
COMPUTERIZED AUTOMATIC SYSTEMS 

PROTOCOLS COMPARISON FOR REAL-TIME DATA STREAMING 

FROM IOT DEVICES TO A CLOUD-BASED SOLUTION 

Anton Shykhmat, Ph. D. Student, 

Lviv Polytechnic National University, Ukraine; e-mail: anton.o.shykhmat@lpnu.ua 

Zenoviy Veres, Ph. D., Assistant, 

Lviv Polytechnic National University, Ukraine, e-mail: zenovii.y.veres@lpnu.ua 

https://doi.org/10.23939/istcmtm2023.04.044 

Abstract. The proper detection and prevention of malfunctions are crucial in mitigating maintenance costs and equipment 

replacements for agricultural vehicles, ultimately reducing the expenses associated with crop cultivation. Predictive analytics for 

agriculture vehicles leverage machine learning and sensor data to anticipate equipment faults, optimize maintenance schedules, and 

enhance operational efficiency in the farming industry. It heavily relies on real-time data transmission to continuously monitor 

equipment performance, enabling timely identification of potential issues and preemptive maintenance actions to prevent costly 

breakdowns and downtime. This paper employs a qualitative analysis approach utilizing the Architecture Tradeoff Analysis Met- 

hod to evaluate and select an optimal data protocol from a set of candidates, including SOAP, HTTP, REST, CoAP, WebSocket, 

XMPP, MQTT, and AMQP. The analysis considers sensitivity points, tradeoff factors, risks, and quality attribute scenarios rele- 

vant to the usage scenarios. The findings indicate that MQTT is the preferred protocol for real-time data streaming in resource- 

constrained environments, contingent upon a reliable connection. 

Key words: IoT; Data transmission protocols; HTTP; MQTT. 
 

1. Introduction 

Ukraine takes an important place in the food 

provision on world markets, and its agricultural sector 

plays a significant role in the formation of foreign 

exchange earnings. In particular, in January – September 

2020, 22.2 billion dollars were secured due to the 

agriculture sector, which accounted for 45.1 % of the 

country's total merchandise exports. According to the 

State Statistics Service, more than 309,000 workers will 

be employed in agriculture in 2021. The large-scale 

aggression of the Russian Federation has significantly 

worsened working conditions and reduced the possibility 

of exporting agricultural products in many ways, which 

negatively affects the financial indicators of farm 

holdings. In addition, it is necessary to address the 

problem of the loss of agricultural machinery as a result 

of hostilities or its abduction by the Russian military. 

Thus, according to the press service of the Ministry of 

Agrarian Policy and Food of Ukraine, “As of June 8, 

2022, farmers from seven war-affected regions of Ukraine 

lost 2,281 units of agricultural machinery. These are 

farmers from Kyiv Oblast, Sumy Oblast, Chernihiv 

Oblast, Luhansk Oblast, Donetsk Oblast, Kherson Oblast, 

and Mykolaiv Oblast”. Thus, agriculture in Ukraine, in 

addition to the existing major problems with an outdated 

technical and technological base and an inc- rease in the 

cost of growing crops [1], has also problems with a 

decrease in the amount of working capital, the possibility 

of attracting credit and the destruction of equipment. It 

should be noted that the wear and tear of technological 

equipment reaches 70–80 %, and this increases the risk of 

malfunctioning of the equipment as 

a whole or its parts. Many studies have found that repair 

and maintenance costs depend on differences in machi- 

nery performance, availability of spare parts, operator 

skills, crop and weather conditions, maintenance poli- 

cies, and other factors. However, in all studies, there is a 

pattern that as the age of the equipment increases, the 

costs of repair and maintenance increase [2]. 

Frequent malfunctions require more capital 

investment and time to solve them. As a consequence, the 

cost of growing crops is increasing which affects the final 

prices for the consumer. According to a study by the 

Global Network Against Food Crises, rising prices are 

leading to hunger in many regions of the world. At the 

moment, almost 30 million people suffer from hunger 

precisely because of the increased cost of products [3]. 

