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In this paper, the derivation of hyper-singular integral equations (HSIEs) for thermoelec-
tric bonded materials (TEBM) featuring a crack parallel to interface subject to in-plane

shear stress ;) was intensively studied. Generally, stress intensity factors (SIFs) were cal-

culated using HSIEs with the help of modified complex stress variable function (MCSVF),
and continuity conditions of the resultant electric force and displacement electric function.
The unknown crack opening displacement (COD) function, electric current density, and
energy flux load are mapped into the square root singularity function using the curved
length coordinate method as the right-hand term. This unknown function is then used
to compute the dimensionless SIFs in order to determine the stability behavior of TEBM
featuring a crack parallel to interface subject to in-plane shear stress 7. Numerical re-
sults of the dimensionless SIFs at all the crack tips are presented. Our results are totally
in good agreement with those of the previous works. It is observed that the dimensionless
SIFs at the crack tips depend on the elastic constants ratio, the crack geometries, the
electric conductivity, and the thermal expansion coeflicients.

Keywords: thermoelectric; bonded materials; single crack; hyper-singular integral equa-
tions; stress intensity factors.
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1. Introduction

Thermoelectric bonded materials (TEBM) featuring a crack have become an intriguing area of research
due to their potential implications on the performance and reliability of thermoelectric devices. TEBM,
which can convert heat into electrical energy and vice versa, has gained considerable attention as an
eco-friendly and energy-efficient solution for waste heat recovery and power generation. However, the
presence of cracks in these materials can significantly influence their mechanical and thermoelectric
behavior, leading to reduced efficiency and increased susceptibility to failure. A considerable number
of researchers have been motivated to explore the mechanical and thermoelectric behavior of TEBM,
with a specific focus on challenges such as interface cracks, curve cracks, or slanted cracks.
Examining an interface crack subjected to a remote electric current within TEBM, Song et al. [1]
employed complex stress variable functions (CSVF) to analyze the thermal stress intensity factors
(SIFs) at the crack tips. Their findings demonstrated that the presence of the electric current could
lead to varying effects on the thermal SIFs. Depending on the specific parameters characterizing the

This work was supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant
Scheme (FRGS/1/2021/STG06/UTEM/03/2). The authors also gladly appreciate the support from University Teknikal
Malaysia Melaka.
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bonded materials, the electric current could either amplify or diminish the thermal SIFs. As high-
lighted by Jiang and Zhou [2], the SIFs in the context of dual collinear interface cracks within TEBM,
under combined electric and thermal loads, experience alterations due to several factors: crack length,
crack spacing, and the ratio of bi-elastic constants. These researchers approached the problem by
employing Laplace equations and considering the driving influences originating from electric current
density and energy flux. These driving forces have implications for the electric potential and tempera-
ture distributions within the material. Using the CSVF method, Cui et al. [3] investigated the fatigue
crack propagation behavior in a temperature-dependent TEBM connected to an elastic substrate un-
der cyclic thermal loading. Their findings underscore that the interface between the thermoelectric
layer and the substrate is the preferential location for crack propagation. Examining the scenario of
an interfacial crack within imperfectly bonded TEBM containing an elliptical inclusion, Du et al. [4]
employed conformal mapping and complex function methods. The material was subjected to uniform
heat flux and energy flux conditions extending to infinity. Their findings revealed that the inclusion’s
presence led to a decrease in the conversion efficiency of the TEBM. Jiang and Zhou [5] conducted
an investigation into how dual collinear interface cracks affect the electric potential and temperature
distribution in a TEBM system. This system was subjected to both electric and thermal loads. To
analyze this, they employed Laplace equations alongside the driving forces arising from electric current
density and energy flux. Through numerical simulations, they revealed the significant influence of
parameters such as crack length, crack spacing, and layer thickness ratio on the SIFs of electric current
density and energy flux around the crack tip. These effects remained pronounced under the conditions
of constant electric and thermal loads. In their study, Nourazar et al. [6] utilized the Fourier transform
method with an unknown density to address the mixed-mode problem involving a curved crack within
a piezoelectric bonded materials. The crack was subjected to a general in-plane thermal load. Their
analysis revealed that the dimensionless SIFs were significantly influenced by factors such as the crack’s
length, radius, and the distance from the temperature disturbance.

