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Many estimation methods have been proposed for the parameters of the regression models
with serially correlated errors. In this work, we develop an asymptotic theory for estima-
tion in the short panel data models with bilinear error. We propose a comparative study
by simulation between several estimators (adaptive, ordinary and weighted least squares)
for the coefficients of panel data models when the errors are bilinear serially correlated.
As a consequence of the uniform local asymptotic normality property, we obtain adaptive
estimates of the parameters. Finally, we illustrate the performance of the proposed esti-
mators via Monte Carlo simulation study. We show that the adaptive estimates are more
efficient than the weighted and ordinary least squares estimates.
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1. Introduction

Regression models have many applications in the areas of economics, accounting, finance, engineering,
environmental studies, medical sciences, etc. One of the tools to analyze large and high-dimensional
data sets is the panel data model. In this last, individuals (persons, firms, cities, etc.) are observed
at several points in time (days, years, before and after treatment, etc.). Many researchers (in these
disciplines) in recent years have relied on panel data to model the behavior of individuals. They
have done so because panel data models allow them to control for temporally persistent unobserved
differences among individuals that in many instances may bias estimates obtained from cross sections.

In classical panel data models, there is an important assumption, which is the error distribution
is normal i.d., with mean zero and finite variance. This standard assumption of the normality for the
error term in regression models in many situations do not agree with real data sets. In order to take
into account, the first-order serial correlation in the remaining perturbations, [1] introduced the error
component model for the random-effects model. Furthermore, the fixed-effects model had extended
by [2]. Both studies considered the autoregressive-AR(1) specification on the remainder disturbances.
However, the moving average-MA(1) model is a viable alternative (see [3]). Moreover, [4] had considered
the stochastic parameter panel data models when the errors are first-order serially correlated and he
had examined different estimators for these models. Not only but again various manuscripts treat the
problem of correlated errors in regression models in which the errors follow the linear models such as
autoregressive (AR), moving average (MA) (e.g. [5]), the mixed autoregressive and moving average
(ARMA) models (e.g. [6]), or the nonlinear models such as the random coefficient autoregressive
(RCAR) model, the autoregressive conditional heteroscedasticity (ARCH) model, fractional-ARIMA
and bilinear models (e.g. [7–10], etc.).

This paper focuses on short panels with relatively few time periods and many individuals (small T
and large n). We consider the general situation where the error distribution is not necessarily normal
and bilinear serially correlated. The model is defined, for i = 1, 2, . . . , n and t = 1, 2, . . . , T , by:
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yi,t = µ+ β′xi,t + ei,t, (1)

where yi,t is the observation on the ith cross-sectional unit for the tth time period, xi,t denotes the vector
of observations on the non-stochastic regressors, and (µ, β′)′ ∈ R

K+1 is the corresponding regression
coefficients, which is the unknown parameters of interest. The additive error terms ei,t are following a
simple case of panel bilinear model, which takes the following form:

ei,t = bei,t−lεi,t−k + εi,t with l > k > 1, (2)

here εi,t is a white noise with mean zero, finite variance σ2 for all i and t, and density f : ε 7→ f(ε) :=
(1/σ)f1(ε/σ), where f1 belongs to the adequate class of standardized densities

F0 :=

{
f1 : f1(u) > 0 ∀u ∈ R,

∫ 1

−1
f1(u) du = 0.5 =

∫ 0

−∞

f1(u) du

}
.

Probabilistic properties such as stationarity and invertibility have been studied in [11] remains valid
in panel bilinear model (2).

Denote by Fi,t(ε) and Fi,t(e) the σ-algebras generated by {εi,s|s 6 t} and {ei,s|s 6 t}, respectively.
Then,

• Equation (2) admits a unique stationary solution ei,t if and only if b2σ2 < 1, and given by

ei,t = εi,t +
∞∑

j=1

bjεi,t−lj

j∏

s=1

εi,t−k−(s−1)l.

• Equation (2) is invertible if and only if 2b2σ2 < 1, in this case, one can write

εi,t = ei,t +

∞∑

j=1

(−b)jei,t−kj

j∏

s=1

ei,t−l−(s−1)k.

Let y = (y1,1, . . . , yn,T )
′
nT×1, e = (e1,1, . . . , en,T )

′
nT×1, β = (β0 = µ, β1, . . . , βK)′(K+1)×1, and

X =




1 x1;1,1 x2;1,1 · · · xK;1,1

1 x1;1,2 x2;1,2 · · · xK;1,2
...