Timely detection and prevention of malfunctions 

are the key approaches to reduce maintenance costs, and 

update and replace equipment, which will reduce the cost 

of growing crops. 

 

2. Drawbacks 

The most crucial aspect of agriculture vehicles is 

timely repair and maintenance. Agriculture vehicles are 

manufactured in such a way that they can withstand 

thousands of hours of service. However, these indicators 

can be achieved only under the condition of systematic 

maintenance of the equipment. Farmers can cut machi- 

nery repair costs by 25 percent by improving routine 

maintenance procedures, according to a study of produc- 

tion machinery maintenance, costs, and simulation. One 

of the easiest ways to prevent breakdowns in rolling 

mailto:anton.o.shykhmat@lpnu.ua
mailto:zenovii.y.veres@lpnu.ua


Measuring equipment and metrology. Vol. 84, No. 4, 2023 45 
 

 

stock is to forecast repair and maintenance costs based on 

historical data. This approach is based on the average 

accumulated costs for repair and maintenance of 

equipment, the age of the equipment, and the number of 

hours per year spent on repair and maintenance [4]. 

Another solution is the prevention of malfunctions with 

the help of self-diagnosis of the engine based on the 

analysis of the following data: engine revolutions, engine 

load, airflow, coolant temperature, pressure in the intake 

manifold, intake camshaft position, exhaust camshaft 

position, and fuel supply angle. A neural network-based 

solution, trained using the emulation of engine operation 

and potential malfunctions is used for such purposes [5]. 

The main disadvantages of such an approach are the small 

number of predicted failures and dependency on 

artificially generated data for model training instead of 

real historical data due to the complexity of its col- 

lection. The Internet of Things (IoT) technology provi- 

des an ability to solve this problem by building a digital 

platform that allows farmers to: 

1. Store telemetry from agricultural machinery 

concerning geographical location and natural conditions. 

2. Analyze the received data, detect malfuncti- 

ons that have already occurred, as well as predict poten- 

tial malfunctions, and receive notifications about them. 

3. Plan the costs of maintenance, renewal, and 

replacement of agricultural machinery, which will reduce 

the cost of growing crops. 

The development of this platform heavily relies on 

the presence of real data ingested by agriculture vehicles 

that unlock the abilities: 

1) to track the geographic position of agricul- 

tural machinery by the device; 

2) to transmit processed data by the device in 

real-time to the cloud application for further analysis; 

3) to perform the analysis of ingested data to 

detect malfunctions that have already occurred; 

4) to create a model for predicting potential 

malfunctions and notifying farmers about them. 

Properly selected data transmission protocol for 

telemetry data delivery from agricultural vehicles is 

critical as it addresses a set of Quality Attributes such as 

efficient data communication, optimal resource utiliza- 

tion, and compatibility among a diverse array of 

interconnected devices, ultimately impacting the system’s 

reliability, security, and overall performance. 

3. Goal 

The goal of this paper is to offer a comprehensive 

survey of message exchange protocols utilized in the 

Internet Of Things domain and select an optimal protocol 

for real-time data transmission scenarios through a 

qualitative analysis that leverages the Architecture 

Tradeoff Analysis Method. 

4. High-level vision of the digital platform 

architecture 

The typical architectural view of the digital 

platform contains six main components, where the first 

one is located in the vehicle and others are deployed into 

the cloud platform: 

1. An IoT device, connected to the CAN bus of 

the agriculture vehicle intercepts all signals, processes 

them, tracks the geographic position of the tractor at the 

current moment ties the signals to this position, and sends 

geospatial and telemetry data to the cloud application. 

2. The data-receiving component in the cloud 

application receives geospatial and telemetry data and 

saves it. 

3. Data analysis component in the cloud appli- 

cation that analyzes the stored data and identifies agri- 

culture vehicle malfunctions that have already occurred. 