Hyper-singular integral equations (HSIEs) have found extensive application in various physics and
engineering fields, notably in tackling crack-related challenges within fracture mechanics [7-10]. This
method stands out due to its numerous advantages over other commonly employed crack analysis
techniques. It offers enhanced efficiency, a more accurate depiction of crack tip behavior, adaptability
for different crack configurations, and the direct extraction of crack opening displacement (COD)
function from the equation’s solution. However, alongside these benefits, HSIEs come with certain
limitations. Their formulation and solution can be more intricate compared to simpler approaches
like the boundary element method. Moreover, addressing crack tip singularities and ensuring precise
integration techniques are required to obtain accurate solutions. Despite these considerations, HSIEs
remain an invaluable tool in crack analysis, significantly advancing the understanding and prediction
of crack behavior across various engineering applications. To the authors’ best knowledge, there is
limited available information concerning the application of HSIEs to formulate crack-related problems
within TEBM exposed to remote stress. To address this gap, the present study introduces a novel
approach by employing the modified CSVF (MCSVF) method to transform the problem into HSIEs.
This transformation is facilitated by adhering to continuity conditions governing the resultant electric
force and electric displacement function, as well as temperature and resultant heat flux, across the
TEBM. Consequently, this study offers a pioneering investigation into the dimensionless SIFs at the
tip of a crack parallel to an interface situated in the upper part of the TEBM, all while being subjected

1 oo
to in-plane shear stress 7, = 7.

2. Mathematical formulation

Consider a crack parallel to interface lie in the upper part of TEBM subject to in-plane shear stress

[ee)

Tgy = T as shown in Figure 1. Note that, G is shear modulus, x; is thermal conductivity, A; is electric

conductivity, J is electric current density vector for ¢ = 1 and ¢ = 2 represent upper and lower parts of
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....................

TEBM, respectively, L; is bonded materials in-

— terface and 2a is the length of the crack. Ac-
Toy =T T cording to Todoroki [11], the equation governing
2a electric current is given by
t to
y P —— 0 J = -A\Vi(z), (1)
U= f(z)+ f(z) + N1, (2)
i Gy, k1, A1, J :
——— — where ¢ is electric CSVF represent by f(z) and
P b its conjugate, N1 is real constant and z = x +1y.
The conditions for strain components e for up-
per (subscript 1) and lower ((subscript 2) parts
of TEBM is
1,7'5; =T ] Eriyr = Exayo- (3)
SOSTe Those strains can be defined by Young’s modu-
"""""""""" ) lus of elasticity F and stress components 7 as
Fig.1. A crack parallel to interface lie in the upper 1
. . ~ +U1 L+uv o
part of TEBM subject to in-plane shear stress 7. Expyn = E—Tmyl’ Exoys = E—Tx2y27 (4)
‘ 1 2

where F; = 2G;(1 4+ v;) and @ = 1,2. For in-plane stress, we have 7,
condition in Eq. (3), then Eq. (4) is reduced to

1+v; 1+ vy
E1 Tﬂ?fyl = Eg Tgyz' (5)

= Tug,y, = T and applying

In accordance with the study by Song et al. [1], the stress components (0, 0y, 04y ), resultant electric
force (X,Y), and displacement electric functions (u,v) resulting from the thermoelectric function can
be ascertained using the subsequent expressions

02+ 0y = 2000 (2) + T + 2 ()T (0

7y 0 + 2oy = 22 (2) + 4 ()] + Dot () FC2) @
~Y +iX = ¢(2) + 2¢/(2) + ¥(z) + %‘:F(z)m (8)
1%Mv:§ﬂKM@—&ﬂ§—E@ﬂ+a/Q@Mz—%%F@ﬁG1 (9)

where K = (3 — u)/(1 + p), p is Poisson’s ratio, « is the coefficient of thermal expansion, (z) =
—(NE)f(2)% + (2/K)g(2), F(z) = [ f(2)dz, and ¢(2), 1(z), and g(z) are CSVF. The derivative of
Eq. (8) with respect to z yields the normal (N) and tangential (7") components as follows

d o ; dz , — ; Ea\ — ———dz\ _ ,

Y 4iX) = ST+ L T TR + o (FT G + FETEI S ) = N4+, (10)

where dz/dz = —e2" and @ is the tangential angle along the segment z,z + dz.

