − b

p
) where a, and b are positive parameters. In

our studies, the demand function grows fast at the
start, before decreasing later, Figure 1. Such a func-
tion is already described by Clark in [4]. Even if
the price is high there exists a demand. This situa-
tion can be explained by storing a large part of the
catch at the beginning, which increases demand and
therefore the price before decreasing later, which is
normal, i.e. when the price becomes very high the de-
mand decrease. We believe that our function could
show an illustration of the actual case of the “Oc-
topus” in Morocco as reported by [13–16]. Some re-
sellers store a large portion of the octopus catch. This
practice, known as “hoarding”, involves purchasing a

large quantity of octopus and holding onto it, rather than immediately selling it to the market. When
resellers hoard octopus, it creates a shortage in the supply available to the market. As a result, the de-
mand for octopus increases while the supply decreases, leading to an increase in price. This is because
when the supply is low, the sellers can charge more for the product.
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3. Aggregated model

Considering D(p) = 1
p
(a− b

p
) where a, b > 0. The price in the second equation of Problem (1) which

is described by the fishing effort is substituted with the nontrivial equilibrium values that provide a
solution of

dp

dτ
= α

[

1

p

(

a− b

p

)

− qnE

]

= 0.

This equation possesses two positive equilibria, denoted as P+
1 and P+

2 . These equilibria are determined
by the following expressions,

P+
1 =

a−
√

a2 − 4qEnb

2qEn

and

P+
2 =

a+
√

a2 − 4qEnb

2qEn
. (2)

The stability analysis of the fast equilibrium has shown that P+
1 is unstable and P+

2 is stable
(Figures 2a and 2b).
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Fig. 2. Representation of two cases. In (a), there exist two positive equilibria P+

1 and P+

2 , p∗ → P+

2 . The
price decreases to zero and becomes negative in (b), so we assume that p∗ → 0.

Upon replacing the rapid and steady equilibrium of the price (2) into the complete system (1), we
obtain the following aggregated model:



















dn

dt
= n

[

r
(

1− n

k

)

− qE
]

,

dE

dt
= E

(

−c+
a+

√

a2 − 4qEnb

2E

)

.

(3)

4. Aggregated model analysis

We can see two main cases.
Case 1. If E > a

2c .
The n-nullclines can be described by the equations: n = 0 and E = r

q
(1− n

k
). On the other hand,

the E-nullclines are represented by: E = ac−qnb
c2

. It is easy to see that two different cases are possible,
according to the relative position on the axes of the endpoints of the isoclines (Figure 3).
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Fig. 3. Isoclines-zeros of the spatial fishery model.

In Figure 3, we have equilibrium at the
coordinates: (0, a

c
) and an interior equilib-

rium point (n∗, E∗) which are solutions of










E(n) =
r

q

(

1− n

k

)

,

E(n) =
ac− qnb

c2
,

where

n∗ = kc
cr − qa

c2r − q2kb
, E∗ = r

ac− qkb

c2r − q2bk
>

a

2c
.

The equilibrium (n∗, E∗) is positive if r
q
> a

c
and ac

qb
> k or if r

q
< a

c
and ac

qb
< k.

Case 2. If E < a
2c .

The n-nullclines can be defined as follows: n = 0 and E = r
q
(1− n

k
). In contrast, the E-nullclines

can be expressed as E = 0. In this case, we have two equilibria at the coordinates: (0, 0) and (k, 0).

Equilibria and local stability analysis. The Jacobian matrix of system (3) is expressed as

Jac(n,E) =

(

r − 2rn
k

− qE −qn

− bqE√
a2−4qEnb

−c− qnb√
a2−4qEnb

)

. (4)

The stability of equilibria for system (3) is determined by:
• Stability of the extinction equilibrium. At (0, 0), we get two eigenvalues given by r and −c.
Consequently, this equilibrium point is inherently unstable.
• Stability of the fishing free equilibrium (FFE). At (k, 0) the Jacobian matrix of (3) can be
expressed as follows:

Jac(k,0) =

( −r −qk

0 −c− qkb
a

)

.

