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Motion segmentation in real-world scenes is a fundamental component in computer vi-
sion. There exists a variety of motion recognition algorithms, each with varying degrees
of accuracy and computational complexity. The most widely used techniques, in the case
of static cameras, are those based on frame difference. Those methods have a significant
weakness when it comes to detect slow moving objects. Therefore, we introduce in this
paper a novel approach that aims to improve motion segmentation by proposing an accu-
mulative wavelet based frame differencing technique. Moreover, in the proposed approach
we exploit a combination of several techniques to efficiently enhance the quality of motion
segmentation results. The approach’s performance on real-world video sequences shows
that comparing frames using the 2D wavelet transform increases motion segmentation
quality.
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1. Introduction

Video sequence analysis has become a very active research field in computer vision due to the growing
of its importance in many applications such as surveillance systems, pedestrian detection and obstacle
detection for intelligent cars. One of the most important operations is to separate foreground objects
from background, this can be performed in different ways depending on the nature of the available
data and the captured scenarios, which may present multiple moving or static objects captured from a
moving or static or multiple cameras. When the data are a video sequence split into several consecutive
frames, the detection of moving objects doesn’t require any additional knowledge about the data, and
the separation of the background that is assumed to be static, from foreground that contains the
objects to be detected, is accomplished by frames differentiation. Motion segmentation is often the
first step of a multi-stage computer vision system [1–4] such as car tracking, person recognition or wild-
life monitoring. Background subtraction (BS) is a quick way of localizing moving objects in a video
captured by a static camera. Besides, it can improve the performance of computer vision systems by
deleting the uninteresting sections of the scene, which lowers the probability of having false negatives.

The nature of the approach to use for background subtraction is dictated by the nature of the data.
If the video sequence is taken from a moving camera, the most common used techniques are the ones
based on optical flow [5, 6]. Optical flow is the pattern of apparent motion of gray level intensities
in an image that models objects, surfaces, and edges in a visual scene caused by the relative motion
between a viewer and an object. The motivation behind using optical flow for this case is the fact
that the background pixels have negligible motion as compared to foreground pixels [7]. In the case
where the video sequences are taken from a static camera, the most common approach is to compare
frames pixel-wise. In this contest, some methods use the current frame as reference, while others
use an image of the background taken in the absence of moving objects, or a statistical background
model [8]. The background can be modeled either by a uni-modal Gaussian [9], a Gaussian mixture [10],
a non-parametric kernel density function [11], or simply temporal median filtering [12].
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In this work, the main aim is to segment moving objects in a video sequence taken from a static
camera. Thus, we propose a movement segmentation technique that exploits the wavelet analysis to
separate foreground pixels from background pixels. The classical frame comparison methods compare
the frames in the pixel domain. In the field of image recovery, recent studies [13,14] have demonstrated
the effectiveness of using transform domain, such as wavelet transform, instead of pixel domain in image
recovery. This idea inspired us to propose a wavelet shrinkage based frame differencing technique for
motion segmentation. Besides, to improve the quality of the proposed model, we integrate other
techniques including an adaptive threshold, a specific space of indexes, and the use of a suppression
coefficient in the wavelet transform. Our approach makes the movement segmentation more robust
against slow moving objects. Which is reported via different experiments conducted on real-world
data.

The rest of the paper is organized as follows. In Section 2 we present an overview about several
state of the art motion segmentation techniques including those based on the well-known wavelet
approach. Section 3 is designed to present a mathematical background about the wavelet transform.
Section 4 exposes the proposed motion segmentation technique. Section 5 addresses the experimental
and comparatives results. Finally, we conclude the paper in Section 6.

2. Related works

2.1. Motion segmentation techniques:

Motion segmentation techniques are various, and as we mentioned before it is basically depending on
the nature of the data [8,15–19]. Since we work on video sequences taken from a static camera, a basic
approach is to compare frames with a reference image [8]. However the basic version of the method
is limited when the scene presents lighting variations. To overcome the sensibility to lighting change,
Kim et al. [15] proposed to use a codebook based algorithm to model background. The background
model was created using a clustering technique where the intensities at each background pixel in
every frame were clustered into the set of codewords. The proposed method was robust in handling
moving background and lighting variation. Stauffer and Grimson [16] proposed the Gaussian mixture
model (GMM), where a mixture of K Gaussian functions is used to model every pixel. In their work,
the current frame is compared to the background model using every Gaussian in the mixture until a
matched Gaussian is found. If the match is found the mean and variance of the matched Gaussian
is updated. Elgammal et al. [17] proposed to construct a non-parametric background model using
kernel density estimation. To handle small amounts of motion in the background scene, the method
matches each background pixel with the nearby pixel location of the background model. Azmat et
al. [19] proposed a parallel multi-modal background modeling algorithm which aims to optimize memory
access pattern when working on low power GPUs. This algorithm has less computational and memory
cost but its accuracy is at the same scale as the Gaussian mixture model.

