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1. Introduction

Studying the link between a scalar response variable Y given a new value for the explanatory variable
X is an important subject in nonparametric statistics, and there are several ways to explain this link.
For examples, the conditional expectation, the conditional distribution, the conditional density and
the conditional hazard function.

We are interested in estimating the nonparametric regression for surrogated scalar response. We
are based on the following model:

Y = m(X) + ε,

where m is the regression operator, X is a functional covariate which belongs to a semi-metric space
(F , d), Y is scalar response variable and ε is a random error satisfies E(ε|X) = 0.

The problem we are addressing in this work i.e., the unavailability of some data in the response
variable, can be motivated both from a practical and a theoretical point of view. In fact, it may be
difficult or expensive to exactly measure some response observations Y . Our goal is then to improve
the modeling by filling/recovering some of the information missed in the response variable with this
surrogate variable. In this case, one solution is to use the help of validation data to capture the
underlying relation between the true variables and surrogate ones. Some examples where validation
data are available can be found in Duncan and Hill (1985) [1], Carroll and Wand (1991) [2] and Pepe
(1992) [3].

To estimate the generalized regression function for surrogate data m̂R(x) we adopt an approach
based on validation data ideas. In fact, the idea is to introduce the information contain in the validation
data and surrogate variable Ỹ of Y . Inside the simulation study of Section 4, the surrogate variable
Ỹi of Yi, for all i ∈ I0 was generated from Ỹi = ρZi + εi, where Zi is the standard score of Yi and
εi ∼ N(0,

√

1− ρ2), in such a way that the correlation coefficient between Yi and Ỹi is approximately
equal to ρ which would not be controllable in practice but we can clearly notice that the quality of our
m̂R depends on the size n of the validation data and ρ. Specifically, our estimator greatly better as
the value of n and ρ increases.

The main objective of this paper is to purpose the uniform almost complete convergence (with rate)
of our estimator m̂R and we study its performance against m̂V in term of prediction section 4.

Section 3 is dedicated to some probability tools for functional variable and the uniform rates of
convergence are stated therein. The remark 1 show that the rates of convergence of our estimator
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generalizes the results given by Ferraty and Vieu (2006) [4] and F. Ferraty, A. Laksaci, A. Tadj, P. Vieu
(2010) [5]. This paper begins with the construction of the estimator of mR(x) in section 2, in section 3
we present the almost-complete, then we study the performance of the estimator by computing the
relative mean squared error (RMSE) by using a testing data. Finally, we display the superiority of our
estimator in term of prediction when we are lacking complete data by using simulated data.

The choice of Ỹ (the surrogate variable of Y ) in practice is difficult but it is important for the
quality of our estimator in effect we can cite as an example two diseases (Y and Ỹ ) presenting similar
symptoms, more that there is a strong correlation between these two diseases, more our estimator is
better. So, there exists a wide scope of applied scientific fields for which our approach could be of
interest for examples Biometrics, Genetics or Environmetrics and this approach can be helpful for lot
of statistical models when we are lacking complete data.

2. Estimation procedure

Let (X,Y ) ∈ F × R denotes a random vector, where (F , d) is a semi-metric space equipped with the
semi-metric d, we are concerned with the estimation of a generalized regression function defined as
following:

m(x) = E [ϕ(Y )|X = x] ∀x ∈ F . (1)

Where ϕ is a known real-value Borel function. The model 1 has been studied by [6] when ϕ(Y ) = Y .
Therefore, let (X1, Y1), . . . , (XN , YN ) be a random sample consisting of independent and identically
distributed (i.i.d) variable from the distribution of (X,Y ).

Let m̂C(x) be the classical kernel estimator which is obtained with the complete data (Ferraty and
Vieu (2006) [4])

m̂C(x) =
N∑

i=1

YiW1,n,i(x),

where

W1,n,i(x) =
K
(
d(Xi,x)

h

)

∑N
l=1K

(
d(Xl,x)

h

) , (2)

with (X1, Y1), . . . , (XN , YN ) is a random sample consisting of independent and identically distributed
variable from the distribution of (X,Y ). But the problem here is the unavailability of some data in
the response variable:

(X1(t);Y1)
...

(Xi(t); ???)
...

(Xj(t); ???)
...

(Xk(t); ???)
...

(XN (t);YN )

Consequently, we are concerned with the estimation of a regression function for surrogate functional
response, we can write:

m(x) = E [ϕ(Y )|X = x] = E
[
E
(
ϕ(Y )|X, Ỹ

)
|X = x

]
∀x ∈ F .