The eigenvalues associated with the given matrix are: λ1 = −r < 0 and λ2 = −c − qbk
a

< 0, so (k, 0)
is always a stable equilibrium.
• Stability of the fish extinction equilibrium (FEE). At (0, a

c
) the Jacobian matrix of (3) reads:

Jac(0, a
c
) =

(

r − qa
c

0

− qb
c

−c

)

.

The eigenvalues of the matrix can be identified as follows: λ1 = r − qa
c

and λ2 = −c < 0. Hence,

— If r
q
> a

c
, FEE is a saddle equilibrium.

— If r
q
< a

c
, FEE is locally asymptotically stable.

• Stability of the interior equilibrium. At (n∗, E∗) the Jacobian matrix of (3) reads:

Jac(n∗,E∗) =

(

− rn∗

k
−qn∗

− bqE∗√
a2−4qE∗n∗b

−c− bqn∗√
a2−4qE∗n∗b

)

. (5)

The trace and determinant of (5), calculated at (n∗, E∗), are determined as follows:

tr Jac(n∗,E∗) = −rn∗

k
− c− bqn∗

√

a2 − 4qE∗n∗b
< 0, det Jac(n∗,E∗) =

rn∗bq

k(2E∗c− a)

[

ac

qb
− k

]

.

— If r
q
> a

c
and ac

qb
> k, the interior equilibrium is positive and locally asymptotically stable.

— If r
q
< a

c
and ac

qb
< k, the interior equilibrium is positive and is a saddle point.

5. Numerical simulations

Figures 4 and 5 illustrate the case where E > a
2c , we can see that two primary cases can arise. Figure 4

shows the case of fish extinction, which means that a positive and sustainable fishery equilibrium is
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absent, leaving only the stable FEE. Regardless of the initial conditions, the trajectories converge
rapidly towards FEE, resulting in a significant depletion of the fish stock over time until it eventually
disappears. At the point of depletion of the fish, the harvest effort does not converge to zero, but rather
towards the value of a

c
. As the trajectory nears a state of balance, the price progressively increases.

Although the fishermen’s catch diminishes, the escalating unit price of the catch encourages them to
sustain high fishing activities until the species reaches the brink of depletion. This represents the
most undesirable situation that a fishery can encounter. In Figure 5, we can notice that the system is
maintained at a sustainable equilibrium, effectively preventing the occurrence of Fish Extinction. Both
the fish biomass and the harvesting effort will converge towards strictly positive values. This scenario
presents the most favorable outcome, as it enables a sustainable fishery with a sufficiently large fish
stock to prevent species extinction, even in the face of environmental disruptions. The constant fishing
effort ensures the long-term sustainability of the fishing activity.
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Fig. 4. Phase plan for the fish extinction equilibrium
(FEE). The parameters are a = 1, b = 1, r = 1.1,

k = 3, q = 2.2, c = 1.

Fig. 5. Phase plan for the stable durable fishery equi-
librium. The parameters are a = 1, b = 1, r = 3,

k = 1.5, q = 0.01, c = 1.
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Fig. 6. Phase plan for FFE. The parameters are c =
1.7, q = 1.5, a = 0.1, b = 0.2, r = 1, k = 1.2.

Fig. 7. Illustration of the case of FFE. The param-
eters are c = 1.7, q = 1.5, a = 0.1, b = 0.2, r = 1,

k = 1.2, n(0) = 6, E(0) = 3.

Figures 6 and 7 illustrate the case where E < a
2c . They represent the variation in time of the fish

biomass and harvesting effort, which corresponds to a stable Fishing Free Equilibrium (FFE). The
harvesting activities tend to zero, and the fish stock arises its carrying capacity.
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6. Introduction of a control parameter

As evidenced in the previous section, when E > a
2c the dynamics of the system can yield either a stable

equilibrium or a stable state of fish extinction, depending on certain parameter values. To avoid such a
scenario, it is advisable to minimize significant fluctuations in the overall fish stock and fishing effort.
Therefore, it would be beneficial to incorporate a control parameter into the model. This parameter,
referred to as “u”, is a real constant that must satisfy the condition: 0 < u < 1.

