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Many estimation methods have been proposed for the parameters of the regression models
with serially correlated errors. In this work, we develop an asymptotic theory for estima-
tion in the short panel data models with bilinear error. We propose a comparative study
by simulation between several estimators (adaptive, ordinary and weighted least squares)
for the coefficients of panel data models when the errors are bilinear serially correlated.
As a consequence of the uniform local asymptotic normality property, we obtain adaptive
estimates of the parameters. Finally, we illustrate the performance of the proposed esti-
mators via Monte Carlo simulation study. We show that the adaptive estimates are more
efficient than the weighted and ordinary least squares estimates.
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1. Introduction

Regression models have many applications in the areas of economics, accounting, finance, engineering,
environmental studies, medical sciences, etc. One of the tools to analyze large and high-dimensional
data sets is the panel data model. In this last, individuals (persons, firms, cities, etc.) are observed
at several points in time (days, years, before and after treatment, etc.). Many researchers (in these
disciplines) in recent years have relied on panel data to model the behavior of individuals. They
have done so because panel data models allow them to control for temporally persistent unobserved
differences among individuals that in many instances may bias estimates obtained from cross sections.

In classical panel data models, there is an important assumption, which is the error distribution
is normal i.d., with mean zero and finite variance. This standard assumption of the normality for the
error term in regression models in many situations do not agree with real data sets. In order to take
into account, the first-order serial correlation in the remaining perturbations, [1] introduced the error
component model for the random-effects model. Furthermore, the fixed-effects model had extended
by [2]. Both studies considered the autoregressive-AR(1) specification on the remainder disturbances.
However, the moving average-MA (1) model is a viable alternative (see [3]). Moreover, [4] had considered
the stochastic parameter panel data models when the errors are first-order serially correlated and he
had examined different estimators for these models. Not only but again various manuscripts treat the
problem of correlated errors in regression models in which the errors follow the linear models such as
autoregressive (AR), moving average (MA) (e.g. [5]), the mixed autoregressive and moving average
(ARMA) models (e.g. [6]), or the nonlinear models such as the random coefficient autoregressive
(RCAR) model, the autoregressive conditional heteroscedasticity (ARCH) model, fractional-ARIMA
and bilinear models (e.g. [7-10], etc.).

This paper focuses on short panels with relatively few time periods and many individuals (small T
and large n). We consider the general situation where the error distribution is not necessarily normal
and bilinear serially correlated. The model is defined, for ¢ = 1,2,...,nand t =1,2,...,T, by:
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vit=pn+ Bzt + ey, (1)
where y; ¢+ is the observation on the ith cross-sectional unit for the ¢ time period, x; ; denotes the vector
of observations on the non-stochastic regressors, and (u, 8')’ € RE+1 is the corresponding regression
coefficients, which is the unknown parameters of interest. The additive error terms e;; are following a
simple case of panel bilinear model, which takes the following form:

€t =be; 1€tk + ey with [ >Fk2>1, (2)

here €;; is a white noise with mean zero, finite variance o2 for all i and ¢, and density f: ¢ — f(e) :=
(1/0)f1(e/o), where fi belongs to the adequate class of standardized densities

1 0
Fo = {flz filu) >0Vu e ]R,/lfl(u) du =0.5 :/ fi(u) du}.

Probabilistic properties such as stationarity and invertibility have been studied in [11] remains valid
in panel bilinear model (2).

Denote by F;+(¢) and F;+(e) the o-algebras generated by {e; s|s < t} and {e; s|s < t}, respectively.
Then,

e Equation (2) admits a unique stationary solution e;; if and only if b20% < 1, and given by

ee] J
et =¢€it+ E Veiij H Eit—k—(s—1)I-
j=1 s=1

e Equation (2) is invertible if and only if 26?0 < 1, in this case, one can write
00 J
€it = €it + Z(_b)jei,t—kj H €it—1—(s—1)k-
j=1 s=1

Let y= (yl,la s 7yn,T);LT><17 €= (61,17- .- 7en,T);LT><17 5 = (50 = M)ﬁlv te 75K),(K+1)><17 and

1 2111 x201 - Tk
1 z112 7012 -+ TK12
X=1 . . . . .
1 TipT ZTonT - TKT T (K+1)

The matrix form of model (1)—(2) yield:
y=Xp+e.