Where Ỹ is a surrogate variable of Y . So, we propose the regression function for surrogate functional
response as following:

m̂R(x) =
∑

i∈V

ϕ(Yi)W1,n,i(x) +
∑

j∈V̄

U(Xj , Ỹj)W1,n,j(x), (3)
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where

U(Xj , Ỹj) =
∑

i∈V

ϕ(Yi)W2,n,i(Xj , Ỹj) ∀j ∈ V̄ , (4)

with

W2,n,i(Xj , Ỹj) =
W
(
d(Xj ,Xi)

h
,
Ỹi−Ỹj
b

)

∑

l∈V W
(
d(Xj ,Xl)

h
,
Ỹl−Ỹj
b

) . (5)

Where K is a kernel function and both h = hN , b = bN are a sequence of positive reals that tends
to zero when N goes to infinity. Let us introduce the integer n (n < N) that corresponds to the size
of the validation set V. Let V̄ be the complementary set of V in the set {1, 2, . . . , N}. Where W is
a kernel function which is defined on R

2 and b is sequence of real numbers which tends to zero. For
sake of simplicity, we will use only one kernel. In sense that W (·, ·) = K(·)K(·). This consideration
is because the choice of the kernel has less influence in the performance of the estimator. Remarkably
our goal is then to improve the modeling by filling/recovering some of the information missed in the
response variable with this surrogate variable as following:

(X1(t);Y1) (X1(t);Y1) (X1(t);Y1)
...

...
...

(Xi(t); ???) (Xi(t);Yi)
(
Xi(t);U(Xi, Ỹi)

)

...
...

...

(Xj(t); ???) (Xj(t);Yj)
(
Xj(t);U(Xj , Ỹj)

)

...
...

...

(Xk(t); ???) (Xk(t);Yk)
(
Xk(t);U(Xk, Ỹk)

)

...
...

...
(XN (t);YN ) (XN (t);YN ) (XN (t);YN )

⇓ ⇓ ⇓
m̂V (x) m̂C(x) m̂R(x)

3. Some asymptotic properties

In the sequel, when no confusion is possible, we will denote by C and C ′ some strictly positive generic
constants, F is a semi metric space and:

mỸ (x) = E
[
ϕ(Y )|X = x, Ỹ

]
.

Recall that a semi-metric (sometimes called pseudo-metric) is just a metric violating the property

[d(x, y) = 0] ⇒ [x = y].

Now SF is a fixed subset of F and for η > 0 we consider the following η-neighborhood of SF :

S
η
F =

{
x ∈ F ,∃x′, d(x′, x) 6 η

}
.

Definition 1. One says that the rate of almost complete convergence of (Xn)n∈N to X is of order
un if and only if

∃ε0 > 0,
∑

n∈N

P
(
|Xn −X| > ε0un

)
<∞,

and we write

Xn −X = Oa.co(un).

We define the Kolmogorov’s entropy as follows.

Definition 2. Let SF be a subset of a semi-metric space F , and let ε > 0 be given. A finite set of
point x1, x2, . . . , xn0 in F is called an ε-net for SF if SF ⊂ ∪N0

k=1B(xk, ε).
The quantity ψSF

= log(Nε), where Nε is the minimal number of open balls in F of radius ε which
is necessary to cover S, is called the Kolmogorov’s ε-entropy of the set SF .
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This concept was introduced by Kolmogorov in the mid-1950’s see [7], it represents a measure of the
complexity of a set, in sense that, high entropy means that much information is needed to describe an
element with an accuracy ε. Therefore, the choice of the topological structure (with other words, the
choice of the semi-metric) will play a crucial role when one is looking at uniform (over S) asymptotic
results. For more examples see [5].

We consider the following assumptions:

(H1) For all x in the subset SF ,

0 < Cφ(h) 6 P (X ∈ B(x, h)) 6 C ′φ(h) <∞,

0 < C ′
1φ(b) 6 P

(
Ỹ ∈ [ỹ − b; ỹ + b]

)
6 C ′

2φ(b) <∞,

Cφ(h)φ(b) < E
[
K
(
h−1d(x,Xi)

)
K
(
b−1(ỹ − Ỹ1)

)]
< C ′φ(h)φ(b);

(H2) ∀x1, x2 ∈ SF and ∀i ∈ N
∣
∣mỹ(x1)Ki(x1)−mỹ(x2)Ki(x2)

∣
∣ 6 C |Ki(x1)−Ki(x2)| ,

and there exists β1 > 0 such that ∀x1, x2 ∈ SF and

|m(x1)−m(x2)| 6 Cdβ1(x1, x2);

(H3) ∀m > 2, E
(
|ϕ(Y )|m|X

)
< C <∞;

(H4) K is a bounded and Lipschitz kernel on its support [0, 1], such that −∞ < C < K ′(t) < C ′ < 0,
(H5) The functions φ and ψSF

are such that:
(H5a) ∃C > 0, ∃η0 > 0, ∀η < η0, φ

′(η) < C, and

∃C > 0, ∃η0 > 0, ∀0 < η < η0,

∫ η

0
φ(u) du > Cη φ(η),

(H5b) for n large enough:

(log n)2

nφ(h)
<

(log n)2

nφ(b)φ(h)
< ψSF

(
log n

n

)

<
nφ(b)φ(h)

log n
<
nφ(h)

log n
.