2.2. Wavelet based motion segmentation techniques

Since its first definition in the beginning of the 1980s by French researchers, especially Grossmann and
Morlet [20], the growth of wavelet research in mathematics has been first explosive with significant
contributions from numerous authors. A large number of books exits on wavelets theory [21–23] and
wavelet analysis has rapidly become a widely used tool in several fields including first signal and image
processing, pattern recognition, machine learning, and computer vision. One of its basics properties is
to provide a basis that can express the features of a signal or an image in an effective and easy way.
For example in [24], the authors proposed a modal identification technique based on wavelet analysis
for processing free responses of non-proportionally damped systems, integrated in noise, to directly
obtain complex modes. This explains the emergence of the use of wavelet analysis-based techniques in
various research fields.
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There exist many approaches that use wavelet analysis for motion segmentation [25–29]. Davies
et al. [25] introduced a one dimensional wavelet filter based on Haar wavelet filters [26] to detect
objects that are very small, very slow or located in a low contrast area of the image. The major
limitation of the proposed method was the high computation cost. Khare et al. [27] introduced a
method for segmentation of moving object which is based on double change detection technique applied
on Daubechies complex wavelet coefficients of three consecutive frames in order to solve foreground
aperture and ghosting problems. Al-Berry and Mohammed [28] proposed a technique based on the
idea of accumulative frame difference and used 2D Discrete Wavelet Transform (DWT) to enhance the
accuracy of the segmentation. Jalal et al. [29] proposed a background subtraction approach exploiting
noise resilience capability of wavelet domain combined with local spatial coherence and median filter
in the training stage, and introduced a shadow suppression scheme based on directional coefficients of
Daubechies complex wavelet transform [26].

3. Mathematical background

A mathematical background about the 2D wavelet transform is presented in this section. In our
algorithm, we aim to apply the 2D discrete wavelet transform to an image, which can be done by
applying 1D discrete wavelet transform to each row and then to each column. Following this idea, we
introduce the 1D wavelet transform, and we present the scheme that leads to the 2D generalization.

3.1. 1D continuous wavelet transform

The 1D continuous wavelet transform replaces the 1D continuous Fourier transform’s sinusoidal waves
by a family generated by translations and dilation’s of a window called a mother wavelet. It takes two
arguments: time and scale.

A mother wavelet ψ is usually a function that have a zero-mean oscillation behavior, it oscillates
like a wave but is quickly attenuated. Mathematically, ψ is a function of L2(R) that verifies the
admissibility condition:

∫

+∞

−∞

|ψ̂(x)|2
|x| dx < +∞, (1)

where ψ̂ is the Fourier transform of ψ.
Moreover a mother wavelet ψ could produce families of wavelets:

ψs,τ (t) =
1√
s
ψ

(

t− τ

s

)

, s ∈ R
∗
+, τ ∈ R, (2)

where ψ is the mother wavelet, s is the scale parameter, τ is the shifting parameter or the position of
the scale window, and ψs,τ is the scaled and shifted wavelet.

The factor 1√
s

guarantees that the wavelet maintains constant energy, since 1

s

∫

+∞
−∞

∣

∣ψ( t
s
)
∣

∣

2
dt =

∫

+∞
−∞ |ψ(t)|2dt. Thus, the L2 norm is appropriate when the modulus-squared wavelet transform is

wished to reflect the energy of the analyzed signal.
Similar to Fourier transform (FT) which uses sine and cosine as the basis function, wavelet transform

(WT) utilizes a family of wavelet functions. Considered the convolution between the signal and a
wavelet function, WT decomposes a signal into localized contributions (approximations and details)
labeled by scale and shifting parameters. The 1D continuous wavelet transform of a function f ∈ L2(R)
is defined as follows:

g(s, τ) =

∫

+∞

−∞
f(t)ψ∗

s,τ (t) dt, s ∈ R
∗
+, τ ∈ R, (3)

where “*” designates the complex conjugate.
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The reconstruction of the original function f is performed with the inverse continuous wavelet
transform:

f(t) =

∫

+∞

0

∫

+∞

−∞
g(s, τ)ψs,τ (t) ds dτ, (4)

where

C =

∫

+∞

−∞

|ψ̂(ω)|2
|ω| dω.