In the context of research by Nik Long and Eshkuvatov [12] as well as Song et al. [1], the CSVF
and the non-established analytic functions governing the electric and thermal fields in the context of
a crack within an infinite material can be represented as follows

¢(z)=% Lgt(t_)it, (11)
1 [fgdt 1 dt tdt

v =5 [H0D L [ (7 - ), (12)

fle) = V2 (13)

F(z) = %(zv 22—a? —a’In(z+ V22 —a?)), (14)
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g(z) = g\/ 22— a?, (15)
2 i
Qz) = 4{\ (22 —a®) + TU 22 —a?, (16)
where g(t) is the COD function defined as
010) = sy [0 + ) = () +iv() ] (€ L), a7)

(u(t) 4+ iv(t))* and (u(t) 4 iv(t))~ denote the displacements at a point ¢ of the upper and lower crack
faces, respectively.

According to Chen and Hasebe [13], and proven by Hamzah et al. [14], the MCSVF for the crack
lies in the upper part of TEBM are defined as

$1(2) = d1p(2) + d1c(2),  U1(2) = P1p(2) + Y1e(2), (18)
where ¢1,(z) and v1,(z) are the principal part of the CSVF and the elementary solution for isotropic
medium (infinite materials), whereas ¢;.(z) and ¥1.(z) are the complement part of the CSVF. The
CSVFs for the crack lies in the lower part of TEBM represented by ¢2(z) and v2(z). The continuity
condition of Egs. (8) and (9), and applying (18) give

)|

— |t + (HO + RO + 522 RORD] (9

Elal)\l

0108+ 1(0) + 40,0+ T8+ 0,0 + 910 + i (Fipl0) i) + Fale) ol

Go |:K1¢1p(t) + Kigie(t) — (8¢, (t) + ip(t)) — (). (8) + P1c(t))

.
+ 261 ( [0t + [ ute)dr) - EE (5 (0T 0 + Fiot) 7))

=G {ng(t) —th(t) — Pa(t) + 2Gaag | Qo(t)dt — Mﬂ(t) fg—(t):| - (20)

Since the temperature and resultant heat flux are continuous across the crack bonded materials
interface and apply MCSVF yields

[F1p(t) + fret )+f1p( )+ fie®)] " = [fo(0) + F(D)] (21)
M[fip(®) + fre(t) = Fip() — fre®)] T = Xa[fo(t) — Fa(8)] - (22)
By applying analytical continuation to Eqs. ( ) d (22), the following expressions are obtainable
A1 —
fie(z) = N +)\ 2 Tip(2), z€S1+ Ly, (23)
21
fa(z) = S flp( ), z€Sy+ Ly. (24)
Similar to thermal CSVF yields
K1 —HRa___
c(2) = —— ; Ly, 2
91c(2) o H2glp(z) z €S+ Ly (25)
. 2/@1
g92(z) = P I@glp(z), z € So+ Ly. (26)

By applying analytical continuation to Eqgs. (19) and (20), and substituted with Egs. (23), (24), (25)
and (26) the following expressions are obtainable

1c(2) = T1(2 91, (2) + V1p(2)) + T2F1p(2) fip(2) + T3 /f_lzzQ(z) dz =Ty /E(Z) dz, (27)

010() = Daiplz) = 261,(2) + TaFipe) fple) + Tr [ Tipla)ds + T [ T (20~ T [ gipta)
(28)
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$2(2) = T10¢1p(2) + T11F1p(2) fip(2) + T12F1p(2) fip(2) + 7 / Qip(2)dz +T's / fip(2) dz