(H6) The Kolmogorov’s ε-entropy of SF satisfies
∞∑

n=1

exp

{

(1− β)ψSF

(
log n

n

)}

<∞, for some β > 1.

Note that (H5a) implies that for n large enough

0 6 φ(h) 6 Ch. (6)

The condition (H5b) implies that:

ψSF
(ε)

nφ(h)
→ 0, and

ψSF
(ε)

nφ(b)φ(h)
→ 0. (7)

The condition (H6) implies that:
∞∑

n=1

Nε(SF )
1−β <∞. (8)

The following Theorem states the rate of convergence of m̂R(x) and m̂S(x) for the surrogated scalar
response, uniformly over the set SF . The asymptotics are stated in terms of almost complete conver-
gence (denoted by a.co.) which imply both weak and strong convergences (see Section A-1 in Ferraty
and Vieu (2006) [4])

Theorem 1. Under the hypotheses (H1)–(H6), we have

sup
x∈SF

∣
∣m̂R(x)−m(x)

∣
∣ = O

(
hβ1
)
+Oa.co.

(√

ψSF (
logn
n )

nφ(h)

)

+Oa.co.

(√

ψSF (
logN
N )

Nφ(h)

)

+Oa.co.

(√

ψSF (
log n
n )

nφ(h)φ(b)

)

,

where h is the concentration of the probability measure of the functional variable X in the ball with

center x and radius h and ψSF

(
logn
n

)

is the entropy function.
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Remark 1. This paper has stated uniform consistency results in functional setting. The fact to be
able to state results on the quantity supx∈SF

∣
∣m̂R(x)−m(x)

∣
∣ allows directly to obtain result on quantity

∣
∣m̂R(x)−m(x)

∣
∣. The entropy function represents a measure of the complexity of a set, in sense that,

high entropy means that much information is needed to describe an element with an accuracy ε = logn
n

,
in fact the quality of the prediction of this estimator depends on the size n of the validation data. For
N = n (without surrogate data) we get the estimator presented by F. Ferraty, A. Laksaci, A. Tadj,
P. Vieu (2010) [5]:

sup
x∈SF

|m̂R(x)−m(x)| = O(hβ1) +Oa.co.

(√

ψSF (
logn

n )
nφ(h)

)

.

By building a suitable projection-based semi-metric, the entropy function becomes ψSF

(
logn
n

)

=

O(log n) and for N = n (without surrogate data) we get the estimator of Ferraty and Vieu (2006) [4]

|m̂R(x)−m(x)| = O(hβ1) +Oa.co.

(√
logn
nφ(h)

)

.

4. Numerical examples

Let m̂V (x) be the classical kernel estimator which is obtained with the true observations in the vali-
dation data set V

m̂V (x) =

∑

i∈V K
(
h−1d(x,Xi)

)
ϕ(Yi)

∑

i∈V K
(
h−1d(x,Xi)

) . (9)

And m̂C(x) the classical kernel estimator which is obtained with the complete data for (such as an
example with N = 300 in the simulation below)

m̂C(x) =

∑N
i=1K

(
h−1d(x,Xi)

)
ϕ(Yi)

∑N
i=1K

(
h−1d(x,Xi)

) .

Fig. 1. The panel presents 100 smooth
curves of Xi.

Within this section we will evaluate the interest of using m̂R(x)
over m̂V (x). We choose K the Gaussian kernel as follow:

K(u) =
1√
2π

exp

{

−u
2

2

}

.

We generate 400 observations (Xi, Yi)i using following model:

Yi = m(Xi) + ε,

where the errors εi are i.i.d. according to the normal distribu-
tion N(0, 5). More precisely, the functional regressors Xi(t) are
defined, for any t ∈ [0, 1] by

Xi(t) = sin(2πWit) cos(2πWit) +Wit+ bi,

where bi ∼ N(0, 4) and W ∼ U(0, 4).
The response variable Y is generated by taking as a regres-

sion operator:

m(x) = π

∫ 1

0
x2(t) dt.

