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Due to advanced sensor technology, satellites and unmanned aerial vehicles (UAV) are
producing a huge amount of data allowing advancement in all different kinds of earth ob-
servation applications. Thanks to this source of information, and driven by climate change
concerns, renewable energy assessment became an increasing necessity among researchers
and companies. Solar power, going from household rooftops to utility-scale farms, is re-
shaping the energy markets around the globe. However, the automatic identification of
photovoltaic (PV) panels and solar farms’ status is still an open question that, if answered
properly, will help gauge solar power development and fulfill energy demands. Recently
deep learning (DL) methods proved to be suitable to deal with remotely sensed data, hence
allowing many opportunities to push further research regarding solar energy assessment.
The coordination between the availability of remotely sensed data and the computer vision
capabilities of deep learning has enabled researchers to provide possible solutions to the
global mapping of solar farms and residential photovoltaic panels. However, the scores
obtained by previous studies are questionable when it comes to dealing with the scarcity
of photovoltaic systems. In this paper, we closely highlight and investigate the poten-
tial of remote sensing-driven DL approaches to cope with solar energy assessment. Given
that many works have been recently released addressing such a challenge, reviewing and
discussing them, it is highly motivated to keep its sustainable progress in future contri-
butions. Then, we present a quick study highlighting how semantic segmentation models
can be biased and yield significantly higher scores when inference is not sufficient. We
provide a simulation of a leading semantic segmentation architecture U-Net and achieve
performance scores as high as 99.78%. Nevertheless, further improvements should be made
to increase the model’s capability to achieve real photovoltaic units.

Keywords: remote sensing; solar energy; photovoltaic systems; deep learning; segmen-
tation architecture U-Net.
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1. Introduction

The world nowadays is facing a crisis regarding the lack of natural energy resources. In addition to
this, global warming is the major threat that triggers survival alarms across the planet. Nevertheless,
the majority of countries are still using non-green energy sources such as natural gas and coal, or even
green hydro-power, but that also comes at the cost of water waste. Quite naturally, the most prominent
energy source is the sun. This source increases energy availability in emerging nations and lowers energy
costs. Solar panels are being installed faster than can be accurately registered, particularly in many
developing countries where most data are being self-reported or relied upon on voluntary surveys such
as the recently closed National Renewable Energy Laboratory’s Open PV Project, for further details
see [1]. Since this type of data is usually facing risks of being incomplete or outdated, Governments,
companies, and International environmental organizations are constantly facing the photovoltaic panels
and solar energy farms identification challenges.

Finding the proper way to do so will help increase the number of solar power operations, whether
it is for environmental or financial purposes. Remote sensed data has become the pillar for all kinds of
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land observation tasks [2,3]. Given the availability of such data and thanks to deep learning methods,
different kinds of implementations have emerged in domains such as agriculture, urban development
and environmental purposes [3-9].

Considerable research has been devoted to solar panels’ detection tasks such as [10-15]. The down-
side of those approaches is the data itself: most images are a small portion of the Earth and the main
content of the image represents the solar panels. Furthermore, the number of such instances per image
is considerable. Nonetheless, the main purpose of this research area is to identify the decentralized
photovoltaics nature. This leads to neural networks being biased as the number of true negative pixels
represents the integrity of the image’s mask, leaving the model with very little ability to close the
gap between the real-world data and the one it has been trained on, even with higher performance
scores. Thanks to this phenomenon, and since deep learning methods are regarded as data-driven [16],
many studies involving deep learning on remotely sensed data are being constantly published with the
perspective of providing the best tool for land observation purposes. However,these papers mainly
focus on classification and object detection tasks [17-19] or the DL-based remote sensing analysis in
specific environmental fields such as hydrology [20] or atmospheric aerosol [21]. The comprehensive
analysis of remote sensing in solar energy using DL has been poorly explored. The traditional NN
and DL models have been used in solar energy assessment, and a few works have been published in
recent years. Therefore, this review will concentrate on the DL applications during the past five years
to advance the solar energy remote sensing process.