3.2. 1D discrete wavelet transform

It is advantageous to use a dyadic variant of the 1D discrete wavelet transform that uses special values
for the shift b and scale a while defining the wavelet basis by introducing the scale step j and the shift
step k: s = 2−j and τ = k.2−j . The dyadic 1D discrete wavelet transform of an analog signal x(t)
with finite energy is defined as follows:

c(j, k) =
∑

t

x(t)ψ∗
j,k(t), (5)

where ψj,k(t) = 2
j

2ψ(2jt− k).
The inverse 1D discrete wavelet transform is defined as follows:

x(t) =
∑

k

∑

j

c(j, k)ψj,k(t). (6)

3.3. Choice of appropriate mother wavelet

The architecture of the mother wavelet ψ must be designed to generate as many wavelet coefficients
〈x, ψj,k〉 as possible that are close to zero. This depends mostly on the regularity of x, the number of
vanishing moments of ψ, and the size of its support.

Mathematically, the wavelet ψ has p vanishing moments if
∫

tkψ(t) dt = 0 for 0 6 k < p, (7)

which means that ψ is orthogonal to any polynomial of degree p − 1. In other words, a wavelet has p
vanishing moments, if and only if the wavelet scaling function can generate polynomials up to degree
p− 1. If x is regular and ψ has enough vanishing moments then the wavelet coefficients |〈x, ψj,k〉| are
small at fine scales 2j .

On the other hand, if x has an isolated singularity at a point inside the support of ψj,k then 〈x, ψj,k〉
may have a large amplitude. To minimize the number of high amplitude coefficients, we must reduce
the size of the support of ψ, which corresponds to the notion of sparsity of ψ.

The constraints imposed on orthogonal wavelets imply that if ψ has p vanishing moments then its
support is at least of size 2p− 1. When choosing a particular wavelet, we thus face a trade-off between
the number of vanishing moments and the support size. If x has few isolated singularities and is very
regular between singularities, we must choose a wavelet with many vanishing moments to produce a
large number of small wavelet coefficients 〈x, ψj,k〉. If the density of singularities increases, it might be
better to decrease the size of its support at the cost of reducing the number of vanishing moments [30].

3.4. 1D fast wavelet transform

The concept of multi-resolution analysis introduced by Mallat [31] is the basis of the fast discrete
wavelet transform (DWT). The algorithm, proposed by Mallat, makes the signal pass through a low-
pass filter to implement large-scale analysis and pass through a high-pass filter to implement small-scale
analysis.

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 159–170 (2023)



An adaptive wavelet shrinkage based accumulative frame differencing model for motion . . . 163

The DWT can be interpreted as signal decomposition in a set of independent spatially oriented
frequency channels. The signal x is passed through two complementary filters and produces two
signals: approximation and details. This is called decomposition or analysis. The components can be
assembled back into the original signal without loss of information. This process is called reconstruction
or synthesis. The mathematical manipulation, which implies analysis and synthesis, is called a discrete
wavelet transform and inverse discrete wavelet transform [32].

In practice, the choice of appropriate filter banks, in term of reconstruction, is usually used as a sim-
ple way to perform DWT. This is executed using low-pass and high-pass filters associated, respectively,
to the scale function, and the wavelet function [33].

3.5. 2D fast wavelet transform

The simplest form of the 2D discrete wavelet transform is the separable 2D DWT [31], which consists
in applying the 1D DWT to each row and then to each column. The image is decomposed into four
sub-images via the high-pass and low-pass filtering. The image is decomposed along column direction
into sub-images to high-pass frequency band H and low-pass frequency band L. Assuming that the
input image is a matrix of m × n pixels, the resulting sub-images become m/2 × n matrices. At the
second step the images H and L are decomposed along row vector direction and respectively produce
the high and low frequency band HH and HL for H, and LH and LL for L. Four output images become
the matrices of m/2 × n/2 pixels. Low frequency sub-image LL (A1) possesses high energy, and is a
smallest copy of original image (A0). The remaining sub-images LH, HL, and HH respectively extract
the changing components in horizontal (D11), vertical (D12), and diagonal (D13) direction [34]. The
scheme in Figure 1 illustrates this procedure.