A viable approach a coastal state can adopt to manage its fishery involves regulating the technical
capabilities of fishing vessels. This can be achieved by imposing restrictions on the fishing techniques
employed or by limiting the overall catch of fishing fleets. When the technical capacities of the vessels
are reduced, their ability to catch fish is diminished. To account for this, we introduce a catchability
term, denoted “u”, which remains constant across the entire fishing fleet. To implement this, we
multiply the catch terms nE by the parameter u in all equations of the system (1), resulting in the
following system:



























dn

dτ
= ε

[

rn
(

1− n

k

)

− unE
]

,

dE

dτ
= εE(−c+ unp),

dp

dτ
= α(D(p) − unE).

In this case, the aggregated system is as follows:


















dn

dt
= n

[

r
(

1− n

k

)

− uE
]

,

dE

dt
= E

(

−c+
a+

√
a2 − 4uEnb

2E

)

.

When E > a
2c the Jacobian matrix of (n,E) becomes:

Jac(n,E) =

(

r − 2rn
k

− uE −un

− ubE√
a2−4uEnb

−c− unb√
a2−4uEnb

)

.

The eigenvalues at (0, a
c
) are λ1 = r − ua

c
and λ2 = −c < 0. FEE (0, a

c
) is a stable equilibrium if

and only if c < ua
r

, that is, if the cost per unit of fishing is low, then an abundance of fishing vessels
can converge on a given fishing location and cause the fish population to be overexploited to the point
of extinction.

In order to have c > ua
r

, in simpler terms, when the government raises taxes on boat owners, the
harvesting rate decreases, which can lead to an unstable equilibrium, (0, a

c
). It is necessary to ensure

that the control parameter remains below a threshold value:

0 < u <
rc

a
= H1. (6)

Therefore, in cases where H1 exceeds 1, the equilibrium point (0, a
c
) remains inherently unstable

without any form of control. Conversely, when H1 < 1, it becomes necessary to regulate the system
by setting the parameter u as described in Equation (6). When the condition (6) is established, all
the trajectories will converge to the sustainable interior equilibrium which is l.a.s., but to assure the
positivity of the interior equilibrium we must add another condition to our control u described by the
following expression:

0 < u <
ac

bk
= H2. (7)

That means that when conditions (6) and (7) are satisfied, we avoid the fish extinction equilibrium
and we converge to sustainable and durable fisheries.

In Figure 9, we incorporate a control parameter that satisfies conditions (6) and (7), into the sys-
tem at a certain time t in order to sustain the equilibrium and prevent Fish Extinction (see Figure 8).
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Fig. 8. Dynamics of the aggregated model in a sce-
nario where there is no control of a stable Fish Ex-
tinction. The parameters are c = 0.6, k = 6, r = 1.5,

n(0) = 3, E(0) = 5.

Fig. 9. Dynamics of the aggregated model in a sce-
nario where a control is added after a time t = 4.
The parameters are c = 3, u = 0.5, k = 6, r = 1.5,

n(0) = 3, E(0) = 5.

As a result, we can observe that the stock is gradually recovering and is approaching a sustainable
equilibrium. This highlights the importance of implementing effective measures to maintain a sustain-
able equilibrium and prevent the depletion of our natural resources. Also, it is crucial to look for the
number of sites that allows us to avoid a Fish Extinction case.

7. Effect of numbers of FADs on the catch to avoid the fish extinction case

7.1. Complete model

We define fishing sites as a sequential arrangement of a network of L artificial sites (F), represented by
Fish Aggregating Devices (FADs); Fish migrating across the sites (F) and no fishing in the free zone
(free stock), as reported in [9,10,12]. This section is dedicated to construct a model that manages fish
densities and fishing efforts within this system and to find the number of sites that allows avoiding the
Fish Extinction case (see Figure 10).

Fig. 10. Scheme of the defined system.