— Fg/glp(z) dZ, (29)
Po(2) = T13(2 91, (2) + ¥1p(2)) = 2 95(2) + T1aFip(2) fip(2) + Tis /flzp(z) dz —The /glp(Z) dz, (30)

where ¢1,(z) = ¢1,(2), and I'; are bi-elastic constants ratio defined as

GGy _(2G2 — D Eiarh (M- A2 C2GiGaar M (A — A2\’
1= G1+G2K1’ 2= 4/@1(G1—|—G2K1) <)\1+)\2> ’ N /ﬁ(G1+G2/€1) (/\1+/\2> ’

r, - 4G1 G0 </—£1 — /{2) _ GoK, — G1 Ky

k1(G1 + Gak1) \ K1 + K2 G1Ks+ Gy
Iy = <E2a2/\2(2G1G2+G1K2)> ( 21 >2 I = 2G1Gaay

4Gk (G1 Ky + Go) M+A) (G1Ky+ G9)’

r. _ _ 2G1Gaaz)s < 21 )2 _ 8G1Gaask ro_ K+ 1)Go

ko(G1 Ko 4+ G2) \ A1 + Ao ’ o ko (K1 —l—ﬁg)(GlKQ +G2)7 10 G1Ks + Gy’
- BErasXa(2G) — 1) < 2\ )2 Y GyEraiM (1 — 2Gy) Y Gy(1 + K1)

4%2(G1K2 + Gg) A+ Ao ’ 4G1H1(G1K2 + Gg) ’ G+ G K4 ’
Ty — (Kl + 2G1)G2E1a1)\1 <)\1 — )\2)2 s — 2G1Goag A\ <)\1 — )\2)2

4G1/€1(G1 + GzKl) A1+ Ao ’ /ﬂ(Gl + GzKl) A1+ Ao ’

F16 _ 4G1G2a1 <I<L1 — I<L2>

k1(G1 + G2 K1) \ K1 + Ko

In order to formulate the HSIEs for a crack parallel to interface lie in the upper part of TEBM,
we need to define two traction components which are [N (t9) + i1 (t9)]1p, and [N (to) + iT'(to)]1c for the
principle and complementary parts, respectively. These traction components are obtained when the
observation point is placed at the point, ¢y (to € L), caused by COD function g(t) at ¢t € L, substituting
Egs. (27) and (28) into Eq. (1 ) and applying Egs. (11)-(16) which gives

[N(to) +4T'(to)], = lj[ t—to 27T/M1 (t,to)g dt+—/M2 (t,t0)g(t)dt + Mz(a,to), (31)

where

1 1 did 1 2(fg — %) 1 1 \df
Mi(t,to) = — _— SO0,y _ _ _ __|=
1t to) G-t  G=f)Pdid 1[(:5 o2 =t T \T—weE T =)@

+<2(2t0—3fo+f) 6(50—7?)(2?0—t0)_<( 1 +2(t‘o—to)>dt‘ 1 >dt_0]

(t—1t)3  (t—tp)t t—10)2 | (t—1t0)® Jdt (t—1t9)? ) dio
1 diy
R
1 dt 1 2(tg —t) dt dig 1 1
My(t, tg) = ———— 2 ) 24| = -
2(t,to) (t—t0)2dt+<( )2+(t— )3dt>dt0+ 1[(t—t0)2+(t—t0)2

to
o o)t (T - o))
Ms(a,ty) = I‘24J—/\2% (t% —a’+ 2;70_a2 <t0 t2 —a2—a’In <t0—|— \/ 13 —a2)>>
+ <F2—|—(I‘ F2)3z0> % <f(2)—a2—|— # <t0\/f%—a2 —a2ln(fo—|— \/%—az)>>
+F24J—/\2%(t0—t0) <3t0+ <to ig—az—a2ln (EO—F\/I% a >> ;0—750—&))> Ziz
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J? 2 2 32 72 y 2 dz@
+F34—A% 2a —to—t0+(3t0—2t0t0—a )d_to
U 2%2—{0150—&2 dt_()
r, Y \/t2— 2_\/52_2 2bo — toto — a7 Ao
+ 14 5 ( 0—a o—a°+ T—az dt

I'; I's J? - 9 I'; I'g\ . \/7 dt_()

L R I _Do),p /e— 2| de

+ |:<l<61 )\1) 4)\1( 0 “ )+ K1 2 ! 0 @ dt()

J2
+(F17+F18)4—/\%[\/t(2)—a2\/f%—a2

to dto
tor/t3 — a% — a®1 (t N 2) —_——
—l—<o 0—a a”In (tg + 0—a 5 Zg—a2dt0

El()él/\l El()él/\l K1 — R2 2
7= I'ig =
4Gk K1 + Ko
Note that the first integral with the equal sign in Eq. (31) represents the hypersingular integral and
must be defined as a finite part integral. In order to solve this HSIEs, the curved length coordinate
method and quadrature formulas introduced by [15-18] is used.