The main outline of this paper is arranged as follows. Section 2 will bring forward an overview of
remote sensing and how is it different from normal photography. Section 3 will discuss the potential of
DL methods and some novel research and achievements made regarding remotely sensed data. Section 4
brings to light the most recent works and methods in the literature that made use of valuable remotely
sensed data and deep learning novel approaches for a solar energy assessment. Section 5 discusses the
potential research direction and future perspectives. Section 6 explores our new approach to facing
the previous problem using more reliable data with the most relevant image segmentation network
architecture UNet and brings forward the dataset used, the mask computation and our proposed image
segmentation architecture. Section 7 discusses the results achieved and finally Section 8 concludes the
paper along with our potential research directions and future perspectives.

2. Remote sensing overview

The term remote sensing, according to [22], is the science and art of obtaining information about an
object, area or phenomenon by analyzing data acquired through a device that is not in contact with
the object, zone or phenomenon being studied. And, according to NASA, it refers to the scanning
of the Earth using different kinds of sensors to collect electromagnetic radiation known as spectral
response, reflected from different kinds of objects on the Earth’s surface.

2.1. The workflow of satellites

The sun is constantly emitting solar radiation. A part of those electromagnetic radiations is reflected
by the Earth’s surface while the other part is absorbed by objects on the surface to emit a different
kind of spectral response [23]. Satellites being constantly orbiting around the globe, are capturing
all kinds of radiations emitted from the ground, i.e., terrestrial and reflected energy. To ensure the
continuous scanning of all areas, satellites are also equipped with active sensors that allows emitting
artificial radiations in absence of the sun or during cloudy seasons [24]. When the scanning process
is done, the satellite provides a matrix representing the spectral response of each area alongside with
its geo-coordinates resulting in what remote sensing experts call a scene which is, keeping only the
visible information, the equivalent of an image in the photography area. Although such advancement
provided a breakthrough in the past decades, high quality satellite data is still expensive and hard to
come by. With the motivation of pushing research forward, there came the emergence of unmanned
aerial vehicles (UAV) which provided an alternative to using satellite images and thus the introduction
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of aerial images. However, with more technological advancement in recent years and with the UAVs
nowadays being equipped with multispectral sensors, many works such as [25,26] made areal aerial
imagery from satellite data thanks to the conclusion of [27] proving that no difference was found
between post-processed satellite imagery and optical aerial images.

2.2. Multiple resolutions

When addressing remote sensing imagery, resolution plays a big role in how data from a sensor can
be used. Resolution can vary depending on the satellite’s orbit and sensor design. When considering
which type of remotely sensed data is useful for a given problem, four types of resolution are considered.
Radiometric being the maximum amount of information in each pixel (e.g., 2-bit, 4-bit, 8-bit etc.) has
a great impact on remotely sensed imagery understanding as we can see in [28]. Spatial resolution
is considered the most used metric when evaluating satellite imagery. It represents how much area
on the Earth’s surface is represented within each single pixel as verified in [29], an increased spatial
resolution always provides better results regardless of the method used to deal with remotely sensed
imagery. Another form of resolution is called spectral and it defines the sensor’s ability to discriminate
finer spectral wavelengths, many sensors are considered multi-spectral, that is, having from 3 to 10
bands. Others called hyperspectral sensors having the capability to capture several hundred and even
thousands of bands, this allows for more levels of interpretations in the non-visible area of studies [30].
Last but not least, the temporal resolution providing the information of how much tie does it take for
a satellite to fully complete an orbit and return to the same observation area such kind of information
allows more expendable research most commonly agricultural applications [31,32].

3. Remote sensing-driven deep learning

For its simplicity, deep learning may be looked at as a form of automating the process of making
prediction analysis. Unlike traditional machine learning algorithms which are linear, deep learning
approaches are layered in a hierarchy of escalating complexities and abstractions. Neural networks,
being the highest artificial representation of how the human brain works, provided over the years a
variety of forms such as back propagation neural networks (BPNN), convolutional neural networks
(CNN), recurrent neural networks (RNN), and auto encoders (AE). This chapter will bring forward
an overview of each method and its recent contribution to the remote sensing area.