4. Fault prediction component in the cloud appli- 

cation, that generates a fault utilizing machine learning 

models for different parts of equipment. 

5. A database in a cloud application that stores 

the data received from the device and the results of their 

analysis. 

6. A separate database in a cloud application that 

stores archived data older than 1 year, usually in raw data 

formats like parquet files or Data Lakes. 

Utilizing this approach to system separation allows 

to address availability, reliability, data integrity, exten- 

sibility, and scalability non-functional requirements. The 

intended structure of the system is shown in Fig. 1. 

In case real-time data streaming from machi- 

nery/equipment to an offsite location (e. g., cloud), is 

required to monitor important parameters 24×7 or pre- 

dictively detects vehicle malfunctioning issues, the data 

transmission process becomes crucial: the choice of an 

appropriate data transmission protocol significantly influ- 

ences the efficiency, reliability, and overall performance 

of the system. 

The next section compares the data transmission 

protocols and provides the recommended protocol that 

satisfies the non-functional requirements and the high- 

level vision of the digital platform architecture. 

 

5. Data-transfer protocols analysis and 

selection 

SOAP (Simple Object Access Protocol) is a pro- 

tocol to exchange structured messages in distributed 

computing systems. The development of the protocol 

specification began in 1998, and only in 2003 it received 

the status of recommended to use by the World Wide Web 

Consortium (W3C) [6]. SOAP uses XML to de- scribe 

messages and extends some application-layer pro- tocols 

such as HTTP, FTM, and SMTP. Due to this, the 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 46 
 

 

protocol allows communication between several systems 

developed using different programming languages [7]. 

SOAP supports 2 styles of interaction between the client 

and the service: 

1. RPC (Remote Procedure Call) – the body of 

the message contains an element with the name of the 

method or operation that the client wants to perform on 

the service. In turn, this element contains values for each 

parameter of the called method/operation. Only the 

request-response approach is supported. 

2. Document – the message body contains one or 

more child elements called parts. Supports both syn- 

chronous (“request-response”) approach and asynch- 

ronous (deferred response to a request) 

 

 
 

Fig. 1. High-level architecture view of the digital platform 
 

SOAP is verbose (which increases the amount of 

traffic between the client and the service) and complex 

from a programming point of view, with slow processing 

speed, but it is versatile and has built-in error handling that 

makes it easier to resolve them and uses an XML 

specification that describes in detail a set of rules for 

encoding messages in a way that is readable by both hu- 

mans and computer applications [8]. 

REST (English – Representational state transfer) is 

an architectural style for building web services based on 

the HTTP protocol [8]. Services supporting this style are 

called RESTful services. Such services do not store the 

state of the client, which makes their use fast, reli- able, 

and scalable. RESTful services, in response to re- quests 

made to a resource URI, most often respond in (but are 

not limited to) HTML, JSON, or XML formats. RESTful 

services most often use 4 HTTP methods [9]: 

1. GET – for reading the resource. 

2. POST – to create a new resource. 

3. PUT – to change an existing resource. 

4. DELETE – to delete an existing resource. 

It should be noted that the GET, PUT, and 

DELETE methods must be idempotent, that is, return the 

same result regardless of how many times the request is 

executed. For example, if the resource exists, the first 

execution of the DELETE request will delete the re- 

source and as a result, it will cease to exist, the second 

and subsequent requests will not delete anything, be- 

cause the resource does not exist, but the result will be the 

same – the lack of existence of the resource. The POST 

method is not identical. The following 2 HTTP methods 

are sometimes used: 

1. HEAD – get the headers returned by the server 

in response to a resource request. 

2. OPTIONS – get a list of methods supported by 

the server for a specific resource. 

The advantages of using REST are its simplicity, 

security, and scalability. However, the disadvantages 

include the impossibility of sending one message to many 

recipients with one request, the increased need for node 

resources, the increased time for sending and proc- essing 

requests (compared to application protocols built on top 

of the UDP transport layer protocol), and the lack of 

automatic resending of a message in the event of a 

processing error of this message on the server, which 

reduces reliability. 