and

3. Numerical results and discussion

In order to investigate the behavior of non-dimensional SIFs for crack problems in thermoelectric
bonded materials subjected to remote stress, we define the SIFs at the crack tip A; as follows

Ky, = (K —iK2)a, = \/QWtEE VIE—talgi(t), j=1,2, (32)
J

where ¢/ (t1) is defined as follows
/ _ —siHa(s1) —igy, rroy
gl(t1)|t1:t1(81) - 7 5 € 7, Hl(sl) - 0 (33)
ap — s

Table 1. Dimensionless SIFs for a crack parallel to the interface of TEBM as illustrated in Figure 1

d/2a

SIFs | M 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 | 0.0864 | 0.0661 | 0.0519 | 0.0402 | 0.0309 | 0.0238 | 0.0186 | 0.0149 | 0.0123
r 15 | 0.0886 | 0.0663 | 0.0521 | 0.0405 | 0.0313 | 0.0243 | 0.0193 | 0.0157 | 0.0132
141190 | 0.0888 | 0.0665 | 0.0524 | 0.0409 | 0.0317 | 0.0248 | 0.0199 | 0.0165 | 0.0142
25 | 0.0888 | 0.0665 | 0.0524 | 0.0409 | 0.0317 | 0.0248 | 0.0199 | 0.0165 | 0.0142
10 | 1.0977 | 1.0515 | 1.0376 | 1.0307 | 1.0262 | 1.0226 | 1.0196 | 1.0171 | 1.0150
o 15 | 1.0872 | 1.0516 | 1.0377 | 1.0309 | 1.0264 | 1.0229 | 1.0200 | 1.0175 | 1.0155
2411 90 | 1.0867 | 1.0517 | 1.0379 | 1.0311 | 1.0266 | 1.0232 | 1.0203 | 1.0179 | 1.0159
25 | 1.0867 | 1.0517 | 1.0379 | 1.0311 | 1.0266 | 1.0232 | 1.0203 | 1.0179 | 1.0159
10 | -0.0856 | -0.0653 | -0.0509 | -0.0389 | -0.0293 | -0.0218 | -0.0161 | -0.0118 | -0.0085
r 15 | -0.0876 | -0.0651 | -0.0506 | -0.0386 | -0.0289 | -0.0213 | -0.0154 | -0.011 | -0.0076
142190 | -0.0874 | -0.0649 | -0.0504 | -0.0383 | -0.0285 | -0.0208 | -0.0148 | -0.0102 | -0.0066
25 | -0.0874 | -0.0649 | -0.0504 | -0.0383 | -0.0285 | -0.0208 | -0.0148 | -0.0102 | -0.0066
10 | 1.0976 | 1.0512 | 1.0370 | 1.0300 | 1.0252 | 1.0215 | 1.0183 | 1.0156 | 1.0133
o 15 | 1.0870 | 1.0511 | 1.0369 | 1.0298 | 1.0250 | 1.0212 | 1.0180 | 1.0152 | 1.0129
242 | 90 | 1.0864 | 1.0510 | 1.0368 | 1.0296 | 1.0248 | 1.0209 | 1.0177 | 1.0149 | 1.0125
25| 1.0864 | 1.0510 | 1.0368 | 1.0296 | 1.0248 | 1.0209 | 1.0177 | 1.0149 | 1.0125

Table 1 displays convergence test results on the Mode I (F}) and Mode II (F») dimensionless SIFs
at the crack tips A; and As for a crack parallel to the interface lie in the upper part of TEBM subject
to in-plane shear stress 7.7 for G2/G1 =0.5, J =10, U = 0, and d/2a varies as illustrated in Figure 1.
The level of accuracy in the numerical outcomes relies on how finely we subdivide the cracks, denoted
by the parameter M. To gauge the convergence of the results, we incrementally increase the value
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of M, commencing from M = 10 and progressing sequentially through M = 15 and M = 20. Our
progression concludes at M = 25 when the dimensionless values of SIFs align with those obtained from
the previous M values, as elaborated in Table 1. Notably, it is evident that employing smaller M
values generates convergent numerical results.