Lo 2 1

rows
Lo 1   2

columns

Hi 1   2

columns

A1

D11

D12

D13

Lo 2 1

rows
Lo 1   2

columns

Hi 1   2

columns

X

rows

2 1 1   2

X

columns

Convolve rows with filter X Convolve columns with filter X

Keep 1 column out of 2 Keep 1 row out of 2

Fig. 1. 2D discrete wavelet transform [34].

The use of wavelet transform defined by both Eqs. (2) and (3) has several advantages. It allows
complex information such as images to be decomposed into elementary forms at different positions and
scales and subsequently reconstructed with high precision [33]. Moreover, the use of filter banks in the
fast wavelet transform, makes it computationally efficient [33]. Another advantage is their ability to
capture the energy of a signal in few energy transform values, it does not change the number of pixels
required to represent the image and separate the information in a way that similar to the human visual
system [35]. They have the capability of revealing aspects of data such as trends, breakdown points,
discontinuities in higher derivatives and self-similarity which other signal analysis techniques miss [35].

In this work, we will use wavelet shrinkage in accumulative frame differencing to capture more
accurately the change that occurs in pixel intensity from a frame to another.
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4. The proposed approach

Our approach consists on change detection technique to detect moving objects in a specific frame. As
the intensity of pixel changes, a motion extraction technique must be able to distinguish whether the
difference is due to actual movement or something else, such as illumination changes. For this purpose,
we will use accumulative frame differentiation. The accumulative frame difference, or so called memory

based technique has the advantage of holding information about past frames. This enables the motion
detector to ignore changes that occur only on few frames and attribute it to noise [28]. The frame
we wish to subtract the background from, is used as the reference, and since the density of frames in
video sequence is about 25 frames per second, comparison between consecutive frames will not detect
a signification information about variation, especially for slow motion. On the other hand, it will be
expensive in term of computational cost. To improve the performance, we define a neighborhood of
the reference frame and only frames outside it are taken in consideration. We also avoid consecutive
frames by defining a step between the frames compared to the reference frame. This helps avoiding
redundancy and lightens the computational cost.

Let k be the index of the reference frame, Ak the reference frame, n the step between compared
frames, v the radius of the neighborhood of the reference frame. We define the set of picked frames by

V = {t ∈ N \ {[k − v, k + v] ∩ N} , t ≡ k[n]} . (8)

The choice of the space of indexes is motivated by two reasons. First, the less is the number of
taken frames the faster the computation will be. Second, using adjacent frames reduces the efficiency
of comparisons, since the comparison of the reference frame with two adjacent frames keeps almost the
same information.

The frame differences are computed as follows, for i ∈ V:

WT k(i) =
[

Ak
1(i),D

k
11(i),D

k
12(i),D

k
13(i)

]

= dwt(|Ai −Ak| > s), (9)

where Ak
1(i) is the matrix of approximation coefficients, and Dk

11(i), D
k
12(i), D

k
13(i) are respectively

the detail coefficients matrices in the horizontal, vertical and diagonal directions, and s is a threshold
chosen manually.

The signal we are working on is the difference between frames, and important singularities appear
mostly on the edges of moving objects, meaning that the majority of singularities are isolated and the
spaces between them are regular. Following this logic, we consider Daubechies wavelets. This choice
can be explained by the fact that Daubechies wavelets are characterized by a minimum size support for
a given number of vanishing moments, which corresponds to a maximal number of vanishing moment
for a given support.

Once computed, we apply a threshold on the wavelet transform to extract the changes that occur
between two compared frames. Generally, the details coefficients are set to zero, and only the approxi-
mation coefficients are threshold. Mingbo et al. [36] proved that those components have an important
role in the reconstruction of a pure signal and should be kept for the reconstruction. Following this
idea, we will enhance the details coefficients matrices by multiplying each of them by its corresponding
suppression coefficient [36], and then we will apply a threshold to each of them.