...
...

...
...

1 x1;n,T x2;n,T · · · xK;n,T




nT×(K+1)

.

The matrix form of model (1)–(2) yield:
y = Xβ + e.

In the literature, several estimation methods have appeared very successful, where parameters
of the model considered are used for the inference results concerning different subjects of interest.
In this paper, we show that the adaptive estimation method has an efficiency gain and asymptotic
performance.

This paper is organized as follows. Section 2 provides three estimation methods. Subsection 2.1
offers the adaptive estimators for parameters model with correlated errors. The feasible versions of
ordinary least squares (OLS) and weighted least squares (WLS) estimators have been suggested in
subsection 2.2. Section 3 contains the Monte Carlo simulation study for efficiency comparisons of
different estimators. Finally, concluding remarks are included in Section 4.

2. Estimation methods

The most popular methods for fitting multiple regression models among others are the maximum
likelihood and weighted least squares (see [12]). These methods have compared to other methods in
many studies. Moreover, many papers have claimed that maximum likelihood can be efficient (more
or less) than weighted least squares or ordinary least squares.

In 1981, Hausman and Wise claimed in their Section 10.3 that the maximum likelihood estimates
are more efficient. They state that the gain in efficiency from using maximum likelihood instead
of weighted least squares is small in some cases and the relative efficiency of maximum likelihood
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becomes substantial in other cases. On the other hand, many papers suggest that maximum likelihood
is superior or inferior to weighted and least squares and other approaches.

The uniform local asymptotic normality (ULAN) of model (1)–(2) is established in [13] by using
the quadratic mean differentiability of the density characterizing the model. Once the ULAN property
is proved, the limit distribution and the asymptotic optimality of the locally asymptotically minimax
(LAM) estimators are described in this latter. Thereafter, we look into the limit distributions of both
weighted and ordinary least squares estimators of the model parameters.

2.1. Adaptive estimation

Model (2) can be looked as one-type of ARCH model. [14] constructed adaptive and hence efficient
estimators in a general GARCH. Their analysis is based on a general LAN theorem for time series
models. Furthermore, [15] considered adaptive estimation in nonstationary ARMA models with the
noise sequence satisfying a generalized ARCH process.

The ULAN property is an important notion under which we can define a notion of asymptotic
efficiency for estimators (see [16]). Before starting the results, we remind for the reader’s convenience
some notations and main assumptions under ULAN statistical experiments.

Consider a sequence of random variables
[
y
(n)′

1 , y
(n)′

2 , . . . , y
(n)′
n

]′
with y

(n)
i := (yi,1, . . . , yi,T )

′ is an

observed series of length nT . Let P
(n)
θ;f1

the hypothesis under which y
(n)
i is generated by the model (1)–

(2) and θ := (µ, β′, σ2, b) ∈ R
K+3 is the parameter to be estimated in the sequel.

As usual, it is assumed that the vector of initial values

e
(n)
0 :=

{
(e

(n)
i,1−lεi,1−k, e

(n)
i,2−lεi,2−k, . . . , e

(n)
i,k−lεi,0, e

(n)
i,k+1−l, . . . , e

(n)
i,−1, e

(n)
i,0 ), i = 1, . . . , n

}

is observable for each individual i.
Some technical assumptions about the innovation density f1 are required to establishing ULAN

property:
(A.1) f1 ∈ F0;
(A.2) f1 is C1 on R, with the first derivative f ′

1 and letting Φf1 = −f ′
1/f1.

Assume that

I(f1) :=

∫

R

Φ2
f1(u)f1(u) du, J(f1) :=

∫

R

u2Φ2
f1(u)f1(u) du, and K(f1) :=

∫

R

uΦ2
f1(u)f1(u) du

are finite.
Let τ (n) :=

(
τ
(n)
1 , τ

(n)′

2 , τ
(n)
3 , τ

(n)
4

)′
be a sequence of real vectors in R

K+3 such that τ (n)
′

τ (n) is

uniformly bounded as n → ∞. In addition, we consider a K ×K nonsingular matrix K
(n) defined as:

K
(n) := (C(n))−1/2 with C

(n) := 1
nT

∑n
i=1

∑T
t=1 xi,tx

′
i,t. Letting

ν(n) := n−1/2




1 0 0 0

0 K
(n) 0 0

0 0 1 0
0 0 0 1


 ,

with these notations, P
(n)

θ+ν(n)τ (n);f1
consist of a sequence of hypotheses approaching P

(n)
θ;f1

(in the sense

of contiguity).
Define the standardized residuals for i = 1, 2, . . . , n and t = 1, 2, . . . , T as:

Zi,t = Zi,t(θ) := σ−1(yi,t − µ− β′xi,t) = σ−1ei,t.