Table 2. Dimensionless SIFs for a crack parallel to the interface of TEBM compared with Isida and Noguchi [19].
d/2a

SIEs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fia* 0.0881 | 0.0657 | 0.0514 | 0.0396 | 0.0301 | 0.0228 | 0.0174 | 0.0133 | 0.0104
Fia,** | 0.0880 | 0.0660 | 0.0520 | 0.0400 | 0.0300 | 0.0230 | 0.0170 | 0.0130 | 0.0100
Fya* 1.0865 | 1.0514 | 1.0373 | 1.0303 | 1.0257 | 1.0220 | 1.0190 | 1.0164 | 1.0142
Foy, * | 1.0860 | 1.0510 | 1.0370 | 1.0300 | 1.0260 | 1.0220 | 1.0190 | 1.0160 | 1.0140
Fip,* -0.0881 | -0.0657 | -0.0514 | -0.0396 | -0.0301 | -0.0228 | -0.0174 | -0.0133 | -0.0104
Fra,* 1.0865 | 1.0514 | 1.0373 | 1.0303 | 1.0257 | 1.0220 | 1.0190 | 1.0164 | 1.0142
*Current study, **Isida and Noguchi [19].

On the other hand, Table 2 provides a display of the dimensionless SIFs in cases where Go/Gp =
0.5, J = U = 0, M = 25, and the parameter d/2a is subject to variation. Our computational
findings exhibit complete concurrence with the results documented by Isida and Noguchi [19]. An
interesting observation is that the F} value at crack tip A; mirrors the negative value of F} at crack
tip As. Conversely, the Fy value at crack tip A; perfectly matches the F, value at crack tip As. This
phenomenon is attributed to the equivalence in stress distribution at the respective crack tips.

0.2 J =20 (Black), J = 30 (Red) J =20 (Black), J = 30 (Red)
1.15
i
hid @
@ =
= s
S 2
p2] (7]
c
£
g 3 =TT - 0o
£ 2 _zZ- - G2/Gy = 0.25
el - - -
g g 0.95 /;5 /:,/ --------- Ga/Gy =0.5
z
=z o0 -z > é //’,/ - = Gy/Gy =10
e ’::f’//i,/ —Gy/G1 =025 0.9 /4 e Gy)G1 =20
r 7 Go/Gy =05 427 . _
0.08 ;’ s Gy/Gy = 4.0
R —= Ga/Gi =10 0gs 7
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Fig. 2. Dimensionless SIFs at the crack tips A; and Ay for J = 20 (black) and J = 30 (red).

Figure 2 displays the F7 and F5 dimensionless SIFs at the crack tips A; and A, for a crack parallel
to the interface lie in the upper part of TEBM subject to in-plane shear stress 7, for J = 20 (black),
J =30 (red), U = 0, and d/2a varies. It is found that F; for J = 30 (red) at crack tips A; and A
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is higher than F; for J = 20 (black). As G3/G1 increases F; decreases at all cracks tips. However F,
increases at tip A; and decreases at tip As. Whereas as d/2a increases F; decreases at crack tips A;
and Ay for Go/G1 < 1.0, and increases for Go/G71 > 1.0. These numerical results provide evidence
that as J increases, the materials exhibit a decrease in strength, whereas an increase in Go/G1 leads
to greater stability.

4. Conclusions

In this study, we have addressed the presence of a crack parallel to an interface located in the upper
part of TEBM and subjected to in-plane shear stress 7.y. Although the problem itself has a long
history, our research introduces several novel elements. Notably, the MCSVF technique utilized in this
work is a traditional approach for solving crack-related challenges in bonded materials. However, its
application to crack problems within the realm of TEBM represents a fresh perspective. Our approach
leads to the formulation of HSIEs, wherein the core unknowns involve the COD function, electric
current density, and energy flux load between the crack tips. Through our examination of benchmark
problems, our numerical results showcase accelerated convergence, and our analyses align closely with
outcomes from previous investigations. Building upon this study, we envision numerous avenues for
extension. These possibilities encompass the incorporation of cohesive models, exploration of cracks
at interfaces of bonded materials, analysis of cracks originating from inclusions, and the investigation
of three-dimensional crack problems within the context of TEBM. Ongoing research endeavors are
actively expanding the scope of application for this newly developed conceptual framework.