Consider ni(t) and ns(t) as the fish biomass
on site i and in the no-fishing zone at time t,
respectively. We denote the harvesting effort
by Ei(t), for all sites i ranging from 1 to L,
at time t. The fish population in both the no-
fishing area and all other sites is assumed to
follow logistic growth. The growth rates of fish
are denoted in the non-fishing zone by rs and in
the sites by r1.

We denote the total carrying capacity of fish in the system by K. Additionally, we consider that
a fixed proportion 0 < γ < 1 of fish in no-fishing stock, while the rest of the part is related to the
sites. The carrying capacity in the no-fishing stock represented by ks and in all sites represented by ki,
where i ranges from 1 to L with ks = γK and

∑L
i=1 ki = (1− γ)K. The movements of fish and boats

follow a rapid time scale, denoted τ , while a slower time scale is represented by t = ετ to account for
fish growth and fishery dynamics with ε ≪ 1.

The fish show migratory behavior between each site and the no-fishing area, while the boats navigate
between adjacent sites. It is logical to consider that the rate of boat movement between sites is
influenced by the distance separating them. Thus, we suggest employing symmetrical movement rates
for boats, where βi+1,i = βi,i+1 is true for all values of i within the range of {1, . . . , L− 1}.
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In our assumption, the rates of fish movement are assumed to vary inversely with the initial carrying
capacity. The movement rates between the no-fishing stock and site i, as well as from site i to the
no-fishing stock, are denoted by mis and msi, respectively. We introduce the positive constant m0 with

mis =
m0

ks
for i ∈ {1, . . . , L}, msi =

m0

ki
.

We assume that the market price changes rapidly over time. This price is influenced by both the
demand function, denoted as D(p), and the supply. That is

dp

dτ
= α

(

D(p)− q

L
∑

i=1

niEi

)

.

The complete model reads






















































dns

dτ
=

L
∑

i=1

msini −
L
∑

i=1

misns + εrsns

(

1− ns

ks

)

,

dni

dτ
= misns −msini + ε

[

rini

(

1− ni

ki

)

− qniEi

]

, ∀i = 1, . . . , L,

dEi

dτ
= βi,i−1Ei−1 + βi,i+1Ei+1 − (βi−1,i + βi+1,i)Ei + ε(−c+ qnip)Ei, ∀i = 1, . . . , L,

dp

dτ
= α

(

D(p)− q

L
∑

i=1

niEi

)

.

(8)

7.2. Aggregated model

As in the second section, we get a reduced model by assuming that ε = 0 in (8). The global fish density
of a species n(t) =

∑L
i=1 ni(t)+ns(t) and the global fishing effort E(t) =

∑L
i=1Ei(t) are constant at a

fast time scale. It is evident that there is a distinct, positive and stable fast equilibrium for both fish
biomass and harvesting efforts. That is,

n∗
s =

ks

K
n = γn, (9)

n∗
i =

ki

K
n, (10)

L
∑

i=1

n∗
i = (1− γ)n, (11)

E∗
i =

1

L
E. (12)

We consider D(p) = 1
p
(a − b

p
) where a and b are positive constants. The price reaches a state of

fast equilibrium, which can be expressed as

P+
2 =

a+
√

a2 − 4QEnb

2qEn
, (13)

where Q = q
(1−γ)

L
is the total catchability parameter. We substitute the fast equilibrium for the

price (13), fish (9, 10, 11), and boat movement (12) into the complete model (8) and by adding the
equations for L+ 1 fishes and L boats, we obtain the aggregated model:



















dn

dt
= n

[

r
(

1− n

k

)

−QE
]

,

dE

dt
= E

(

−c+
a+

√

a2 − 4QEnb

2E

)

,

(14)

where r = γrs + (1− γ)r1 and Q = q(1−γ)
L

.
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This presented system is the same as the previous system presented in the last section. When
E > a

2c the system has a fish extinction equilibrium (0, a
c
) which is unstable, and all trajectories tend

to a positive interior equilibrium when the following inequalities are valid,

L >
aq(1− γ)

cr
= L1 (15)

and

L >
kbq(1− γ)

ac
= L2. (16)

Equations (15) and (16) predict that when the number of FADs exceeds a specific threshold value
max{L1, L2}, the system changes from the Fish Extinction state to the sustainable state.