Clearly, under P
(n)
θ;f1

, Zi,t is a nT -tuple of random variables with probability density f1.
By virtue of ULAN property, the class of maximum likelihood estimators of θ can be constructed

using a (ν(n))−1-consistent estimator of θ as a preliminary estimator. In our model, using a preliminary
(ν(n))−1-consistent estimator θ̃n of θ, i.e. a sequence of statistics such that:

(i) (ν(n))−1(θ̃n − θ) = OP (1), under P
(n)
θ;f1

, as n → ∞.

(ii) For all c > 0 fixed, the number of possible values of θ̃n in B =
{
u ∈ R

K+3 : ‖ (ν(n))−1(u− θ) ‖6 c
}

is bounded as n → ∞.
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From ULAN property, we can construct sequences of estimates which are locally asymptotically
minimax. These LAM estimators of θ can be defined as:

θ̂n := θ̃n + ν(n)Γ−1
f1

(θ̃n)∆
(n)
f1

(θ̃n); (3)

with (K + 3)-dimensional central sequence

∆
(n)
f1

(θ) :=




∆
(n)
f1;1

(θ)

∆
(n)
f1;2

(θ)

∆
(n)
f1;3

(θ)

∆
(n)
f1;4

(θ)



:=




n−1/2

σ

n∑

i=1

T∑

t=1

Φf1(
εi,t
σ

)

n−1/2

σ

n∑

i=1

T∑

t=1

Φf1(
εi,t
σ

)(K(n))′xi,t

n−1/2

2σ2

n∑

i=1

T∑

t=1

[
Φf1(

εi,t
σ

)Zi,t − 1
]

n−1/2

σ

n∑

i=1

T∑

t=l+1

Φf1(
εi,t
σ

)

∞∑

j=1

j(−b)j−1ei,t−k

j∏

s=1

ei,t−l−(s−1)k




,

and (K + 3)× (K + 3)-information matrix

Γf1(θ) :=




TI(f1)

σ2
0

TK(f1)

2σ3
0

0
TI(f1)IK

σ2
0 0

TK(f1)

2σ3
0

T

4σ4

( J(f1)

1− b2σ2
− 1
)

0

0 0 0 Γf1;44(θ)




.

In current terminology, following [17], an estimator sequence θ̂n with such a property is called best

regular. It is also asymptotically efficient in the sense of [18]. The following theorem presents the
asymptotic properties of the estimator proposed above.

Theorem 1. Assume that (A.1) and (A.2) hold. Then, under P
(n)
θ;f1

,

(ν(n))−1(θ̂n − θ) = Γ−1
f1

(θ)∆
(n)
f1

(θ) + oP (1), as n → ∞, (4)

and the asymptotic distribution of (ν(n))−1(θ̂n − θ) is:

(ν(n))−1(θ̂n − θ)
D−−−→

n→∞

{
N
(
0,Γ−1

f1
(θ)
)
, under P

(n)
θ;f1

;

N
(
τ,Γ−1

f1
(θ)
)
, under P

(n)

θ+ν(n)τ (n);f1
.

(5)

Proof. The first equality (4) follows from the asymptotic linearity of the central sequence ∆
(n)
f1

(θ),

the discreteness of θ̃n, and the fact that Γf1(θ̃n) is consistent for Γf1(θ). Furthermore, the asymptotic

normality of θ̂n in (3) under various optimality criteria, can be deduced from the limite distribution

of ∆
(n)
f1

(θ) which converges in distribution to a (K + 3)2-variate normal distribution with mean zero

under P
(n)
θ;f1

, mean Γf1(θ)τ under P
(n)

θ+ν(n)τ (n);f1
and covariance matrix Γf1(θ) under both (cf. [13]). �

Note that we have, in fact, a class of asymptotically optimal estimators since any (ν(n))−1-consistent
estimator θ̃n yields a locally asymptotically minimax estimator. Finally, it should be mentioned that
θ̂n is known to be asymptotically optimal under various other optimality criteria.