Let I0 = {1, . . . , 300} and I1 = {301, . . . , 400} be two subsets
of indices. Then, we choose ∆ = (Xi, Yi)i∈I0 as the learning sample and Γ = {(Xi, Yi)}i∈I1 as the

testing sample. The surrogate variable Ỹi of Yi, for all i ∈ I0 was generated from Ỹi = ρZi + εi,
where Zi is the standard score of Yi and εi ∼ N

(
0,
√

1− ρ2
)
, in such a way that the correlation

coefficient between Yi and Ỹi is approximately equal to p which would not be controllable in practice. In
the sequel of this simulation study, we take ρ = 0.75. From the learning sample containing N = 300
functional data, we randomly choose a set V of n validation data {(Xi, Yi)}i∈V which allows to build
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the estimator m̂V (x) of m(x). The estimator m̂R(x) is then constructed by using the surrogate data
{(Xi, Yi)}i∈V̄ with the help of the validation data, where V̄ ∪ V = {1, . . . , N}. It should be pointed
out that for N = n (complete observations), we have m̂V (x) = m̂R(x) = m̂C(x). We evaluate the
performance of the estimator m̂R(x) in terms of prediction, by computing the relative mean squared
error (RMSE) on the test sample:

RMSE
(
m̂x
R

)
=

√
∑

i∈Γ

(
m̂C(Xi)− m̂R(Xi)

)2

n
.

We have run 100 replicates of the simulation process for various values of n. We computed, for
two estimators m̂R(x) and m̂V (x) the mean and relative mean squared error (RMSE) over this 100
replications. The comparison study results, for different values of percentage of validation data in
sample:

p(V ) =
card(V )

N
· 100% =

n

N
· 100%.

The results are summarized in Table 1 obviously the quality of the prediction of two estimators depends
on the size n of the validation data.

Table 1. m̂R(x) and m̂V (x) whereas m̂C(x) (ρ = 0.75).

estimator p(V ) Mean RMSE

m̂V (x) 60% 23.44264 0.082
m̂R(x) 60% 24.31731 0.079
m̂C(x) — 24.34636 —

m̂V (x) 80% 24.4267 0.076
m̂R(x) 80% 24.3352 0.066
m̂C(x) — 24.34636 —

Specifically, RMSE decrease as the value of
n increases. On the other hand, for n = 180
that means the percentage of validation data in
sample is 60% our estimator m̂R(x) is better
than m̂V (x) in term of RMSE inferior.

In addition for n = 240 that means that we
know 80% of data, our m̂R(x) still greatly better
as result of RMSE = 0.066. Nearly with the
same mean of m̂C(x).

Fig. 2. A boxplots of
the SE of m̂V and m̂R.

Fig. 3. Prediction by m̂V (right panel), m̂R (middle panel) and m̂C (left panel).

Figure 3 shows the Prediction of a scalar response from testing curves.
It can be noticed from Figure 3 that our m̂R(x) is closer than m̂V (x) to the curve m̂C(x) which

represents the estimator with the complete sample and consequently, even the percentage of validation
data in sample is 60% our estimator m̂R(x) performing better than m̂V (x).

We present in this paper the almost-complete convergence of Generalized regression function for
surrogate scalar response given a functional random by using validation and simulated sample set. In
addition we show the performance of our estimator to reduce RMSE by employing testing data. That
verifies the effectiveness of the theoretical results, this latter gives us an exact rate of convergence of
estimator.

However, lot of issues are possible, such comparison of our estimator to other estimator for missing
data, additionally we can extend these results to the linear model.
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5. Proof of Theorem 1

Firstly, note that:

i ∈ V ⇒ i ∈ {1, . . . , n},
j ∈ V̄ ⇒ j ∈ {n+ 1, . . . , N},
mỸ (x) = E

[
ϕ(Y )|X = x, Ỹ

]
.

From now on, we will denote by C is a generic nonnegative real constant, and we will take

ε =
log n

n
.

Observe that, according to (H1) and (H4) we have

∀x ∈ SF Cφ(h) < E[K1(x)] < C ′φ(h). (10)

Note that (H5a) implies that for n large enough

0 6 φ(h) 6 Ch. (11)

The condition (H5b) implies that:
ψSF

(ε)

nφ(h)
→ 0 and

log n

nh
→ 0. (12)

The condition (H6) implies that:
∞∑

n=1

Nε(SF )
1−β <∞. (13)

Firstly, we write

m̂R(x)−m(x) =
∑

i∈V

ϕ(Yi)W1,n,i(x)−
∑

i∈V

mỸi(x)W1,n,i(x)−
∑

j∈V̄

mỸj(x)W1,n,j(x)

+
∑

j∈V̄

U(Xj , Ỹj)W1,n,j(x) +
N∑

i=1

mỸi(x)W1,n,i(x)−m(x)

with 





E1 =
∑

i∈V

(
ϕ(Yi)−mỸi(Xi)

)
W1,n,i(x),

E2 =
∑

j∈V̄

(
U(Xj , Ỹj)−mỸj(Xj)

)
W1,n,j(x),

E3 =
N∑

i=1

(
mỸi(Xi)−m(x)

)
W1,n,i(x).