CoAP (Constrained Application Protocol) is a da- 

ta transmission protocol designed for use in devices with 

limited resources and networks with limited bandwidth, as 

they usually have packet loss [10]. The CoAP proto- col 

uses a request-response model for communication in 

networks that suffer from packet loss. It is built on the 

UDP protocol but is not limited to it [10] and provides the 

exchange of messages between  two or  more 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 47 
 

 

nodes [7]. The CoAP protocol is based on the REST 

architecture, but a node can be both a client and a server 

at the same time. In asynchronous messaging, the client 

requests an action on a resource using server-side meth- 

od code. The server responds with a code that may con- 

tain an image of the resource. Request/response seman- 

tics include GET, POST, PUT, and DELETE methods [8]. 

In addition, the protocol adds a new method - Ob- serve. 

This method is used to implement the subscription 

concept built into the protocol. This is a regular GET 

request with the observe option, which tells the server that 

the client wants to receive information about each 

resource update [10]. Responses have HTTP-like status 

codes in the format 2. xx (successful requests), 4. xx 

(client errors), 5. xx (server errors). The CoAP protocol 

supports 4 types of messages [11]: 

1. CON (Confirmable) – a message for reliable 

transmission. The sender is waiting for confirmation of 

receipt of the message by the recipient. If no confirmation 

is received, the message is resent after a certain period. 

2. NON (Non-Confirmable) – a message for 

unreliable transmission when the sender does not want to 

receive confirmation of receiving the message. 

3. ACK (Acknowledgement) – confirmation of 

receipt of the message by the recipient. 

4. RST (Reset) – confirms receipt of the 

message, but indicates that the message does not contain 

information necessary for its successful processing. 

Since the CoAP protocol is similar to the HTTP 

protocol (the main difference in the transport protocols on 

which they are built is UDP versus TCP), it can work with 

HTTP using proxy components [10]: 

1. CoAP-HTTP proxy allows access to HTTP 

server resources for CoAP clients. Since CoAP methods 

are equivalent to HTTP methods, the construction of 

HTTP, TCP, and TLS (optional) can be done easily. 

2. HTTP-CoAP proxy allows access to CoAP 

server resources for HTTP clients. To send an HTTP 

request to the proxy component, the client must specify 

the absolute path to the resource including the scheme 

(coap/coaps) when calling the method. Once the 

component proxy has received the message, it requests the 

specified CoAP resource. All HTTP methods from the 

RFC 2616 specification, except for OPTIONS, TRACE, 

and CONNECT, can be converted to CoAP. 

Thus, the CoAP protocol has advantages in its re- 

duced need for client resources, security using DTLS, 

support for synchronous and asynchronous communica- 

tion, and fast message transfer. Disadvantages include 

lower reliability of data transmission (compared to ap- 

plication protocols built on the TCP transport layer pro- 

tocol), the inability to send one message to many recipi- 

ents (for this, you need to send a separate message to 

each recipient), and problems with communication with 

NAT devices. 

WebSocket is a protocol that provides reliable full-

duplex channels using a single TCP connection. 

WebSocket supports the HTTP protocol, which allows the 

use of HTTP proxies, which are usually present when 

organizing Internet access through firewalls [12]. Web 

servers and clients, such as browsers, can transfer data in 

real time between them. Once a connection is estab- 

lished, servers can send content to clients without requir- 

ing the clients to request it first. Messages are exchanged 

over the established connection, which remains open, in a 

standardized format. WebSocket support is present in 

almost all modern browsers, but the server must also have 

WebSocket support for messaging [7]. 

The WebSocket protocol supports 5 types of mes- 

sages: 

1. Upgrade – a message sent by the client to the 

server to open a communication channel. 

2. Accept – a message sent by the server to the 

client upon successful opening of the communication 

channel. 