Adaptivity by estimating the score function. Herein we estimate the score function Φf1 =
−f ′

1/f1 by using the kernel estimator method (see [20]).
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Let an and bn are two real sequences of positive terms converging to zero. The estimator of the

score function Φf1 associated with the residual series Z(n) =
(
Z

(n)
1,1 (θ), . . . , Z

(n)
n,T (θ)

)′
is defined by:

Φ̂(n)(x) = − f
(n)′

1 (x,Z(n))

bn + f
(n)
1 (x,Z(n))

, (6)

with

f
(n)
1 (x,Z(n)) =

1

nTan

n∑

i=1

T∑

t=1

k

(
x− Z

(n)
i,t (θ)

an

)

and

f
(n)′

1 (x,Z(n)) =
1

nTa2n

n∑

i=1

T∑

t=1

k′

(
x− Z

(n)
i,t (θ)

an

)
, for x ∈ R,

where the kernel k satisfies Condition K of [19].
In order to construct an adaptive estimates, our approach consists of replacing the score function

Φf1 in the central sequence ∆
(n)
f1

(θ) by an estimator Φ̂(n). Now consider the adaptive central sequence

∆̂(n)(·) defined similarly as in (3).

Corollary 1. Let θ̃n be a (ν(n))−1-consistent estimator of θ. Then, under P
(n)
θ;f1

and as n → ∞ we
have: {

∆̂(n)(θ̃n)−∆
(n)
f1

(θ̃n) = oP (1),

Γ̂(θ̃n)− Γf1(θ̃n) = oP (1).

Then, the adaptive estimate is presented by
̂̂
θn = θ̃n + ν(n)Γ̂−1(θ̃n)∆̂

(n)(θ̃n). (7)

Under P
(n)
θ;f1

and as n → ∞, we have:

(ν(n))−1(
̂̂
θn − θ) = Γ−1

f1
(θ)∆

(n)
f1

(θ) + oP (1), (8)

and their asymptotic normality is established along the same lines of (5).

2.2. Ordinary and weighted least squares estimators

Regression modeling is one of the important statistical techniques used in many applications. The
classical theory shows that the OLS estimator of the unknown vector of regression coefficients is the
best linear unbiased estimator and asymptotically efficient when the errors have the same variance
(homoscedastic). But in many practical problems, the OLS assumption of constant variance is violated
in the errors. In other words, the error variances are unequal (heteroscedastic) and therefore the optimal
properties of the OLS are lost. If the variances are known, the best estimator, in this case, is the WLS
estimator with the reciprocals of the variances as the weights. However, usually, the error variances
are unknown. A natural and frequently used approach is to obtain estimates of the error variances
from the observed data and use the reciprocals of the variance estimates as the weights in the WLS.

In this subsection, OLS and WLS estimators of the coefficients of a multiple regression model in
panel data with serially correlated errors are derived and their limit distributions are also studied.

We consider the problem of estimating β in a multiple regression model with heteroscedastic error
variances:

y = Xβ + e, (9)

where y is an nT -vector of observations yi,t (i = 1, 2, . . . , n; t = 1, 2, . . . , T ), X is an nT × (K + 1)
full rank matrix of known constants (nT > K + 1), β is an (K + 1)-vector of regression parameters
and e is an nT -vector of random variables ei,t with mean zero and conditional dispersion matrix (non
constant variance-covariance matrix)

V = diag
(
σ2
1,1, . . . , σ

2
n,T

)
,

where σ2
i,t = σ2 + b2σ2e2i,t−l is the unknown error variance associated with ei,t.
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2.2.1. Ordinary least squares estimator

When we use ordinary least squares to estimate linear regression, we minimize the mean squared error:

MSE(β) =
1

nT

n∑

i=1

T∑

y=1

(yi,t − x′i,tβ)
2.

The solution, namely the ordinary least squares estimator of β, and given in the vector form:

β̂OLS = (X ′X)−1X ′y. (10)

2.2.2. Weighted least squares estimator

Herein we construct a weighted least squares estimator for the regression parameters β based on the
estimated error parameters b and σ2. Furthermore, we show that it is asymptotically more efficient
than the ordinary least squares estimator.