[1] Song K., Song H. P., Schiavone P., Gao C. F. Electric current induced thermal stress around a bi-material
interface crack. Engineering Fracture Mechanics. 208, 1-12 (2019).

[2] Jiang D., Zhou Y.-T. Role of crack length, crack spacing and layer thickness ratio in the electric potential
and temperature of thermoelectric bi-materials systems. Engineering Fracture Mechanics. 259, 108170
(2022).

[3] CuiY.J., Wang K. F., Zheng L., Wang B. L., Zhang C. W. Theoretical model of fatigue crack growth of a
thermoelectric pn-junction bonded to an elastic substrate. Mechanics of Materials. 151, 103623 (2020).

[4] DuX.-K., Zhang Y.-L., Ding S.-H. Exact solutions of interfacial cracking problem of elliptic inclusion in
thermoelectric material. In E3S Web of Conferences. 261, 02089 (2021).

[5] Jiang D., Zhou Y.-T. Role of crack length, crack spacing and layer thickness ratio in the electric potential
and temperature of thermoelectric bi-materials systems. Engineering Fracture Mechanics. 259, 108170
(2022).

[6] Nourazar M., Yang W., Chen Z. Fracture analysis of a curved crack in a piezoelectric plane under general
thermal loading. Engineering Fracture Mechanics. 284, 109208 (2023).

[7] Dutta B., Banerjea S. Solution of a hypersingular integral equation in two disjoint intervals. Applied
Mathematics Letters. 22 (8), 1281-1285 (2009).

[8] Hamzah K. B., Nik Long N. M. A., Senu N., Eshkuvatov Z. K. Stress intensity factor for bonded dissimilar
materials weakened by multiple cracks. Applied Mathematical Modelling. 77 (1), 585-601 (2020).

[9] Hamzah K. B., Nik Long N. M. A., Senu N., Eshkuvatov Z. K. Numerical solution for crack phenomenon
in dissimilar materials under various mechanical loadings. Symmetry. 13 (2), 235 (2021).

[10] Elahi M. R., Mahmoudi Y., Salimi Shamloo A., Jahangiri Rad M. A novel collocation method for numerical
solution of hypersingular integral equation with singular right-hand function. Advances in Mathematical
Physics. 2023, 5845263 (2023).

[11] Todoroki A. Electric current analysis of CFRP using perfect fluid potential flow. Transactions of the Japan
Society for Aeronautical and Space Sciences. 55 (3), 183-190 (2012).

[12] Nik Long N. M. A., Eshkuvatov Z. K. Hypersingular integral equation for multiple curved cracks problem
in plane elasticity. International Journal of Solids and Structures. 46 (13), 2611-2617 (2009).

[13] Chen Y. Z., Hasebe N. Stress-intensity factors for curved circular crack in bonded dissimilar materials.
Theoretical and Applied Fracture Mechanics. 17 (3), 189-196 (1992).

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1230-1238 (2023)



1238

Mohd Nordin M. H. I., Hamzah K. B., Khashiie N. S., Waini |., Zainal N. A., Sayed Nordin S. K.

[14]

[15]

[16]

[17]
[18]

[19]

Hamzah K. B., Nik Long N. M. A.; Senu N., Eshkuvatov Z. K., Ilias M. R. Stress intensity factors for a
crack in bonded dissimilar materials subjected to various stresses. Universal Journal of Mechanical Engi-
neering. 7 (4), 172-182 (2019).

Mayrhofer K., Fischer F. D. Derivation of a new analytical solution for a general two-dimensional finite-

part integral applicable in fracture mechanics. International Journal for Numerical Method in Engineering.
33 (5), 1027-1047 (1992).

Monegato G. Numerical evaluation of hypersingular integrals. Journal of Computational and Applied
Mathematics. 50 (1-3), 9-31 (1994).

Mason T. C., Handscomb D. C. Chebyshev Polynomials. Chapman and Hall/CR. (2003).

Kythe P. K., Schaferkotter M. R. Handbook of Computational Methods for Integration. Chapman and
Hall/CRC (2004).

Isida M., Noguchi H. Arbitrary array of cracks in bonded half planes subjected to various loadings. Engi-
neering Fracture Mechanics. 46 (3), 365-380 (1993).