3.1. Back propagation neural networks

BPNN is one the most basic form of neural networks fine-tuning weights using the back propagation
method and thus updating the network’s weights. Being the simplest form of neural networks, many
works made use of it in remote sensing fields. Recent studies such as [33] made use of Modis and
Landsat satellite images with the use of BPNN to provide support for wheat fields quality and improve
mass production. [34] attempted to estimate and solve soil moisture using the AMSR-E sensor data as
inputs to multiple back propagation neural networks. [35] evaluated the status of water quality feeding
the network different band combinations to estimate the water quality index (WQI). Over all, BPNN
are widely used with remotely sensed data. However, the subsequent implementation is restricted by
slow convergence during the training and sensitiveness to the network’s initial weights.

3.2. Auto-encoders

Auto-encoders have been rarely applied for remote sensing applications due to the fact that a single
autoencoder may not be able to reduce the size of the input features. Thus came the idea of using
stacked auto encoders (SAE) with some successful cases adoptions and promising prospects. In the
task of hyper-spectral remote sensing, stacked autoencoders proved powerful outperforming traditional
methods including principal component analysis (PCA), support vector machine (SVM) classifiers, and
also combined PCA-SVM classifiers as demonstrated in [36] work. We can also see improvements in
Semi-supervised learning (SSL), with only 0.08% labeled data became more reliable with closer results
to supervised learning with expensive remotely sensed data [37].
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3.3. Recurrent neural networks

When it comes to time series or sequential data, the classic feedforward networks cannot be used for
learning and prediction. For instance, multi-temporal Remote Sensing data allowed recurrent neural
networks (RNNs) to be highly robust in predicting end-of-season yearly biomass [38], we can also see
further combined methods such as involving difference kinds of networks for detection purposes then
implementing the RNNs for bi-temporal modeling as we can see in [39] for urban change detection.

3.4. Convolutional neural networks

When addressing remote sensing data, nothing like CNNs can achieve higher results whether for classi-
fication, retrieval or object detection tasks. We can see over the past decade two decades the continuous
contribution to provide the most reliable dataset. Bringing forward land use and land cover classi-
fication datasets [2,25,40-42], each one providing higher challenges and levels of classification that
allowing the reliability of CNNs for land monitoring purposes. Another core feature of convolutional
neural networks in the remote sensing areas is the emergence of different kinds of networks allowing
object detection tasks. With the use of high-resolution satellite data, we can bring into light map-
ping of Ice-Wedge Polygons [43] showcasing the performance of state-of-the-art Mask R-CNN, Marine
pollution assessment such as plastic and litter detection [44], and oil spill [45], buildings and vehicles
detection [16,46,47].

4. Remote sensing-driven DL or solar energy

Several works made use of remote sensing data to assess solar energy. The manual use of such data is
still a trend in the literature. Remote sensed data such as the Corine land cover database provides a
good reference to analyze the solar energy potential and calculate yearly production [48]. The use of
geographic information systems (GIS) is the most common approach to deal with remotely sensed data.
To meet requirements in power consumption and map the potential solar power zone instalments, we
can see the use of GIS and remote sensing to evaluate the solar irradiance [49] and identify suitable
zones to maximize land use locations for solar energy harvesting [50]. Google project Sunroof, on
the other hand, provided a much higher contribution to power consumption predictions, mapping
and measuring photovoltaic potential and quantifying the role of political affiliation in rooftop PV
adaptation [51]. Deep learning, being able to automate diverse fields of study, is poorly explored in
solar energy assessment. However, the recent studies provided promising works using deep learning
mainly in the detection of photovoltaic panels. DL provides high fidelity when it comes to providing
a database of solar installation locations and size. As opposed to Google’s Sunroof project, which
does not give any information about the sizes of solar installations and its focus on the US borders
only, the ability to use transfer-learning to classify land containing photovoltaic panels then using semi
supervised learning to extract the shape and size from Google’s static map API non-annotated images
proved to be much successful as we can see with the introduction of DeepSolar framework [52]. The
Inception-v3’s convolutional layers output, which is basically a stack of feature maps, can be combined
to produce a class activation maps (CAM) [53] providing information about the segmented area of
interest and thus getting the size estimation without having to use expensive annotated remotely
sensed data.