In the literature, several estimation methods have appeared very successful, where parameters
of the model considered are used for the inference results concerning different subjects of interest.
In this paper, we show that the adaptive estimation method has an efficiency gain and asymptotic
performance.

This paper is organized as follows. Section 2 provides three estimation methods. Subsection 2.1
offers the adaptive estimators for parameters model with correlated errors. The feasible versions of
ordinary least squares (OLS) and weighted least squares (WLS) estimators have been suggested in
subsection 2.2. Section 3 contains the Monte Carlo simulation study for efficiency comparisons of
different estimators. Finally, concluding remarks are included in Section 4.

2. Estimation methods

The most popular methods for fitting multiple regression models among others are the maximum
likelihood and weighted least squares (see [12]). These methods have compared to other methods in
many studies. Moreover, many papers have claimed that maximum likelihood can be efficient (more
or less) than weighted least squares or ordinary least squares.

In 1981, Hausman and Wise claimed in their Section 10.3 that the maximum likelihood estimates
are more efficient. They state that the gain in efficiency from using maximum likelihood instead
of weighted least squares is small in some cases and the relative efficiency of maximum likelihood
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684 Lmakri A., Akharif A., Mellouk A.

becomes substantial in other cases. On the other hand, many papers suggest that maximum likelihood
is superior or inferior to weighted and least squares and other approaches.

The uniform local asymptotic normality (ULAN) of model (1)—(2) is established in [13] by using
the quadratic mean differentiability of the density characterizing the model. Once the ULAN property
is proved, the limit distribution and the asymptotic optimality of the locally asymptotically minimax
(LAM) estimators are described in this latter. Thereafter, we look into the limit distributions of both
weighted and ordinary least squares estimators of the model parameters.

2.1. Adaptive estimation

Model (2) can be looked as one-type of ARCH model. [14] constructed adaptive and hence efficient
estimators in a general GARCH. Their analysis is based on a general LAN theorem for time series
models. Furthermore, [15] considered adaptive estimation in nonstationary ARMA models with the
noise sequence satisfying a generalized ARCH process.

The ULAN property is an important notion under which we can define a notion of asymptotic
efficiency for estimators (see [16]). Before starting the results, we remind for the reader’s convenience
some notations and main assumptions under ULAN statistical experiments.

(n)" (n) (n)’]’ with y(n)

Consider a sequence of random variables [yl Yy e Yn o= (Yix,. .., yir) is an

observed series of length nT". Let Pgl}l the hypothesis under which yi(n) is generated by the model (1)—

(2) and 6 := (u, ', 0%,b) € REF3 is the parameter to be estimated in the sequel.
As usual, it is assumed that the vector of initial values

eén) = {(egﬁ)_lai,l_k, egg)_l€i72_k, e ,eg’rl?_lai,o, egl?ﬂ_l, e ,el(-j?l, el(-%)),i =1,... ,n}
is observable for each individual i.
Some technical assumptions about the innovation density f; are required to establishing ULAN
property:
(A1) f1 € Fo;
(A.2) fi is C! on R, with the first derivative f| and letting @, = —f]/f1.
Assume that

I(f1) = /R % (u) fr(u)du, J(f1) = /]R w?®% (u) fi(u)du, and K(f1):= /]R u®?, (u) f1(u) du

are finite.
Let +(® .— (T(n) (n) _(n) _(n)

!/ . / .
1Ty 3Ty 5Ty ) be a sequence of real vectors in RE+3 such that 7('7(") ig

uniformly bounded as n — co. In addition, we consider a K x K nonsingular matrix K defined as:
K™ = (C™)~Y2 with ¢ := L3 | 231:1 ;175 . Letting