Since Var(yi,t/ei,t−l) = σ2
i,t depends on ei,t−l one may consider a conditional WLS estimator of β

in order to improve the efficiency. Overall, the WLS are the popular method of solving the problem of
heteroscedasticity in regression models. In this paragraph, we derive such an estimator and study its
properties.

We could instead minimize the weighted mean squared error,

WMSE(β,w1,1, . . . , wn,T ) =
1

nT

n∑

i=1

T∑

t=1

wi,t(yi,t − x′i,tβ)
2,

where wi,t = 1
σ2
i,t

. As a special case where all the weights wi,t = 1, we see that this coincides with

OLS estimator. By the same kind of linear algebra we used to solve the ordinary linear least squares
problem, we can solve the above problem. Let W be the matrix with the wi,t on the diagonal and
zeroes everywhere else, then

WMSE =
1

nT
(y −Xβ)′W (y −Xβ).

Differentiating with respect to β, we get as the gradient

∇βWMSE =
2

nT
(−X ′Wy +X ′WXβ).

Setting this to zero at the optimum and solving, the conditional weighted least squares estimator of β
is given by:

β̂WLS = (X ′Wη̂X)−1X ′Wη̂y, (11)

where

Wη = V −1 = diag

(
1

σ2 + b2σ2e21,−2

, . . . ,
1

σ2 + b2σ2e2n,T−l

)

and η̂ is an estimator of η := (σ2, b2σ2)′. The following paragraph is concerned with the problem of
estimating η.

Let Ri,t(β) = yi,t − E(yi,t/ei,t−l) and denote σ2
i,t = σ2

i,t(η) defined as:

σ2
i,t(η) = E

(
R2

i,t(β)/ei,t−l

)
= σ2 + b2σ2e2i,t−l.

A conditional least squares estimator η̂(β) of η can be obtained by minimizing
n∑

i=1

T∑

t=1

(
R2

i,t(β)− σ2
i,t(η)

)2
.

Thus, η̂(β) is given by a solution of the equation:
n∑

i=1

T∑

t=1

(
R2

i,t(β)− σ2
i,t(η)

)∂σ2
i,t(η)

∂η
= 0.

The estimate η̂(β) when β is known it is then seen to be:

η̂(β) = (U ′U)−1U ′V (β), (12)
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where

U =




1 e21,1−l
...

...
1 e2n,T−l


 and V (β) =

(
R2

1,1(β), . . . , R
2
n,T (β)

)′
.

In order to derive the limit distribution of (12), we suppose that E(|ei,t|8) < ∞, a sufficient condition
for this is that E(|εi,t|8) < ∞. So, the limit distribution of η̂ is given by the following theorem.

Theorem 2. Let η̂ = η̂(β̂), where β̂ is given by (10), we have
√
n(η̂ − η)

D−−−→
n→∞

N
(
0,K−1LK−1

)
, (13)

where

K = E

[(
∂σ2

i,t(η)

∂η

)(
∂σ2

i,t(η)

∂η

)′]
=

[
1 E(e2i,t)

E(e2i,t) E(e4i,t)

]
,

and

L = E

[(
R2

i,t(β)− σ2
i,t(η)

)2(∂σ2
i,t(η)

∂η

)(
∂σ2

i,t(η)

∂η

)′]
=

[
L11 L12

L12 L22

]
,

with

L11 =
(
1− b4σ4

)
E(e4i,t)− 2σ2E(e2i,t) + σ4,

L12 = b4
(
E(ε4i,t)− σ4

)
E(e6i,t) + 4b2σ4E(e4i,t) +

(
E(ε4i,t)− σ4

)
E(e2i,t),

L22 = b4
(
E(ε4i,t)− σ4

)
E(e8i,t) + 4b2σ4E(e6i,t) + (E(ε4i,t)− σ4)E(e4i,t),

and

E(e2i,t) =
σ2

1− b2σ2
,

E(e4i,t) =
6b2σ4E(e2i,t) + E(ε4i,t)

1− b4E(ε4i,t)
,

E(e6i,t) =
1

1− b6E(ε6i,t)

(
15b4σ2E(e4i,t)E(ε4i,t) + 15b2σ2E(e2i,t)E(ε4i,t) + E(ε6i,t)

)
,

E(e8i,t) =
1

1− b8E(ε8i,t)

(
28b6σ2E(e6i,t)E(ε6i,t) + 70b4E(e4i,t)(E(ε4i,t))

2 + 28b2σ2E(e2i,t)E(ε6i,t)
)
.