We can see that if we choose a number of FADs smaller than L1 we get a stable Fish extinction
case, at this state, the fish density tends to zero (see Figure 11). Compared to when the number of
FADs is greater than max{L1, L2}, which always keeps the Fish Extinction case unstable, then the
interior equilibrium is always stable. That means that the equilibrium (0, a

c
) is inherently unstable

when L > max{L1, L2}, and when L < L1 we get a fish extinction state (see Figure 12).
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Fig. 11. Dynamics of the aggregated model where
L < L1, case of a stable Fish Extinction. The pa-
rameters are c = 1.2, L = 2, K = 6, γ = 0.5, r = 2,

q = 10, a = 1, b = 1, n(0) = 3, E(0) = 5.

Fig. 12. Dynamics of the aggregated model where
L > max{L1, L2}, case of a unstable Fish Extinction.
The parameters are c = 1.2, L = 6, K = 6, γ = 0.5,

r = 2, q = 1.2, a = 1, b = 1, n(0) = 3, E(0) = 5.

8. Conclusion and perspectives

In this work, the model presented includes an interesting economic aspect of fisheries, which is based
on the price variation that depends on demand and supply with a nonlinear demand function that
grows fast at the beginning, before decreasing afterward. Furthermore, the price follows a fast time
scale, while the growth of fish biomass and variation of fishing activities follow a slow one. Under this
assumption, the aggregation method allowed us to obtain a reduced model.

The analysis of the aggregated model demonstrates the existence of two crucial cases; a stable
interior equilibrium point which is represented by sustainable fisheries or a stable Fish Extinction
Equilibrium. In this last state, all trajectories converge towards an alternative stable state, which can
be interpreted as FEE, we can call it a “catastrophic equilibrium”. In fact, even if the fish stock becomes
near extinction, the harvesting fleet persists in exploiting the resources until their complete depletion,
justified by the rarity of the species that lead to high price, and the revenue remains good, as stated by
the price uptrend. To avoid FEE, we added a control parameter to make FEE unstable. A multi-site
model was used to determine the number of sites that stabilize the fish density at a sustainable state
and to avoid fish extinction.
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As perspectives, we would like to look for the maximum sustainable yield (MSY) for our system as
mentioned in [12]. Calculating the MSY of a fishery stock is an important aspect of fishery management
because it helps determine the level of fishing that can be sustained over the long term without causing
the stock to decline. MSY is the highest yield that can be taken from a stock without reducing its
ability to produce future yields [12].

There exists presently a case of fish extinction, and introducing a control parameter to preserve a
sustainable balance in the system is needed; it will be interesting to look for the effect of the surface
size on the marine protected area (MPA) to stabilize the Fish Extinction case. The size of a marine
protected area (MPA) can have a significant effect on its ability to stabilize a fishery that is experiencing
overexploitation. Larger MPAs have a greater capacity to support and protect fish populations, as well
as the habitats and ecosystems on which they depend.
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Вплив нелiнiйної функцiї попиту на динамiку рибного промислу
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У цiй роботi подано та проаналiзовано модель рибальства зi змiною цiни. Враховано
еволюцiю бiомаси риби з часом та зусилля для вилову, тодi як цiна риби залежить вiд
попиту та пропозицiї. Припускається, що змiна цiни вiдбувається в швидкому часово-
му масштабi, а еволюцiя запасiв i зусиль вiдбувається у повiльно часовому масштабi.
Враховуючи рiзнi часовi масштаби, модель зведена до 2D моделi. Проаналiзовано
отриману модель, i залежно вiд значення параметра може виникнути два основних
випадки: випадок виключення риби та стiйкий рибний промисел. Щоб уникнути ви-
мирання риби, введено керуючий параметр i вивчено вплив кiлькостi мiсць на вилов,
що дозволяє уникнути небажаного випадку.

Ключовi слова: модель риболовства; агрегування змiнних; рiзна цiна; стабiль-
нiсть; рiвновага; параметр керування; пристрої для збору риби.
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