Furthermore, we put

∆i(x) =
K
(

d(Xi,x)

h

)

E

[

K
(

d(Xi,x)

h

)]

and we define 





r̂1(x) =
1

n

∑

i∈V

∆i(x),

r̃1(x) =
1

N

N∑

i=1
∆i(x),

r̂2(x, y) =
1

n

∑

i∈V

(
ϕ(Yi)−mỸi(Xi)

)
∆i(x),

r̂3(x) =
1

N

N∑

i=1

(
mỸi(Xi)−m(x)

)
∆i(x).

By the definition of r̂1 and r̂2:

E1 =
1

r̂1(x)

(
r̂2(x, y)− E(r̂2(x, y))

)
+

E(r̂2(x, y))

r̂1(x)
,

E3 =
1

r̃1(x)

(
r̂3(x, y)− E(r̂3(x, y))

)
+

E(r̂3(x, y))

r̃1(x)
.
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Lemma 1. Under the hypotheses (H1) and (H4)–(H6), we have

sup
x∈SF

|r̂1(x)− 1| = Oa.co.

(√

ψSF (
log n
n )

nφ(h)

)

and
∞∑

n=1

P

(

inf
x∈SF

r̂1(x) <
1
2

)

<∞.

Proof of this lemma is detailed in [5].

Lemma 2. Under the hypotheses (H1), (H2) and (H4)–(H6), we have

sup
x∈SF

|E[r̂2(x)]| = 0, sup
x∈SF

|E[r̂3(x)]| = O(hβ1).

Proof. By stationarity,

∣
∣E
[
r̂2(x)

]∣
∣ =

∣
∣
∣E

[

∆1(x)E
[(
ϕ(Yi)−mỸ1(X1)

)
|X1

]]
∣
∣
∣

=
∣
∣E
[
∆1(x)E[ϕ(Yi)|X1]−m(X1)

]∣
∣

=
∣
∣E
[
∆1(x)m(X1)−m(X1)

]∣
∣

= 0,

and
∣
∣E
[
r̂3(x)

]∣
∣ =

∣
∣E
[
∆1(x)E

[(
mỸi(X1)−m(x)

)
|X1

]]∣
∣

=
∣
∣E
[
∆1(x)E

[
ϕ(Yi)|X1

]
−m(x)]

]∣
∣

=
∣
∣E
[
∆1(x)m(X1)−m(x)]

]∣
∣.

Under (H2) we obtain
∀x ∈ SF ,

∣
∣E
[
r̂3(x)

]∣
∣ 6 Chβ1 . �

Lemma 3. Under the assumptions (H1)–(H6), we have

sup
x∈SF

∣
∣r̂2(x)− E[r̂2(x)]

∣
∣ = Oa.co.

(√

ψSF (
log n

n )
nφ(h)

)

, sup
x∈SF

∣
∣r̂3(x)− E[r̂3(x)]

∣
∣ = Oa.co.

(√

ψSF (
logN

N )
Nφ(h)

)

.

Proof. We treat only the first case, the second result can be treated by the same arguments. Firstly,
to do that, we simplify the notation by denoting for all i = 1, . . . , n,

Ki(x) = K
(
h−1d(x,Xi)

)
.

Observe that, according to (H1) and (H3)

∀x ∈ SF Cφ(h) < E[K1(x)] < C ′φ(h). (14)

Next, we denote by x1, . . . , xNε(SF ) an ε-net (see Kolomogorov and Tikhomirov (1959) [7]) for SF .
Furthermore, for all x in SF we put

k(x) = arg min
k∈{1,2,...,Nε(SF )}

d(x, xk).

Now we use the following decomposition

|r̂2(x)− E[r̂2(x)]| 6 sup
x∈SF

∣
∣r̂2(x)− r̂2(xk(x))

∣
∣

︸ ︷︷ ︸

T1

+ sup
x∈SF

∣
∣r̂2(xk(x))− E[r̂2(xk(x))]

∣
∣

︸ ︷︷ ︸

T2

+ sup
x∈SF

∣
∣E[r̂2(xk(x))]− E[r̂2(x)]

∣
∣

︸ ︷︷ ︸

T3

.
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For the term T1:

T1 = sup
x∈SF

∣
∣
∣
∣
∣

∑

i∈V

(
1

nE[K1(x)]

(
ϕ(Yi)

[
Ki(x)−Ki(xk)

]
+
[
mR(xk)Ki(xk)−mR(x)Ki(x)

])
)
∣
∣
∣
∣
∣

6 sup
x∈SF

C

nφ(h)

∑

i∈V

|ϕ(Yi)| |Ki(x)−Ki(xk(x)| 1IB(x,h)∪B(xk(x),h)(Xi).

Note that we have used the fact:
∣
∣mR(x1)Ki(x1)−mR(x2)Ki(x2)

∣
∣ 6 C

∣
∣Ki(x1)−Ki(x2)

∣
∣.