While the work provided useful insights about using CNNs, DeepSolar framework provides data of
the US residential areas only. China, for instance, being the world’s major installer of photovoltaic pan-
els, cannot make use of such a framework nor the image data it was based on to identify its solar panels.
Power plants and solar farms are located in areas with complex backgrounds like mountains, deserts and
even lakes. A network called SolarNet [54], based on the Expectation-Maximization Attention (EMA)
algorithm [55] and inspired by the EMANet [56], was released to improve upon DeepSolar’s perfor-
mance and address China’s solar panels installments. SolarNet is an optimized multitask-EMANet
which combines pixel-wise segmentation and global classification at the image level. Using only 819
With data augmentation methods and Resnet101 as a backbone the proposed SolarNet achieved higher
performances, with the mean intersection over union (IoU) as a criterion, than state-of-the-art detec-
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tor Unet and normal EMANet, it is also worth mentioning that the scores were also higher when
benchmarking their dataset against the one used in training the DeepSolar framework.

Alternatively, [57| provided further improvements made upon DeepSolar framework. First, the
authors explored the ability to extend the original dataset by 8.1% google static map API imagery
adding more landscape types such as rocks, woods, water etc. This dataset will then be used to train
a new framework called DeepSolar GER (for Germany). By Fine-tuning the initial weights from the
US version and introducing a tunable threshold to turn CAMs into binary masks, the DeepSolar GER
amplified the original model’s recall by 8.5%. Moreover, further investigations were made to improve
the framework’s applicability to imagery with 4 times lower resolution thanks to an OpenNRW-based
dataset. DeepSolar GER was fune-tuned a second time and tested on this dataset to achieve 63.96%
and 86.69% precision and recall scores illustrating the potential of future research to improve upon
such work.

Subsequently, encoder—decoder model U-net with a cross learning approach inspired by [58] is show-
cased in [59] and used residential areas obtaining a 74% IoU results. Another U-net based research [60]
was conducted on urban areas showed an increasing IoU by nearly 2% when using the model with edge
detection networks.

Further study proved the usefulness of transfer learning, with a simple implementation of Incep-
tionV3 architecture, when it comes to classifying images containing solar farms installations from low
number of training data. Although [61] did not reach state of the art precision when evaluating their
model. The combination of free apple maps imagery and the Regulatory Authority for Energy (RAE)
to automatically annotate remote sensing data demonstrated to be promising and can be further im-
proved in future works.

Exploring the low number of images approaches, Sentinel-2 free satellite data can also provide
better understanding. When experimenting with (e.g., U-net, DeepLabv3+, PSPNet, FPN) alongside
different backbones (Efficient-net and ResNet families), the use of only 280, 256 x 256 pixels images
to detect solar farms in Brazil as shown in [12], has led the authors to selected U-net to be used
with sliding windows mosaicking algorithm for high tolerance to full scene reconstruction errors when
performing the final solar farms’ detection task.

It is clear that the PV panel detection approaches vary in all forms and ways. It is indeed proven
that deep learning can be useful for detecting solar panels in different ways. Table 1 displays a summary
gathering of all mentioned methods and approaches investigated in this paper as well as the results
obtained.

5. Future studies

This field of research provides many possible future studies. The use of remotely sensed imagery has
proved useful for solar energy assessment. However, the use of such technology, as shown in this paper,
lies only in the automatic detection of photovoltaic panels whether it is for solar farms or residential
areas. In this section, we will discuss other possibilities and potential of future research.