1 0 00
(n)
(n)':_1/2OK 0 0
veoemn 0 0 1 0|
0 0 01

(n)
9—|—1j(") T(") ;fl

(n)

with these notations, P consist of a sequence of hypotheses approaching Py, I3 (in the sense

of contiguity).
Define the standardized residuals for i =1,2,...,nand t =1,2,...,T as:
Zig=2i4(0) =0 (yir — p— B'wiz) = 0 leiy
Clearly, under P((;;L}l, Z; 1 is a nT-tuple of random variables with probability density fi.

By virtue of ULAN property, the class of maximum likelihood estimators of € can be constructed
using a (V("))_l—consistent estimator of # as a preliminary estimator. In our model, using a preliminary
(™)~ consistent estimator 6, of 6, i.e. a sequence of statistics such that:

i) @)=, — ) = Op(1), under Pé?}ﬂ as n — 00.

(ii) For all ¢ > 0 fixed, the number of possible values of 6,, in B = {ueREFS: | ™) (u—0) ||I< c}
is bounded as n — oo.
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From ULAN property, we can construct sequences of estimates which are locally asymptotically
minimax. These LAM estimators of § can be defined as:

O = 0 + v ITE1(0,) A1 (0,); (3)
with (K + 3)-dimensional central sequence
[ n-12 L

2—1 t=1
(n) n-1/2 X
R S S, (KO,
A(")(Q) _ Af12(0) _ i=1 t= 1
n N AE‘?S?)(O) B _1/2 zn: Z q> 52t ] 7
n 2 f1
SN S
n-1/2 5@
Z Z <I>f1 L Z] ezt kHezt l—(s—1
L =1 t=I+1 |
and (K + 3) x (K + 3)-information matrix
T, TK(f) ;O
o2 203
0 (f;)IK 0 0
o
Ly (0) ==
203 4 1 1—b202
0 0 0 Ff1;44(9)

In current terminology, following [17], an estimator sequence §n with such a property is called best
reqular. It is also asymptotically efficient in the sense of [18]. The following theorem presents the
asymptotic properties of the estimator proposed above.

Theorem 1. Assume that (A.1) and (A.2) hold. Then, under Pé }1,
W) LG, — 0) = T7HO)AY (0) +op(1), as n— oo, (4)

and the asymptotic distribution of (v(™)~1(8,, — 6) is:
N(O,F;ll(e)), under Pé; :

(W)@, — ) —2— { -
nood | N(rTFNO)), under Py

(5)

Proof. The first equality (4) follows from the asymptotic linearity of the central sequence A;T)(H),
the discreteness of 6, and the fact that T f (0,,) is consistent for T' £, (). Furthermore, the asymptotic
normality of 6, in (3) under various optimality criteria, can be deduced from the limite distribution

of A;T)(H) which converges in distribution to a (K + 3)2-variate normal distribution with mean zero

(n)

under Py ¢ . mean I'y, (§)7 under p! and covariance matrix I'y, (§) under both (cf. [13]). m

9-1-)11(”)7—(”) 1
Note that we have, in fact, a class of asymptotically optimal estimators since any (V("))_l—consistent
estimator 6,, yields a locally asymptotically minimax estimator. Finally, it should be mentioned that
0, is known to be asymptotically optimal under various other optimality criteria.
Adaptivity by estimating the score function. Herein we estimate the score function ®; =
—f1/f1 by using the kernel estimator method (see [20]).
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Let a, and b, are two real sequences of positive terms converging to zero. The estimator of the
score function @, associated with the residual series Z(™ = (Zgll)(@), cee Z,g”%(e))’ is defined by:

£ (@, Z(m)