Further, setting a threshold for all the comparisons won’t be a good idea since the amount of change
between frames is not the same. A better solution will be to use a threshold that will be adaptive
to every comparison. For the approximation coefficients Ak

1(i) we will use the threshold proposed by
Donoho et al. [37]:

T k
i = σki

√

logS, (10)

where S is the number of pixels in the image and σ2 is the variance estimated from the finest level of
detail coefficients and defined by

σki
2
=

[

median
(

|Ak
1(i)|/0.6745

)]2
. (11)
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For the details coefficients matrices, we start by computing suppression coefficients and multiply
every matrix by the corresponding coefficient. The suppression coefficients [36] are computed as follows:

sckn(i) =

√

Ak
1
(i)

Ak
1
(i) +Dk

1n(i)
, n = 1, 2, 3. (12)

The last step to perform before the inverse transform according to [36] is to discard detail coeffi-
cients which correspond to the noise and are less than a proper threshold. For this purpose we used
Otsu’s method [38] which determines the threshold by minimizing intra-class intensity variance, or
equivalently, by maximizing inter-class variance.

We apply the 2D inverse discrete wavelet transform (idwt) to the threshold transformation to obtain
the comparison mask:

Mk(i) = idwt
(

WT k
thresholded(i)

)

. (13)

And all the obtained masks are then summed up to obtain a pixel-wise voting map:

Dk =
∑

i∈V
Mk(i). (14)

The final image is obtained by applying an extra threshold tr to eliminate the pixels with a low
number of votes:

I(i, j) =

{

Ak(i, j) if Dk(i, j) > tr,
0 if Dk(i, j) < tr.

(15)

The final threshold tr is determined empirically, and the image I is then smoothened with a 2D
Gaussian smoothing kernel.

Overall, the contribution of our approach is basically based on the combination of multiple and
efficient methods in different stages of the algorithm. Thus, it consists of the following points:

1. The use of a specific space of indexes, which reduces the complexity by avoiding redundant com-
parisons, see Eq. (8).

2. The use of wavelet shrinkage for each of the intermediate comparisons.
3. The use of an adaptive threshold for approximation coefficients. This threshold is adaptive to every

comparison between the reference frame and each comparative frame see Eq. (10).
4. The enhancement of the details coefficients by using suppression coefficients [36] before applying

OTSU threshold [38].
5. The use of a 2D Gaussian kernel in the final stage to smoothen the final image.

Algorithm 1 summarizes the steps of the approach.

Algorithm 1 Proposed approach

1: initialization: Ak, tr, n, s
2: for i ∈ V

3: Compute Ak
1(i), D

k
11(i), D

k
12(i), D

k
13(i) by Eq. (9)

4: Apply threshold Eq. (11) to Ak
1(i)

5: Multiplify Dk
1n(i) by sckn(i) Eq. (12)

6: Apply Otsu threshold to Dk
11(i), D

k
12(i), D

k
13(i)

7: Inverse wavelet transform Eq. (13)
8: Update Dk by Eq. (14)
9: Compute the final image I by Eq. (15)

10: Apply 2D Gaussian smoothing kernel to I
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5. Experimental results

To evaluate the proposed approach, we consider PETS2009 [39] as benchmark dataset. PETS2009
provides videos sequences of walking pedestrians captured from different views.

a b c

d e f

Fig. 2. The intermediate steps of the proposed algorithm.

The steps of our algorithm are illustrated in Figure 2. Figure 2a is an example of a comparison
between the reference frame and a picked frame, Figure 2b presents the accumulated comparisons,
Figure 2c is the threshold image, Figure 2d is the results of applying the 2D Gaussian smoothing
kernel to threshold image, Figure 2e is the obtained motion mask after binarization, and Figure 2f is
the final image.

To validate our method, we compare it with two methods, classic memory based frame differencing
(CMFD) and the wavelet enhanced accumulative frame differencing (WAFD) [28]. The WAFD uses
memory based accumulative frame differences where the final memory image is threshold using wavelet
shrinkage, while CMFD does not use wavelet shrinkage, and computes the accumulative frame difference
as follows:

AFD(x, y) =

L−1
∑

i=1

FDi(x, y),

where

FDi =

{

1 if |fk − fi| > τ,
0 if |fk − fi| 6 τ,

k is the index of the reference frame, i is the index of the difference image, τ is a threshold, and L is
the number of frames in the sequence.

The final image is obtained by the formula

FG(x, y) =

{

1 if AFD(x, y)/(L − 1) > Th,
0 otherwise,

(16)

where Th is a threshold that was set to 50%.
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6. Discussion

We discuss the obtained results of three methods based on the visual quality. In doing so, we consider an
image from PETS2009-View001 which is the most similar view to a sequence taken from a surveillance
camera. We present in Figure 3 the obtained result of the background subtraction using three methods,
where Figure 3a is the reference image, Figure 3b is the result obtained by WAFD, Figure 3c is the
result obtained by CMFD, and Figure 3d is the result obtained by our method. From the visual
comparison, we observe that our method exhibits more accurate background subtraction with respect
to the comparative methods, which fail to segment the motion in several parts of the image.

a b

c d

Fig. 3. The background subtraction result on PETS2009-View001 [39].