5.1. Improving solar panels’ detection results

From the results in previous mentioned studies, we can clearly deduce that mapping PV panels can
be addressed as data-driven. While works such as Deep Solar provided some breakthroughs regarding
the way future research can look at object detection it is highly dependent on huge volumes of data.
As for the other different deep learning methods, they provide significantly similar results when used
with lower sizes of datasets and even shallow networks reached good results (see [42]).

When we look at the remote sensing field in the past two decades, and as mentioned in Section 3,
the contribution of many research was concentrated on releasing benchmarking novel dataset. An effort
such as [62] and [63] provided a multi-resolution PV panel dataset with ground truth masks, however,
the lack of multispectral data can be critical in some case of studies. Thus, in order to achieve better
results, providing more meaningful satellite datasets with ground truth labels is mandatory to advance
such field of research.
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Table 1. Comparative study.

Ref.

Method(s)

Location

Data

Model Description

Outcome/observation(s)

53]

Deep solar

Us

A collection of 472953
google static maps ima-
gery over 50 different
cities and binary labe-
led on the image-level.
The dataset was split
as following (77%, 3%,
20%) for Train, Val and
testing sets.

The classification procedure
was made by state-of-the-art
Inception-v3 CNN architecture
pretrained on ImageNet. The
positive samples were then fed
to a semi-supervised method,
based on the extraction of class
activation maps, to generate
clear boundaries of solar panels
without any supervision of
actual panel outlines and thus
estimate the size.

The developed method reached
a classification precision of 93%
with approximately 90% recall
in both residential and non-
residential testing areas. As for
the size estimation the mean
relative error was 3.0% and
2.1% for residential and non-
residential areas respectively.

[55]

SolarNet

China

819 training and 119
testing satellite images
annotated at the pixel
level.

The network is an optimized
version of Emanet [52] which is
based on the expectation mini-
mization algorithm. Resnet101
was used as the feature extrac-
tor feeding information to the
EMA module to combine pixel
level and image level classifica-
tion.

The mean intersection over
union of SolarNet outper-
forms both U-net and stan-
dard EmaNet on their proper
dataset achieving a 94% score.
Moreover, the combination of
their dataset and DeepSolar’s
proved once more that Solar-
Net is the best performing me-
thod in this case achieving
93.94% IoU.

(58]

Deep solar

Germany

An 8.1% extension
over original DeepSo-
lar’s google static map
API imagery and an
OpenNRW-based low
resolution dataset.

The extended dataset was used
to fine-tune the original model
to further improve the classifi-
cation results. An additional
improvement was made thro-
ugh tunable thresholding to
turn class activation maps into
binary masks. Another finetu-
ning was made in order to make
the model robust to lower reso-
lution imagery.

The provided modification im-
proved the original method’s
recall by 8.5%. However, it is
clear that the network, even af-
ter improvements, is still not
as good performing when look-
ing at 63.96% and 86.69% pre-
cision and recall classification
scores.

[60]

CrossNets

Us

Publicly available
dataset [59] of US
residential areas. 1414,
256 x 256, 0.3m per
pixel image patches
were divided into train,
val, and test images
(920, 231, and 263).

The suggested approach was
inspired by swarm intelligence
and it is mainly a set of generic
U-Nets that updates individual-
ly their weights and then learns
other generic U-Nets’ parame-
ter values at specific epochs.

The average Intersection over
union of the proposed Cross-
Nets bested two benchmarks
based on cross learning U-nets
“IndivNets” reaching a total of
74.268%.

[61]

Multi-task

learning

California

526 images, 256 X 256
pixels, collected by the
United States Geologi-
cal Survey with a 0.3 m
spatial resolution were
split into 50% for tes-
ting data and the other
50% is split into train-
ing and validation by
8:2 ratio.

The multi task learning appro-
ach was conducted by the com-
bination of an encoder-decoder
edge detection network and a U-
net structure with Efficientnet-
B1 for semantic segmentation
to allow the detection of small
PV panels and solve segmenta-
tion?s blurred edges.