3. Message – messages exchanged between the 

client and the server for data transfer. 

4. Close – a message sent by the server to the 

client to close the communication channel. 

5. Close Response – a message sent by the client 

to the server in response to closing the communication 

channel. 

The advantages of the WebSocket protocol are the 

fast message transmission since it is not necessary to open 

a connection between the client and the server eve- ry 

time, the reduced volume of traffic, and the security using 

TLS. The main disadvantages of WebSocket in- clude the 

requirement for a stable TCP connection and the lack of 

automatic restoration of a lost connection, which reduces 

the reliability of this protocol, increased requirements for 

node resources, problems with scaling and load 

distribution, and is critical for use in agricul- tural 

machinery. 

XMPP (eXtensible Messaging and Presence Pro- 

tocol) is designed for instant messaging, contract sup- 

port, and network presence communication. Allows the 

exchange of structured and extensible data in XML for- 

mat between two network nodes in near real-time mode 

[7]. In the context of IoT, this protocol allows the ex- 

change of messages between sensors, devices, and appli- 

cations. XMPP assigns a unique address, also called a 

JabberID (JID), to each network element. The JID for- 

mat is similar to the email format and contains a host- 

name, a domain name, and a resource [7]. In this case, the 

name of the node and the resource are not manda- tory. 

The protocol supports a client-server architecture, which 

imposes certain restrictions – clients cannot com- 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 48 
 

 

municate with each other directly, but only through the 

XMPP server. When a client starts working with an 

XMPP server, it opens a long-lived TCP connection and 

starts an XML stream to the server. When the server 

accepts the client, it also starts an XML stream to the 

client. As a result, there are 2 XML streams – one from 

the client to the server, and the other from the server to the 

client. XMPP supports 3 types of messages: 

1. PRESENCE – is used to exchange informa- 

tion about the presence between network nodes. 

2. MESSAGE – used for communication 

between two network nodes. 

3. IQ – is used to exchange information between 

the XMPP server and the client. 

The main advantages of the XMPP protocol are its 

simple addressing, scalability, and security since the 

protocol uses TLS and SASL for connections, but it has 

its disadvantages, in the form of slower transmission and 

data processing due to increased traffic volume, due to 

their is a textual data transfer in XML format and the TCP 

transport protocol is used, and the reliability is re- duced 

because there is no confirmation of message proc- essing. 

MQTT (Message Queue Telemetry Transport) is a 

simple and lightweight protocol of the “publisher- 

subscriber” model, designed specifically for exchanging 

messages between devices with limited resources and 

networks with limited bandwidth. The protocol provides 

message distribution using a one-to-many model and is 

independent of their content. MQTT works reliably and 

flawlessly in networks with high latency and limited 

bandwidth without requiring significant resources and 

device power [7]. The paradigm of the protocol is for 

many clients to connect to a server called a broker. Clients 

can have the role of a publisher (sending mes- sages to the 

broker) and subscriber (receiving messages from the 

broker). Subscribers and publishers do not know about 

each other, which makes it possible to achieve weak 

connectivity between applications interact- ing via the 

MQTT protocol. The advantage of this loose coupling is 

that the MQTT broker guarantees buffering and caching 

in case of network problems, which also means that 

publishers and subscribers do not have to be on the 

network at the same time to exchange information [8]. 

Using MQTT, clients can subscribe to all data or specific 

data from a publisher’s information tree. MQTT supports 

14 message types [8] and 3 message delivery 

guarantee types [7]: 

1. A message can be delivered at most once. 

2. The message will be delivered at least once. 

3. The message will be delivered exactly once. 

Each party to a message exchange determines the 

type of message delivery guarantee it wants to use. Usu- 

ally, these types are the same for the publisher and the 

subscriber, but there are situations when clients use dif- 

ferent types. The MQTT protocol has a special version 

optimized for embedded wireless devices that do not 

support the TCP/IP protocol, called MQTT-SN. The 

optimization principle of this version is to use a shor- 

tened header name, which is formed by converting the 

tape into a two-byte alias. In addition, MQTT-SN allows 

devices to enter sleep mode when their work is not nee- 

ded and receive any information that is waiting for them 

when they wake up. Therefore, the MQTT protocol has 

advantages in its scalability, architecture that provides 

loose coupling between clients, reliability, because it 

guarantees different types of message delivery, and secu- 

rity using SSL/TLS. Disadvantages include slower sen- 

ding of messages (compared to application protocols built 

on top of the UDP transport layer protocol). 