30z = - , (0
b + £ (@, Z(0)
with )
" Z)(0)
(n) (n)y — 1 x it
AL nTa;;k< o
and

n T (n)
(n) n)\ _ 1 N Zz’,t (9)
fi (x,Z( ))_ 3 E_ E_ k <T , for zeR,

where the kernel k satisfies Condition K of [19].
In order to construct an adaptive estimates, our approach consists of replacing the score function

®;, in the central sequence AEJI) (f) by an estimator ®™ . Now consider the adaptive central sequence
AM)(.) defined similarly as in (3).
(n)

Corollary 1. Let 0, be a (v")~1_consistent estimator of #. Then, under Py s and asn — oo we
have:

{ A (G,) — AW (B,) = op(1),

D(0,) — T, (0) = op(1).
Then, the adaptive estimate is presented by
0, = 0, + v"™T1(0,) A (8,,). (7)

Under Pgl}l and as n — 0o, we have:

~
~

(") 7B, — 0) = TN OAT(6) + op(1), (®)
and their asymptotic normality is established along the same lines of (5).

2.2. Ordinary and weighted least squares estimators

Regression modeling is one of the important statistical techniques used in many applications. The
classical theory shows that the OLS estimator of the unknown vector of regression coefficients is the
best linear unbiased estimator and asymptotically efficient when the errors have the same variance
(homoscedastic). But in many practical problems, the OLS assumption of constant variance is violated
in the errors. In other words, the error variances are unequal (heteroscedastic) and therefore the optimal
properties of the OLS are lost. If the variances are known, the best estimator, in this case, is the WLS
estimator with the reciprocals of the variances as the weights. However, usually, the error variances
are unknown. A natural and frequently used approach is to obtain estimates of the error variances
from the observed data and use the reciprocals of the variance estimates as the weights in the WLS.

In this subsection, OLS and WLS estimators of the coefficients of a multiple regression model in
panel data with serially correlated errors are derived and their limit distributions are also studied.

We consider the problem of estimating S in a multiple regression model with heteroscedastic error
variances:

y=XpB+e, (9)
where y is an nT-vector of observations y;; (1 = 1,2,...,n; t = 1,2,...,T), X is an nT x (K + 1)
full rank matrix of known constants (nT" > K + 1), 5 is an (K + 1)-vector of regression parameters
and e is an nT-vector of random variables e; ; with mean zero and conditional dispersion matrix (non
constant variance-covariance matrix)
V =diag (07 1,....007),

2

where o7, = o + b2026?t_l is the unknown error variance associated with e; ;.
K b}

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 682-692 (2023)



Estimation in short-panel data models with bilinear errors 687

2.2.1. Ordinary least squares estimator

When we use ordinary least squares to estimate linear regression we minimize the mean squared error:

MSE(8 ZZ (Yie — 7},8)%.

i=1 y=1
The solution, namely the ordinary least squares estimator of 3, and given in the vector form:

Bors = (X'X)"'X"y. (10)

2.2.2. Weighted least squares estimator

Herein we construct a weighted least squares estimator for the regression parameters S based on the
estimated error parameters b and 2. Furthermore, we show that it is asymptotically more efficient
than the ordinary least squares estimator.

Since Var(y;+/e;t—1) = a?t depends on e;¢—; one may consider a conditional WLS estimator of
in order to improve the efﬁciehcy. Overall, the WLS are the popular method of solving the problem of
heteroscedasticity in regression models. In this paragraph, we derive such an estimator and study its
properties.

We could instead minimize the weighted mean squared error,

WMSE(ﬂ,le, . wnT Zzwzt Yit — ;7t5)27
i=1 t=1

where w;; = ;2 . As a special case where all the weights w;; = 1, we see that this coincides with

7,t

OLS estimator. 7By the same kind of linear algebra we used to solve the ordinary linear least squares
problem, we can solve the above problem. Let W be the matrix with the w;; on the diagonal and
zeroes everywhere else, then

WMSE = %(y — XB)'W(y — XB).
Differentiating with respect to 5, we get as the gradient
VﬁWMSE— 2 ( X'Wy+ X'WXB).
Setting this to zero at the optimum and solvmg, the conditional weighted least squares estimator of 3
is given by:

Bwrs = (X'WaX) ™ X' Wy, (11)
where
W, = V™! = diag ( L 1 >
K o2+ b20'2€i_2’ 2 4 b202¢ n T

and 7 is an estimator of i := (¢2,b%0)". The following paragraph is concerned with the problem of
estimating 7.
Let R;(B) = vix — E(yit/eir—1) and denote 0 = J”( ) defined as:

o7,(n) = E(R}(B)/eii—1) = 0 + b°0%e}, ;.

A conditional least squares estimator 7(3) of 7 can be obtained by minimizing

n T
SOST(R(8) - o2, (m) .

i=1 t=1
Thus, 7(B) is given by a solution of the equation:

do?,
S (.09 - o) T

=1 t=1

The estimate 7(3) when £ is known it is then seen to be:

() = U'U)"'U'v(p), (12)
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where )
L oefy

v=|: and  V(8) = (RL1(8),.. Bi.r(B))"
1 e%z,T—l
In order to derive the limit distribution of (12), we suppose that E(|e; +|®) < oo, a sufficient condition
for this is that F(|e;4|®) < co. So, the limit distribution of 7 is given by the following theorem.

Theorem 2. Let7n = ﬁ(ﬁ), where 3 is given by (10), we have
V(@ —n) % N(0,K'LEY), (13)

where
K_EK@J?,t(n)) (80&(77))’} B [ 1 E(e?) }
n n E(e?,) E(e},) |’
and
21907, (007 (n)\' L L
L - 2 _ 2 2,0 2,t _ 11 12
() (R0 (20 Y] [ ],
with
Ly = (1 — b404)E(e?,t) — 202E(622t) + o,
Ly = b4(E(5;lt) - 04)E(6?,t) + 4b204E(eft) + (E(eit) - 0-4)E(ez,t)7
Loy = b4(E(€;lt) - ‘74)E(6§,t) +4b? 0 B(ed,) + (E(E?,t) - 04)E(ez,t)7
and
2 o’
E(ei,t) = 1— b20'2’
4 6b204E(622,t) + E(E?,t)
(ei0) = 1-biEEl,)
1
B(e8)) = T=WEE) (156 0Bl ) E(e,) + 15620° B(e2,) B(el,) + E(S,)),
1
E(e?,t) = =R (28b60'2E(e?,t)E(5?,t) + 70b4E(e§,t)(E(5?,t))2 + 285202E(622,t)E(52‘6,t))-

1 08E(E)

Proof. The limit distribution is established using the following lemma.
Lemma 1. We have as n — oo and T fixed:
(i) n~tU'U n:—oo> TK,
(i) n= U (V(8) - Un) =20,
(iii) n=2U" (V(B) = V(8)) ——= 0,
(iv) n=V2U" (V(8) = Un) —— N(0,T>L).

n—

Then, we consider the decomposition
V(i =n) = V(i = 7(8)) + vn(7(8) —n).
First, note that:
V(] = 7(8)) = Va(U'U) U (V(B) - V(8))
= (TK)™'n™PU'(V(B) = V(8)) +0,(1)
= 0p(1),
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by (i) and (zii) of the above lemma. Moreover,
Vr(ii(8) —n) = Vr(U'U) U (V(8) - Un)
= (TK)"'n™ ' 2U'(V(B) = Un) + 0p(1)
2 N(0,KT'LKY),

n—oo
by (i) and (iv) of the above. Then, the theorem is proved. R [
Finally, the theorem below shows the asymptotic normality of Sy rs.

Theorem 3. Denote BWLS = EWLS(ﬁ); as n — oo we have
7y D _
Vn(Bwrs — B) — N(0, (X'W, X)), (14)

Stationary errors with known autocovariances are presented among all un-weighted linear estima-
tors, including OLS estimators, there are WLS estimators that have minimal variance. The estimator
B\W Ls is obtained in two steps. The first step is to obtain an estimator W5. The second step is the
calculation outlined in (11).