The proposed method was
tested on two datasets and
compared with different Seg-
Net, LinkNet, U-Net and FPN
and reached higher accuracy
with finer segmentation edges
and an Fl-scores of 84.79%
and 94.03%, on the Califor-
nia dataset and Shanghai Dis-
tributed Photovoltaic Power
Station dataset respectively.

[12]

CNN

Greece

Two free apple maps
imagery datasets of so-
lar farms. A high-reso-
lution dataset of 220
images and a lower
resolution one of 350
patches.

A raw usage of transfer learning
using Keras’ InceptionV3 archi-
tecture with ImageNet’s initial
weights.

The CNN reached a classi-
fication precision of 60% in
15 epochs while it was lower
(42%) on the lower resolution
dataset.

[62]

U-net

Brazil

280, 256 x 256 pixels,
solar farm images from
sentinel2 data.

An implementation of U-net
was used with sliding windows
mosaicking algorithm to solar
panels’ detection task.

Different models with different
backbones were tested to con-
clude that U-net with Eff b7
backbone showed the best re-
sults with 98% accuracy, 92%
IoU and 95% F-score
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5.2. Energy production estimation

Multispectral data and hyperspectral data have been used previously in energy production estimation.
The automation of such field of study is highly recommended after photovoltaic panel detection. An
attempt such as the google project sunroof is small example of such direction, but the limitations
are far greater such as the focus on few regions in the US and the sole focus residential blocks. This
led many studies [63,64] to making use of manual methods to address a concerned region. Further
improvements can make use of remote sensing and deep learning methods in order to make solar energy
estimation global, automatic and publicly available.

5.3. Solar energy optimal sites

When we hear the solar energy assessment topic, the first question that comes to mind is what is
the optimal location to install solar farms? The use of geographic information systems proved useful
for manually identifying potential sites for PV plants. We can see in many works with GIS [65, 66].
The evaluation of land suitability based on different criteria such as solar irradiation, air temperature,
proximity to residential areas etc. Among all research provided in remote sensing-driven deep learning,
the identification of land type [2], detecting residential areas [46] and air temperature mapping [15]
proved to be very successful for each given problem. We can conclude that merging such techniques
into one single framework can be introduced in future research allowing the built of an optimal land
recommender system.

6. Our proposed model
6.1. Dataset

It was proved in previous works that deal-
ing with a full multi-spectral remotely sensed
data is not necessary when most solar pan-
els were detectable using the visible spectrum
data (RGB). However, as opposed to mentioned
works, the dataset used in our research is com-
posed of remotely sensed scenes representing
_ _ 1500 meters x 1500 meters on the Earth which,

e [ : R Feesy with a 0.3 ground sampling distance, results in
Fig.1. A snapshot highlighting sample georeferenced 5000 x 5000 pixels per image provided by the

scenes from the US border. U.S. Geological Survey [67], Figure 1.

6.2. Masks

The given data was labeled in a JSON file with the georeferenced centroids of each solar panel alongside
with the polygon vertices coordinates, i.e., longitude and latitude. With a simple computing algorithm,
we created the binary masks containing with solar panel pixels for each image in our dataset, Figure 2.

6.3. U-Net

We tackle the above by reformulating the
problem as a binary semantic segmentation
task. Inspired by [68] and previous men-
tioned works, U-Net proved to be the top
performing and efficient network. Our archi-
tecture is composed of 3 main components;
the encoder block that performs two convolu-
tion operations followed by a down-sampling
using a max pooling layer, a bridge that per-
Fig.2. A preview of the binary masks, we can clearly forms a simple two convolution operations
notice the scarcity of the solar panels in the real-world data.  and finally the decoder block transposes the
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convolution layers, perform another two convolution operations and keep this up-sampling method to

produce the final binary mask, Figure 3.