AMQP (Advanced Message Queuing Protocol) is 

an open middleware standard for providing messaging at 

the application level [13]. The protocol is built on the TCP 

transport protocol and supports 2 types of interac- tion – 

“request-response” and “publisher-subscriber”. As with 

MQTT, the AMQP server acts as a broker. 

AMQP uses the following components to route 

messages: 

1. Exchanges are components that publishers 

use to send messages. 

2. Queues – components from which subscri- 

bers receive messages. 

3. Bindings – components that send messages 

from the exchanger to a specific queue. 

Exchangers and queues can be permanent or tem- 

porary. Long-lived exchangers and queues survive bro- 

ker restarts, while temporary ones do not (they must be 

recreated after the broker is started). Exchanges do not 

store messages. Messages are stored in queues until they 

are picked up by the client. AMQP uses TLS and SASL 

for security. In addition, AMQP supports transactions 

(including distributed ones), but this in turn increases the 

volume of the message and the time for its transmission 

and processing. Like MQTT, the AMQP protocol has 

advantages in scalability and an architecture that pro- 

vides loose coupling between clients. 

Data transfer protocols SOAP, HTTP, REST, 

CoAP, WebSocket, XMPP, MQTT, and AMQP are 

evaluated based on qualitative analysis from the Archi- 

tecture Tradeoff Analysis Method. Each protocol’s sen- 

sitivity points, tradeoff points, risks, and applicability to 

the quality attribute scenarios were analyzed. The com- 

parative characteristics of the considered data transfer 

protocols are described in Table 1, and their advantages 

and disadvantages are collected in Table 2. 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 49 
 

 

Table 1 
 

Protocol 
Transport 
protocol 

Communication 
model 

Exchange template Security Correspondence 

SOAP TCP sync and async request-response, 
request 

WS-Security, 
TLS 

one-to-one 

HTTP/REST TCP sync request-response TLS one-to-one 

CoAP UDP sync request-response DTLS one-to-one 

WebSocket TCP async request TLS one-to-one 

XMPP TCP async request SASL, TLS one-to-one 

MQTT TCP async publish-subscribe TLS one-to-many 

AMQP TCP sync and async request-response, 
publish-subscribe 

TLS one-to-one, one-to- 
many 

 

Table 2 
 

Protocol Pros Cons 

SOAP – high level of security; 

– high reliability 

– the development complexity; 

– high data transmission latency; 

– high data processing latency; 

– impossible to send one message to many recipients 

with one request; 
– high resource consumption; 

– not applicable or limited applicability for the networks 
with limited bandwidth 

HTTP/REST – ease of development; 

– possibility to cache answers; 

– the average latency for data transmission; 

– the average latency for data processing 

– impossible to send one message to many recipients 

with one request; 

– low reliability due to the lack of automatic message 

resend in the event of an error processing this message 

on the server; 
– not applicable or limited applicability for the networks 

with limited bandwidth 

CoAP – ease of development; 

– low data transmission latency; 

– low data processing latency; 

– low resource consumption; 
– applicable in networks with limited bandwidth 

– limited reliability resulting from UDP utilization; 

– communication issues between NAT components; 

– impossible to send one message to many recipients 

with one request 

WebSocket – duplex communication; 

– low data transmission latency; 

– low data processing latency; 

– applicable in networks with limited bandwidth 

– the complexity of development; 

– not supported by all clients; 