The Lipschitzianity of the kernel K on [0, 1] gives

T1 6
C

n

n∑

i=1

Zi with Zi =
εϕ(Yi)

hφ(h)
1IB(x,h)∪B(xk(x),h)(Xi).

By (H3) we have

E (|ϕ(Y )|m) = E (E (|ϕ(Y )|m|X)) < C <∞.

So, we get

E(|Z1|m) 6
Cεm

hmφ(h)m−1
. (15)

By using the result (11) together with the definition of ε we have for n large enough: ε
h
6 C.

So, we get:

E(|Z1|m) 6
Cεm−1

hm−1φ(h)m−1
.

Now, By applying Corollary A.8 in Ferraty and Vieu (2006) [4] with a2 = ε
hφ(h) , one can get:

1

n

n∑

i=1

Zi = EZ1 +Oa.co.

(√
ε logn
nhφ(h)

)

.

Finally, applying (15) for m = 1

T1 = O
( ε

h

)

+Oa.co.

(√
ε logn
nhφ(h)

)

.

Using (H5b) together with (12) and the fact that:
{∣
∣
∣
∣
1
n

n∑

i=1
Zi

∣
∣
∣
∣
>

√
ψSF

(ε)

nφ(h)

}

⊂
{∣
∣
∣
∣
1
n

n∑

i=1
Zi

∣
∣
∣
∣
>

√
(log n)2

(nφ(h))2

}

,

we get:

T1 = Oa.co.

(√

ψSF
(ε)

nφ(h)

)

. (16)

Similar steps allow to get:

T3 = O

(√

ψSF
(ε)

nφ(h)

)

. (17)

It remains to evaluate T2. Indeed, we write

P

(

T2 > η

√

ψSF
(ε)

nφ(h)

)

= P

(

max
k∈{1,...,Nε(SF )}

∣
∣r̂2(xk)− Er̂2(xk)

∣
∣ > η

√

ψSF
(ε)

nφ(h)

)

6 Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(

∣
∣r̂2(xk)− Er̂2(xk)

∣
∣ > η

√

ψSF
(ε)

nφ(h)

)

6 Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(∣
∣
∣
∣
1
n

∑

i∈V

Γi

∣
∣
∣
∣
> η

√
ψSF

(ε)

nφ(h)

)

,
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where

Γi =
1

E[K1(x)]

[
Ki(xk)ϕ(Yi)− E

(
Ki(xk)ϕ(Yi)

)
+ E

(
mR(xk)Ki(xk)

)
−mR(xk)Ki(xk)

]
.

The same argument as those invoked for proving Lemma 6.3 in Ferraty and Vieu (2006, p. 65) [4]
can be used to show that E|Γi|m = O

(
φ(h)−m+1

)
. By applying the exponential inequality given by

Corollary A.8.ii in Ferraty and Vieu (2006) [4].
For all η > 0:

P

(

∣
∣r̂2(xk)− E r̂2(xk)

∣
∣ > η

√

ψSF
(ε)

nφ(h)

)

6 2 exp
{
−Cη2ψSF

(ε)
}
.

Therefore, by choosing Cη2 = β

P

(

∣
∣r̂2(xk)− E r̂2(xk)

∣
∣ > η

√

ψSF
(ε)

nφ(h)

)

6 Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(

∣
∣r̂2(xk)− E r̂2(xk)

∣
∣ > η

√

ψSF
(ε)

nφ(h)

)

6 C ′
(
Nε(SF )

)1−Cη2
.

By (13),
∑∞

n=1Nε(SF )
1−Cη2 <∞, we obtain:

T2 = Oa.co.

(√

ψSF
(ε)

nφ(h)

)

. (18)

For the term r̂3(x, y)− E[r̂3(x, y)] we use the same decomposition and we fix ε = logN
N

to get:

sup
x∈SF

sup
y∈SR

∣
∣r̂3(x, y)− E[r̂3(x, y)]

∣
∣ = Oa.co.

(√

ψSF (
logN

N )
Ng φ(h)

)

.

So, this Lemma can be easily deduced from (16)–(18) . �

Lemma 4. Under the assumptions of Theorem (H1)–(H6), we have ∀j ∈ V̄

sup
x∈SF

∣
∣mỸj(Xj)− U(Xj , Ỹj)

∣
∣ = O(hβ1) +Oa.co.

(√

ψSF (
log n
n )

nφ(h)φ(b)

)

.