,,,,,,,,,,,,,,,

32@256x256

L» 1024@16x16

[ Inputs [ Encoder Block [ Decoder Block [] Bridge

T

+ 64@256x256

» 128@128x128 4;]

4

Fig. 3. A schema representing our proposed U-Net architecture.

7. Training results

Due to computation limitations, our U-Net cannot
be trained on the full dataset, which led us to use
a single remotely sensed image and slice it to 361,
256 x 256 pixels, image patches. We also left all
patches that does not include solar panels to address
the problem of their scarcity of the image. We used
Adam as an optimizer with a le-3 learning rate, and
our goal is to minimize the binary cross entropy since
we are dealing with binary masks, Table 2.

The results mentioned above may seem very
promising giving the 99.78% accuracy. However,

those results are insignificant when it comes to the model’s likelihood for inference.

Table 2. The training process;
the model’s score by epoch.

Epoch | Mean loss | Mean accuracy
1 708.793 0.0071
2-6 13061.854 0.01
7 91.485 0.0536
8 22.4537 0.1506
9 1.9813 0.5871
10 0.7733 0.7486
11 0.3830 0.9254
12-25 0.02 0.9978

Clearly from

the graphs in Figure 4, the training can be described as poor and its behavior must be addressed.

Training and validation accuracy

1.0 1

0.8
>
9 0.6+ )
2 g
3 —
o i
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0 5 10 15 20 25
Epochs

60000
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40000
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— Training acc
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0 5 10 15 20 25
Epochs

Fig. 4. Accuracy and training loss results.
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8.

Testing Label We can also see for example in Fig-
ure 5 below the model’s performance on
testing data. The model has a tendency
to predict all pixels in the mask to be
black. And since the majority of the pix-
els in the slices and the number of true
negatives it learned from is considerably

high, the photovoltaic pixels became a
Fig.5. Accuracy and training loss results. minor thing to consider.

Testing Image

Conclusion

In this work, we shed light on the task of the photovoltaic instance segmentation in high-resolution
remotely sensed data. This process has brought forward a primary challenge derived from the data

itse

If, which is keeping a considerable number of true negatives in the training process to boost the

model’s ability for inference. We can address the given problem by exploring some possibilities in our
future work such as:

1.

2.

1

2]

3]

4]

[5]

[6]
7]
18]

19]

Adding more training images: while it is definitely our goal to train our model on the entire data
available. We are currently limited by the computing power since our NVIDIA®) Tesla® P4 cannot
handle higher tensor operations.

Working on the data itself: we can further explore some image compression methods to reduce the
high dimensionality of the Inputs.

Introducing a customized behavior for the model: inspired by the work presented in [62] with dif-
ferent loss function designs to improve the model’s tendency to distinguish between the importance
of the PV panels’ detection and the irrelevance of the rest of the pixels present in the scenes.
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Mnboke HaB4YaHHSA ansa cermeHTauii poToeNneKTpnyHMxX naHenen

Byzaauane K.', Japyiui A.', Ens I'yapma E.?

LEST, Yuisepcumem Kadi Atisda, L2IS, Mappaxew, Mapoxko
2 Koponiscoka nosimpana wkona, daxysvmem mamemamury ma ingopmamuru, L2IS, Mappaxew, Mapoxko