3. Monte Carlo simulation study

In this section, we will make Monte Carlo simulation study to compare the performance of three
estimators proposed of the regression parameters in sampling experiments.
Let y = (y1,1,---,Yn,7) be a nT x 1 vector of dependent variable observations. We set K = 2, let

B = (Bo = p, 1, P2) be the 3 x 1 vector of regression parameters, and e = (eq1,...,e,,7) be a nT x 1
vector of additive errors. Consider the model:
Vit = 1+ G121 + Batos + €y,
(15)
it = be; 138 1—1 + ¢
We take:
* n = 30,50,70,100 and T = 15;
* 5 = (057 17 _1)/)
o L1t 0 5 2 .
soa= L~ (o] o))
* b=(-0.5,-0.3,-0.1,0,0.1,0.3,0.5);
* the g;,’s are 1.i.d. N(0,0.3).

Define
1 w11 22011

1 z1120 7212
X=1. ) .

1 Tin, T T2;:nT (nTx3)

It is also convenient to write the linear model (15) in vector-matrix notation: y = X3 + e.
Thus, R
~ The ordinary least squares estimator of 8 is: Sors = (X'X I Xy.
— The weighted least squares estimator of 3 is given by: Swrs = (X'W5X )LX! Way.

— The adaptive estimator of /3 is defined as: ﬁn B +n~12 [0 K(() )] T3, AM(3,).
3x3

In defining Bn, we require the existence of consistent estimators 5,“ I, and 52 of B, I(f1) and o2,
respectively. For this purpose one can use:

n T
Bn:B\OLL% ”:_ZZ €zt )]27 and 33 ZZ 5@159~
i=1 t=1 i=1 t=1

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 682-692 (2023)



690 Lmakri A., Akharif A., Mellouk A.

The sequences a,, = b, = n~ 16 were adopted with the kernel k(z) = m, with ¢ = 1/ [R(1 +

29)7dr ~ 2.094. Then, the adaptive central sequence and its information matrix are respectively;

AW @) = i1t " and T(0) := A—j;fnlg.
On ~ . o
>3 8 (G s
g

i=1 t=1 3x1

In the following, we compare the performance of three estimators 30L57 EWLS and B\n of f =

(Bo, B1, B2)'.

Table 1. Ratio of mean-squared errors of BO Ls and BW LS-

nT b

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
450 | 1.4330 | 1.2521 | 1.0464 | 1.0000 | 1.0243 | 1.2314 | 1.6542
750 | 2.2503 | 1.5063 | 1.0438 | 1.0000 | 1.0368 | 1.4917 | 2.6015
1050 | 2.7276 | 1.9521 | 1.2325 | 1.0000 | 1.7976 | 2.1648 | 2.3052
1500 | 3.0328 | 2.5729 | 2.1721 | 1.0000 | 2.2849 | 2.9441 | 3.2411

Table 2. Ratio of mean-squared errors of BO s and Bn

nT b

—-0.5 —-0.3 —0.1 0 0.1 0.3 0.5
450 | 2.5411 | 2.2252 | 2.1047 | 1.5594 | 2.0885 | 2.2441 | 2.8215
750 | 2.9576 | 3.6230 | 2.3868 | 1.7877 | 2.2245 | 2.4062 | 3.0274
1050 | 3.1926 | 2.6690 | 2.2065 | 2.0332 | 2.3264 | 2.8571 | 3.2024
1500 | 4.1032 | 3.7039 | 2.5880 | 2.1020 | 2.4210 | 3.8110 | 3.9507