Proof. To simplify we put Xj = x, Ỹj = ỹ. The proof is based on the following decomposition

U(x, ỹ)−mR(x) =

[
U2(x, ỹ)− E[U2(x, ỹ)]

]

U1(x, ỹ)
+

[
E[U2(x, ỹ)]−mR(x)

]

U1(x, ỹ)
+ [1− U1(x, ỹ)]

mR(x)

U1(x, ỹ)
,

where

U1(x, ỹ) =
1

nE
[
K
(
h−1d(x,X1)

)
K
(
b−1(ỹ − Ỹ1)

)]

∑

i∈V

K
(
h−1d(x,Xi)

)
K
(
b−1(ỹ − Ỹi)

)
,

and

U2(x, ỹ) =
1

nE
[
K
(
h−1d(x,X1)

)
K
(
b−1(ỹ − Ỹ1)

)]

∑

i∈V

K
(
h−1d(x,Xi)

)
K
(
b−1(ỹ − Ỹi)

)
ϕ(Yi).

Once again the proof is based on separate treatment of the different terms. In particular, we use the
same ideas of Lemma 3

∣
∣U1(x, ỹ)− E[U1(x, ỹ)]

∣
∣ 6 sup

x∈SF

∣
∣U1(x, ỹ)− U1(xk, ỹ)

∣
∣

︸ ︷︷ ︸

R1

+ sup
x∈SE

∣
∣U1(xk, ỹ)− E[U1(xk, ỹ)]

∣
∣

︸ ︷︷ ︸

R2

+ sup
x∈SF

∣
∣E[U1(xk, ỹ)]− E[U1(x, ỹ)]

∣
∣

︸ ︷︷ ︸

R3

.

For the term R1 we employ the Lipschitzianity of the kernel K on [0, 1] with (H1) and (H2) lead
directly

R1 6
C

n

n∑

i=1

Zi with Zi =
ε

hφ(h)φ(b)
1IB(x,h)∪B(xk(x),h)(Xi) 1I[ỹ−b6Ỹi6ỹ+b].
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It is clear that the assumption (H1) permits to write that

Z1 = O
(

ε
hφ(h)φ(b)

)

, E[Z1] = O
(
ε
h

)
and var(Z1) = O

(
ε2

h2φ(b)φ(h)

)

.

So, we get

E(|Z1|m) 6 Cεm

hm
[
φ(h)φ(b)

]m−1 .

By using the result (11) together with the definition of ε we have for n large enough: ε
h
6 C. So, we

get:

E(|Z1|m) 6 Cεm−1

hm−1[φ(h)φ(b)]m−1 . (19)

Now, by applying Corollary A.8 in Ferraty and Vieu (2006) [4] with a2 = ε
hφ(h)φ(b) , we get:

1

n

n∑

i=1

Zi = EZ1 +Oa.co.

(√
ε logn

nhφ(h)φ(b)

)

.

Finally, applying (19) for m = 1 one gets

R1 = O
( ε

h

)

+Oa.co.

(√
ε logn

nhφ(h)φ(b)

)

.

Using (H5b) together with (12) and the fact that:
{∣
∣
∣
∣
1
n

n∑

i=1
Zi

∣
∣
∣
∣
>

√

ψSF}(ε)

nφ(h)φ(b)

}

⊂
{∣
∣
∣
∣
1
n

n∑

i=1
Zi

∣
∣
∣
∣
>
√

(logn)2

(n(φ(h)φ(b))2

}

,

we get

R1 = Oa.co.

(√

ψSF
(ε)

nφ(h)φ(b)

)

.

Thus, we deduce that

R1 = Oa.co.

(√

ψSF
(ε)

nφ(h)φ(b)

)

and R3 = O

(√

ψSF
(ε)

nφ(h)φ(b)

)

. (20)

It remains to evaluate R3. Indeed, we write

P

(

R2 > η

√

ψSF
(ε)

nφ(b)φ(h)

)

= P

(

max
k∈{1,...,Nε(SF )}

∣
∣U1(xk, ỹ)− EU1(xk, ỹ)

∣
∣ > η

√

ψSF
(ε)

nφ(b)φ(h)

)

6 Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(

∣
∣U1(xk, ỹ)− EU1(xk, ỹ)

∣
∣ > η

√

ψSF
(ε)

nφ(b)φ(h)

)

6 Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(∣
∣
∣
∣
1
n

n∑

i=1
Γi

∣
∣
∣
∣
> η

√
ψSF

(ε)

nφ(b)φ(h)

)

,

where

Γi =
1

E[K1(x)K1(ỹ)]

[
Ki(xk)Ki(ỹ)− E

(
Ki(xk)Ki(ỹ)

)]
.

It follows from the fact that the kernel K is bounded, that E|Γi|2 6 C (φ(b)φ(h))−1 . Thus, we apply
the Bernstein exponential inequality we obtain:

P

(

∣
∣U1(xk, ỹ)− EU1(xk, ỹ)

∣
∣ > η

√

ψSF
(ε)

nφ(b)φ(h)

)

6 2 exp
{
−Cη2ψSF

(ε)
}
.