– low reliability due to the lack of automatic connection 

restoration in case the connection is lost; 

– impossible to send one message to many recipients 

with one request; 
– high resource consumption 

XMPP – the ability to track information about the pres- 

ence of a node in the network; 
– the average latency for data transmission; 

– the average latency for data processing 

– low reliability due to lack of confirmation of message 

processing; 

– if the XMPP server does not work, the ability to exchange 

messages becomes impossible; 

– impossible to send one message to many recipients with 

one request; 
– high resource consumption; 
– not applicable for the networks with limited bandwidth 

MQTT – low data transmission latency; 

– low data processing latency; 

– low resource consumption; 

– possibility to send one message to many recipi- 

ents with one request; 
– high reliability; 
– applicable in networks with limited bandwidth 

– the complexity of development; 

– in the event of a failure of the broker, the message 

exchange is impossible 

AMQP – the average latency for data transmission; 

– the average latency for data processing; 

– low resource consumption; 

– possibility to send one message to many recipi- 

ents with one request; 

– high reliability 

– the complexity of development; 

– in the event of a failure of the broker, the message 

exchange is impossible; 

– not applicable for the networks with limited bandwidth 



Measuring equipment and metrology. Vol. 84, No. 4, 2023 50 
 

 

Table 3 
 

Protocol Typical message exchange scenarios 

SOAP Exchange of messages between business applications that are in the same network 

HTTP/REST Periodic sending of data from IoT devices to applications where the loss of messages is not critical. 

Message exchange between business applications 

CoAP Periodic data consumption from IoT devices by the application in networks with limited bandwidth 

WebSocket Sending data from IoT devices to applications in real-time with minimal delay in networks with limited band- 

width when message loss is not critical 

XMPP Exchange of messages between IoT devices. 

IoT devices’ status monitoring 

MQTT Sending data from IoT devices to applications in real-time with minimal latency over bandwidth-constrained 

networks 

AMQP Bi-directional communication between IoT devices and applications with transactional support 
 

Basic usage scenarios for each protocol are listed 

in Table 3. 

According to the tests performed to deliver 1K 

messages over MQTTS and HTTPS – MQTTS was shown 

20 times faster and required 50 times less traffic on the 

task of posting consistent time-valuable data and is more 

efficient from a power consumption point of view [14] 

Considering the above scenarios and advantages 

such as low latency of data transmission and processing, 

applicability in networks with limited bandwidth, and 

high reliability and scalability that fulfill non-functional 

requirements of a digital platform, the MQTT protocol is 

proposed for real-time transmission of geospatial and 

telemetry data time from IoT devices to cloud applica- 

tion. 

 

6. Conclusions 

The real-time data streaming from machi- 

nery/equipment for monitoring or predictive detection of 

vehicle malfunctioning issues heavily depends on the 

selected data transmission protocol. It significantly 

influences the efficiency, reliability, and overall perfor- 

mance of the system that could not be addressed after the 

system is built and delivered to the customers without 

significant efforts to re-work and re-deliver the solution. 

Qualitative analysis from the Architecture Tradeoff 

Analysis Method was utilized to compare the set of 

transfer protocols SOAP, HTTP, REST, CoAP, 

WebSocket, XMPP, MQTT, AMQP based on their 

sensitivity points, tradeoff points, risks, and applicability 

to the quality attribute scenarios and not limit the selection 

by properties comparison only. Based on the performed 

analysis, the MQTT protocol is chosen for the scenario of 

real-time data transmission in the digital platform since it 

fulfills the high-level vision of the system architecture and 

addresses non-functional requi- rements like efficiency, 

reliability, and overall perfor- mance of the data delivery. 

7. Gratitude 

The authors thank the Editorial Board of the 

Scientific journal “Measuring Equipment and Metrolo- 

gy” for their support. 

 

8. Mutual claims of authors 

The authors have no claims against each other. 