BI/lBe,D,EHHFI I'Il'lepCl/lHl'yJ'ISIpHVlX |HTerpaanmx pIBHFIHb AanA
TEPMOENEKTPUYHHNX 3B's13aHNX MaTeplaJ'IlB i3 TpILLI,I/IHOI'O
napanejibHoO Mexi I'IO,D,I}'Iy

Mox Hopumin M. X. I}, Xamza K. B.23, Xamiie H.C.?3, Baiini .23, Baitnan H. A.23,
Caen Hopuin C. K.23

L @axyavmem Kedorcypymepaar Ilembyaman, Texniunuti ynisepcumem Manatizii, Meaaxa,
Xane Tyax Lorcan, 76100 Hypian Tyweean, Menaxa, Manatizia
2 Texnonozivnuti darysvmem Kedocypymepaan Mexanixan i ITembyaman,

Texnivnut ynisepcumem Manatizii, Meaaxa,

Xane Tyax Lorcan, 76100 Hypian Tyweean, Menaxa, Manatizia

3 Jlocaidnuybka 2pyna npoeno3yeana ma anaisy IHOICEHEPHUT METHON02IT (FETA),

Texniwnud ynieepcumem Manatiszii, Meaaxa, Xane Tyax [owcas,

76100 Jlypian Tynezan, Menaxa, Manratizia

Y 1iit cTaTTi IHTEHCUBHO JOCJIIXKYETHCSI BUBEJIEHHS TIIEPCUHTYJIAPHUX IHTErPAJIHHAX PiB-
uganb (HSIE) miug repmoenekrpuunnx nos’asanux marepianis (TEBM), mo maors Tpi-
IUHY, [apaJIebHy MeXKi PO3ALLY, IO HiAJAEThC HALPYZKEHHIO 3CYBY B IUIOIIMHI 77 .
Sk npasuio, koediniearn inTencusHOCTI Hanpyxkenus (SIF) pospaxosysasucs 3a gomo-
mororo HSIE 3a monmomororo moandikoBanoi MyHKINT 3MIHHOT KOMILIEKCHOTO HAIIPYKEH-

g (MCSVF) it ymMOB HemepepBHOCTI PE3YJILTYIOUOI €JIEKTPUIHOI CHIM TA €JIEKTPUIHOL
byukuii 3amimenns. Hesimoma dbynkiis 3mimenns Biakpurrsa Tpimmuau (COD), rycruna
€JIEKTPUIHOTO CTPYMY Ta HABAHTAXKEHHSI TIOTOKY eHepTil BioOparkaroThes y (DyHKIIT CHH-
IYJISIPHOCTI KBaJPATHOIO KOPEHs 3 BUKOPUCTAHHSIM METOJly KOODJMHAT KPUBOI JIOBXKUHU
K mpaBoro wieHa. s HeBimoma yHKIIiS TOTIM BUKOPUCTOBYETHCS JIJIsI OOIUCIEHHT O€3-
poamipaux SIF, mo6 BusnaunTn noseainky crifikocti TEBM i3 Tpimuaoro, napasesbHO0
MeXKi IOALLY, 0 NIJJAETHCs HAIPY?KEHHIO 3CyBYy B 1wiomuni 7). Haseneno aucesnsHi pe-
gysbraru 6e3po3mipaux SIF y Bcix Beprmmaax Tpimuma. OTpuMaHi pe3yibTaTU MTOBHICTIO
Y3TOKYIOThCs 3 pe3ysibTaTaMu HolepeaHix pobit. Criocrepiraersbes, mo 6e3po3mipui SIF y
BEPIIUHAX TPIIUH 3aJI€2KATh BiJI CIIIBBIIHOIIEHHS TIPY2KHUX KOHCTAHT, "€OMETPil TPIIIHH,
€JIEKTPOIIPOBITHOCTI Ta KOEMIIIEHTIB TEIIOBOTO PO3MIUPEHHS.

Knw4osi cnoBa: mepmoeasekmpurnutl; CKpinieri Mamepiaiu; noodunoka mpiuuna; 2i-
NEPCUHYAAPHT THMEZPANOHT PIBHAHHA; KOEPIUIEHMU THMEHCUBHOCTIVE HANPYHCEHOCTN.
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