3aBIgKN TIEepeoBiil CEHCOPHINl TeXHOJIOTIl CyImyTHUKM Ta Oe3MIOTHI JITaJbHI amaparn
(BILJTA) BUpPOGSIOTH BEJUYE3HY KIJIBKICTH JAHUX, IO JO3BOJILE BIOCKOHAJIOBATH BCl
BHUJIM [IPOTPaM CIIOCTEPEKEHHsT 3eMJIi. 3aBsKH IbOMY JizKepery iHdgopMalil Ta yepe3 3a-
HEMOKOEHHST 3MIHOIO KJIIMATY OITiIHKa BiTHOBJ/IIOBAHOI €Heprii cTaJja Bce 6iabiT HeoOXiTHoIo
I DOCHiTHUKIB 1 KommaHiit. CoHATHa eHepris, IM0 MepeXoauTh Bix AaxiB OyIUHKIB 110
KOMYHAJbHUX (bepM, 3MIHIOE €HEPreTUYHI PUHKHU II0 BCbOMY cBiTy. OHAK aBTOMAaTHIHA
inenrudikaris doroenekrpuanux (PV) naneseil i crarycy COHIYHUX €JIEKTPOCTAHIII Bee
1I[e 3aJIUINAETHCH BIIKPUTUM IUTAHHAM, SKe, SKIIO0 Ha HHOI'O JIayTh HAJIEXKHY BiIIIOBiIb,
JIOTIOMOKE OT[IHUTHU PO3BUTOK COHSATHOI €HEPril Ta 3aI0BOJILHUTH TOTpebu B eneprii. Bixme-
JaBHa MeTosu rambokoro HasuanHst (DL) BUSBHINCS MIPUAATHUME JJist POOOTH 3 JAHAMHI
JUCTAHIIIAHOTO 30HyBAHHS, 110 HA/IAE€ DAraTO MOXKJIUBOCTEN I TIOJAJIBIINX JTOCI?KEHb
CTOCOBHO OIIIHKU COHSTYHOI eHepril. KoopauHarlist Mi>K JOCTYIHICTIO JJaHUX JTUCTAHIIHHO-
r'0 30H/YBAHHS Ta MOXKJIMBOCTSIMH KOMII'IOTEDHOT'O 30PY IVIMOOKOro HABYAHHS J[O3BOJINJIA
JOCTiTHUKAM 3HANUTH MOXKJIMBE PIIlleHHS I TJI00aJIbHOTO KapTorpadyBaHHS COHIYHUX
€JIEKTPOCTAHIIINA 1 YKUTJIOBUX (POTOEJIEKTPUIHUX HaHeeil. OnHaK OIIHKMA, OTPUMAHI IIiJL
9ac MOMEPeIHIX MOC/iKEeHb, BUKJUKAIOTh CyMHIBH, KOJIHU #ieTbcst mpo medirur ¢doro-
€JIEKTPUYHUX CHUCTEM. ¥ Il CTATTi JAeTaJIbHO BUCBITJIIOETHCS Ta JIOCIKYETHCS MOTEH-
miaJt migxoais DL, kepoBanux AUCTAHIIIHIM 30HIyBAHHSIM, JIJISI OIT[IHKW COHSTYHOI €Hepril.
3 orysiiy Ha Te, IO HENIOJABHO OyJo omybJiiKOBaHO 6araTo pobiT, MPUCBIYEHUX TaKii
mpobseMi, X pereH3yBaHHs Ta 0OTOBOPEHHSI MA€ BUCOKY MOTHUBAIIIO, 100 30epertu cra-
GipHMIT mporpec y MaitdyTHIX po3pobrax. [loTiM momaeTbest KOPOTKE JOCIIIZKEHHS, SKe
M IKPECITIOE sIK MOJIEJIl CEMAHTUYIHOI CEIMEHTAIl] MOXKYTh OYTH yIepeXKEHUMI Ta JABATH
3HAYHO BUIII OaJIM y BUNAJKY, KOJIM BUCHOBOK HetocTaTHiil. Mu 3abe3medyemMo CuMyJIsitito
poBiaHOT apxiTekTypu cemanTu4noi cermenTarii U-Net i mocsiraeMo OKa3HUKIB POy K-
tusHOCTI 70 99.78%. TuM He MeHII, HeOOXiHO BHECTH IIOJAJIbINI BJIOCKOHAJICHHS, 00
301IBIMUTH 37IATHICTD MO CTBOPIOBATH CIIPABXKHI (DOTOETIEKTPUIHI OJIOKHU.

Keywords: ducmanuitine 30ndysanms; COHANHG enepeisa; POMmOeAEKMPUNHI CUCTEMU,;
2auboke HaswarMa; aprimexmypa ceemernmanii U-Net.
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