 

References 

[1] Semernia K. V. Suchasni finansovo-ekonomichni prob- 

lemy funktsionuvannia ta rozvytku ahrarnykh pid- 

pryiemstv.Aktualni problemy sotsialno-ekonomichnykh 

system v umovakh transformatsiinoi ekonomiky: Zbirnyk 

naukovykh statei za materialamy IV Vseukrainskoi 

naukovopraktychnoi konferentsii (12–13 kvitnia 2018 r.) 

Chastyna 1. Dnipro: NMetAU, 2018. 367 p. Access mode: 

https://nmetau.edu.ua/file/sbornik_18_1.pdf 

[2] S. A. Al-Suhaibani, M. F. Wahby. Farm tractors break- 

down classification. Journal of the Saudi Society of Agri- 

cultural Sciences. Riyadh: King Saud University, 2017, 

294–298. DOI: 10.1016/j.jssas.2015.09.005 

[3] Global Network Against Food Crises. 2022 Global Report 

on Food Crises [Electronic resource]. FSIN, 2022, 5–

10. Access mode: https://docs.wfp.org/api/documents/ 

WFP-0000138913/download/ 

[4] R. Khodabakhshian. Prediction of repair and maintenance 

costs of farm tractors by using Preventive Maintenance. 

International Journal of Agriculture Sciences. Pune: Bio- 

info Publications, 2011, 39–42. DOI: 10.9735/0975- 

3710.3.1.39-44 

[5] M. Xiao, W. Wang, K. Wang, W. Zhang, H. Zhang. Fault 

Diagnosis of High-Power Tractor Engine Based on Com- 

petitive Multiswarm Cooperative Particle Swarm Opti- 

mizer Algorithm. London: Hindawi, 2020, 1–13. DOI: 

10.1155/2020/8829257 

[6] Y. Lafon, C. Bournez. SOAP 1.2 Pressrelease [Electronic 

resource]. W3C, 2003. Access mode: https:// 

www.w3.org/2003/06/soap12-pressrelease 

[7] S. Misra, A. Mukherjee, A. Roy. Introduction to IoT. – 

Cambridge: Cambridge University Press, 2021, 184–200. 

DOI: 10.1017/9781108913560 

http://www.w3.org/2003/06/soap12-pressrelease


Measuring equipment and metrology. Vol. 84, No. 4, 2023 51 

 

 

 

 

[8] IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things / D. Hanes, G. 

Salgueiro, P. Grossetete, R. Barton, J. Henry. Indianapo- lis, Indiana: Cisco Press, 2017, 177–204. ISBN: 978- 

1587144561. Access mode: https://www.amazon.com/ IoT-Fundamentals-Networking-Technologies-

Protocols/dp/1587144565 

[9] N. M. Shaikh, Y. Ingle. Application of Restful APIs in IOT: A Review. Haryana: iJRASET, 2021, p. 9. DOI: 

10.22214/ijraset.2021.33013 

[10] Alabbas Alhaj, A. Constraint Application Protocol (CoAP) for the IoT. Frankf. Univ. Appl. Sci., 2018, p. 1. DOI: 

10.13140/RG.2.2.33265.17766 

[11] Z. Shelby, K. Hartke, C. Bornamn. The Constrained Ap- plication Protocol (CoAP) [Electronic resource]. IETF, 2014. 

Access mode: https://datatracker.ietf.org/ doc/html/rfc7252 

[12] I. Fette, A. Melnikov. The WebSocket Protocol [Elec- tronic resource]. IETF, 2011. Access mode: 

https://datatracker.ietf.org/doc/html/rfc6455 

[13] S. Vinoski. IEEE Internet Computing, Vol. 10, Iss. 6. Cyprus: University of Cyprus, 2006, 87–89. DOI: 

10.1109/MIC.2006.116 

[14] J. Barnitskyi. HTTP vs MQTT performance tests [Elec- tronic resource]. Flespi, 2018. Access mode: 

https://flespi.com/blog/http-vs-mqtt-performance-tests 

http://www.amazon.com/