To evaluate the robustness of the proposed approach, another experiment is conducted, in which we
compare the obtained motion masks with the ground truth frames. On a frame taken from PETS2009-
View008 [39], illustrated in Figure 4, we compare the motion masks obtained by three methods, where
Figure 4a is the reference frame, Figure 4b is the ground truth image, Figure 4c is the mask obtained by
WAFD, Figure 4d is the mask obtained by CMFD, and Figure 4e is the mask obtained by our method.
Obviously, the visual comparison shows that our method achieves a better motion segmentation than
the comparative methods.

For a deeper comparison, and to further confirm the visual conclusions, we will use the Peak
signal-to-noise ratio (PSNR) which is defined as follows:

PSNR(Igt, Ires) = 10 log10
max(Igt)

2

‖Igt − Ires‖22
, (17)

where Igt is the ground truth image and Ires is the motion mask obtained after background subtraction.

Table 1. PSNR comparison of the three methods.

WAFD CMFD OUR

PSNR 14.4754 14.6262 19.0605
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a b c

d e

Fig. 4. The background subtraction result on PETS2009-View008 [39].

The values of PSNR show that our method exceeded the other two methods and have been able
to separate foreground and background pixels more accurately, which confirms the visual conclusions.
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WAFD

CMFD

OUR

Fig. 5. PSNR versus elapsed time.

For a fair comparison, we should mention that the
WAFD proposed in [28] exceeds the performance
of the CMFD, however in our tests CMFD outper-
forms WAFD. This can be explained by the fact
that we used a different data set and we did not
have access the optimal parameters that give the
best results for WAFD.

In Figure 5 the PSNR is plotted versus the
elapsed time for three methods. The compari-
son shows that even though our method achieves
a higher accuracy, two comparative methods are
faster. This can be explained by the fact that di-
rect and inverse discrete 2D wavelet transforms
are performed at each iteration of the method
which requires more computational cost.

7. Conclusion

In this paper a motion segmentation approach based on successive accumulative 2D wavelet compar-
isons is proposed. The performance of the proposed method was investigated on real-world sequences
presenting pedestrians in motion from different views. Then, the results of our algorithm were com-
pared to two reference methods using suitable measures for the investigated scenarios. The proposed
approach demonstrated that it improves the motion segmentation precision while costing more in term
of computation. Investigation of alternative methods to speed up the process may be one of the
perspectives.
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Адаптивна накопичувальна модель розрiзнення кадрiв на основi
вейвлет-стиснення для сегментацiї руху

Лахгазi М. Дж.1, Хакiм А.1, Аргул П.2

1Факультет наук i технiки, Унiверситет Кадi Айяд, Марракеш, Марокко
2MAST-EMGCU, Унiверситет Гюстава Ейфеля, IFSTTAR, F-77477 Марн-ла-Валле, Францiя

Сегментацiя руху в сценах реального свiту є фундаментальним компонентом
комп’ютерного зору. Iснує безлiч алгоритмiв розпiзнавання руху, кожен з яких має
рiзнi степенi точностi та обчислювальної складностi. Найпоширенiшими методами у
випадку статичних камер є методи, заснованi на рiзницi кадрiв. Цi методи мають
значну слабкiсть, коли мова йде про виявлення об’єктiв, що повiльно рухаються. То-
му в цiй статтi подано новий пiдхiд, який спрямований на покращення сегментацiї
руху, пропонуючи метод розрiзнення кадрiв на основi накопичувального вейвлета.
Крiм того, у запропонованому пiдходi використовується комбiнацiя декiлькох мето-
дiв для ефективного пiдвищення якостi результатiв сегментацiї руху. Ефективнiсть
цього пiдходу на реальних вiдеопослiдовностях показує, що порiвняння кадрiв за до-
помогою двовимiрного вейвлет-перетворення пiдвищує якiсть сегментацiї руху.

Ключовi слова: сегментацiя руху; вейвлет-перетворення; вейвлет-стиснення;

адаптивний порiг; кадрова рiзниця; вiднiмання фону.
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