Table 3. Ratio of mean-squared errors of BW s and En

nT b

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
450 | 1.7732 | 1.7771 | 2.0113 | 1.5594 | 2.0389 | 1.8223 | 1.7056
750 | 1.3143 | 2.4052 | 2.2866 | 1.7877 | 2.1455 | 1.6130 | 1.1637
1050 | 1.1704 | 1.3672 | 1.7902 | 2.0332 | 1.2941 | 1.3197 | 1.3892
1500 | 1.3529 | 1.4395 | 1.1914 | 2.1020 | 1.0595 | 1.2944 | 1.2189

Inspection of Tables: Fach of the above simulations was replicated 200 times and the values of
BO LS, BW s and Bn were computed. Tables 1, 2 and 3 summarize the results for the ratio of mean

squared errors of (BOLS and EWLS), (BOLS and Bn) and (EWLS and Bn) respectively. It is seen in
Monte Carlo studies that EW Ls and Bn are always more efficient than BO Ls. In addition to that, their
efficiency versus fSors increases as |b| increase. Furthermore, in Table 1 when b = 0 the OLS and
WLS estimators coincide. Also, Table 3 shows that the WLS estimator is dominated by the adaptive

estimator.

4. Conclusions

The problem of estimating the coefficients of a multiple regression model in panel data with bilinear
correlated errors is considered. The adaptive estimator and its asymptotic distribution are derived
from the uniform local asymptotic normality of the model when the error terms are a bilinear process.
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Furthermore, OLS and WLS estimators are derived and their limit distributions are studied. Finally,
the simulation study shows that the adaptive estimators dominate both the weighted and unweighted
(ordinary) least squares estimators.
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OuiHka B KOpOTKOMaHe/bHUX MoAensax AaHuX
3 OINIHIMHUMWU NOMUIIKAMN

JImaxpi A1, Axapid A.2, Memtyk A.3

! Havionanvna suwa wxonra mucmeuyms i pemecea (ENSAM), Ynisepcumem Xacana II, Kacabaanka, Mapokko
2 JIabopamopis mamemamury ma npuxaadnoi mamemamuxu FSTT,
Vuisepcumem A6deavmanex Eccaadi Temyan, Mapoxko
3 Pezionasvnuti yerwmp oceimu ma npogecitinoi nidzomosku, Tamnorcep, Mapokko

YV poboTi po3pobIIAETHC aCHMITOTAYHA TEOPid [ OIIHIOBAHHS B MOJIEJSAX KOPOTKUX
[MaHeJIbHUX JIaHUX 3 OLIiHIAHOI MOMUJIKOK. 3allPOIOHOBAHO IOPIBHSIBHE JIOCI?KEHHS
NLISIXOM MOJZIEJIIOBAHHS MizK JIeKIIbKOMA OLiHKaMU (&JaNTUBHUMY, 3BUYAHAMU Ta, 3BaKe-
HUM METOJOM HaliMEHIIUX KBAJAPATIB) [t KoediieHTiB Mojiesell NaHeJbHUX JIAHUX, KOJII
TOMUJIKY € OLTIHITHIME [TOC/TiIOBHO KOPEJIbOBAHNME. K HAC/IIOK BIACTHBOCTI PiBHOMIp-
HOI JIOKQJIbHOI aCHUMIITOTHYHOI HOPMAJIbHOCTI OTPUMAHO &JAITHBHI OIIHKHU I1apaMeTpiB.
Haxiners, mpoitocTpoBaHO MPOAyKTUBHICTD 3aIIPOTIOHOBAHUX OIIHIOBAMIB 38, JOIIOMOT0I0
MozemioBanasa MerogoMm Monte—Kapio. Ilokazano, 1o aganTuBHi OIiHKKM e(eKTUBHIII,
Hi>K 3BaXkKeHi Ta 3BUYaiHI OI[iIHKK METOJIOM HAWMEHINX KBa/JIPaTiB.

Knw4osi cnoBa: adanmueha ouinka; GiAtHitini M00eat; NaHeAbHT pe2Pecilini Modeai;
36a0tCeHT HAUMERWT Keadpamu; 36Uusalini HatUMeHWT Keadpamau.
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