Therefore, by choosing Cη2 = β, we have:

Nε(SF ) max
k∈{1,...,Nε(SF )}

P

(

∣
∣U1(xk, ỹ)− EU1(xk, ỹ)

∣
∣ > η

√

ψSF
(ε)

nφ(h)φ(b)

)

6 C ′
(
Nε(SF )

)1−Cη2
.
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Finally, we obtain by (H5) and (13)

R2 = Oa.co.

(√

ψSF
(ε)

nφ(b)φ(h)

)

. (21)

We get

sup
x∈SF

∣
∣U1(x, ỹ)− 1

∣
∣ = Oa.co.

(√

ψSF (
log n

n )
nφ(b)φ(h)

)

.

The first lemma 1 allows to conclude
∞∑

n=1

P

(

inf
x∈SF

U1(x, ỹ) <
1

2

)

<∞.

By using the same decomposition:
∣
∣U2(x, y, ỹ)− E[U2(x, y, ỹ)]

∣
∣ 6 sup

x∈SF

∣
∣U2(x, y, ỹ)− U2(xk, y, ỹ)

∣
∣

︸ ︷︷ ︸

S1

+ sup
x∈SF

∣
∣U2(xk, y, ỹ)− E[U2(xk, y, ỹ]

∣
∣

︸ ︷︷ ︸

S2

+ sup
x∈SF

∣
∣E[U2(xk, y, ỹ)]− E[U2(x, y, ỹ)]

∣
∣

︸ ︷︷ ︸

S3

.

For the term S1:

S1 = sup
x∈SF

∣
∣
∣
∣
∣

∑

i∈V

(
1

nE [K1(x)K1(ỹ)]

(
ϕ(Yi) [Ki(x)−Ki(xk)] +

[
mỹ(xk)Ki(xk)−mỹ(x)Ki(x)

])
)
∣
∣
∣
∣
∣

6 sup
x∈SF

C

nφ(h)φ(b)

∑

i∈V

|ϕ(Yi)|
∣
∣Ki(x)−Ki(xk(x))

∣
∣ 1IB(x,h)∪B(xk(x),h)(Xi) 1I[ỹ−b6Ỹi6ỹ+b].

The Lipschitzianity of the kernel K on [0, 1] and (H2) implies that:

S1 6
C

n

n∑

i=1

Zi with Zi =
ε|ϕ(Yi)|

hφ(h)φ(b)
1IB(x,h)∪B(xk(x),h)(Xi) 1I[ỹ−b6Ỹi6ỹ+b],

So, we can follow the same steps as T1 and T3 to get:

S1 = Oa.co.

(√

ψSF
(ε)

nφ(h)φ(b)

)

and S3 = O

(√

ψSF
(ε)

nφ(h)φ(b)

)

. (22)

Following same idea of T2 to get:

S2 = Oa.co.

(√

ψSF
(ε)

nφ(b)φ(h)

)

, (23)

∣
∣E[U2(x, y, ỹ)]−mR(x)

∣
∣ 6 C E

[

K
(
d(x,Xi)

h

)

K
(
ỹ−Ỹ1
b

)

E
[(
|ϕ(Yi)−mỹ(x)|

)
|(X1, ỹ)|

]]

6 C E

[

K
(
d(x,Xi)

h

)

K
(
ỹ−Ỹ1
b

)

E
[∣
∣ϕ(Yi)| |(X1, ỹ)−mỹ(x)

∣
∣
)]

6 CE

[

K
(
d(x,Xi)

h

)

K
(
ỹ−Ỹ1
b

)

E
[
|mỹ(X1)−mỹ(x)|

]]

.

By (H2) we have
∣
∣E[U2(x, y, ỹ)]−mỹ(x)

∣
∣ = O

(
hβ1
)
. (24)

So, the Lemma 4 can be easily deduced from (20)–(24). �
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Узагальнена функцiя регресiї для сурогатної скалярної реакцiї

Бумахдi М.1, Уассу I.1, Рахдi М.2

1Унiверситет Кадi Айяда, Нацiональна школа прикладних наук, Марракеш, Марокко
2Унiверситет Гренобль-Альпи, Гренобль Цедекс 09, Францiя

У цiй статтi розробляється та узагальнюється оцiнка функцiї регресiї для сурогат-
ної скалярної змiнної вiдповiдi, яка задана функцiонально випадковою. Пiсля цього
конструюються деякi асимптотичнi властивостi в термiнах майже повної збiжностi,
залежно вiд результату показується перевага запропонованої оцiнки в термiнах пе-
редбачення.

Ключовi слова: сурогатна вiдповiдь; функцiональна змiнна; майже повна збiж-

нiсть; оцiнки ядра; скалярний вiдгук; ентропiя; напiвметричний простiр.
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