Proof. The limit distribution is established using the following lemma.

Lemma 1. We have as n → ∞ and T fixed:

(i) n−1U ′U
a.s−−−→

n→∞
TK,

(ii) n−1U ′
(
V (β)− Uη

) a.s−−−→
n→∞

0,

(iii) n−1/2U ′
(
V (β̂)− V (β)

) P−−−→
n→∞

0,

(iv) n−1/2U ′
(
V (β)− Uη

) D−−−→
n→∞

N (0, T 2L).

Then, we consider the decomposition
√
n
(
η̂ − η

)
=

√
n
(
η̂ − η̂(β)

)
+

√
n
(
η̂(β)− η

)
.

First, note that:
√
n(η̂ − η̂(β)) =

√
n(U ′U)−1U ′(V (β̂)− V (β))

= (TK)−1n−1/2U ′
(
V (β̂)− V (β)

)
+ op(1)

= op(1),
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by (i) and (iii) of the above lemma. Moreover,
√
n(η̂(β)− η) =

√
n(U ′U)−1U ′

(
V (β)− Uη

)

= (TK)−1n−1/2U ′
(
V (β)− Uη

)
+ op(1)

D−−−→
n→∞

N
(
0,K−1LK−1

)
,

by (i) and (iv) of the above. Then, the theorem is proved. �

Finally, the theorem below shows the asymptotic normality of β̂WLS.

Theorem 3. Denote β̂WLS = β̂WLS(η̂), as n → ∞ we have
√
n(β̂WLS − β)

D−−−→
n→∞

N
(
0, (X ′WηX)−1

)
. (14)

Stationary errors with known autocovariances are presented among all un-weighted linear estima-
tors, including OLS estimators, there are WLS estimators that have minimal variance. The estimator
β̂WLS is obtained in two steps. The first step is to obtain an estimator Wη̂. The second step is the
calculation outlined in (11).

3. Monte Carlo simulation study

In this section, we will make Monte Carlo simulation study to compare the performance of three
estimators proposed of the regression parameters in sampling experiments.

Let y = (y1,1, . . . , yn,T ) be a nT × 1 vector of dependent variable observations. We set K = 2, let
β = (β0 = µ, β1, β2) be the 3× 1 vector of regression parameters, and e = (e1,1, . . . , en,T ) be a nT × 1
vector of additive errors. Consider the model:{

yi,t = µ+ β1x1;i,t + β2x2;i,t + ei,t,
ei,t = bei,t−3εi,t−1 + εi,t.

(15)

We take:

⋆ n = 30, 50, 70, 100 and T = 15;
⋆ β = (0.5, 1,−1)′ ;

⋆ xi,t =

[
x1;i,t
x2;i,t

]
∼ N

([
0
0

]
,

[
5 2
2 10

])
;

⋆ b = (−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5);
⋆ the εi,t’s are i.i.d. N (0, 0.3).

Define

X =




1 x1;1,1 x2;1,1
1 x1;1,2 x2;1,2
...

...
...

1 x1;n,T x2;n,T




(nT×3)

.

It is also convenient to write the linear model (15) in vector-matrix notation: y = Xβ + e.
Thus,
– The ordinary least squares estimator of β is: β̂OLS = (X ′X)−1X ′y.
– The weighted least squares estimator of β is given by: β̂WLS = (X ′Wη̂X)−1X ′Wη̂y.

– The adaptive estimator of β is defined as:
̂̂
βn = β̃n + n−1/2

[
1 0

0 K
(n)

]

3×3

Γ̂−1(β̃n)∆̂
(n)(β̃n).

In defining
̂̂
βn, we require the existence of consistent estimators β̃n, În and σ̂2

n of β, I(f1) and σ2,
respectively. For this purpose one can use:

β̃n = β̂OLS , În =
1

nT

n∑

i=1

T∑

t=1

[
Φ̂(n)

(
εi,t(θ̃n)

)]2
, and σ̂2

n =
1

nT

n∑

i=1

T∑

t=1

[
εi,t
(
θ̃n
)]2

.
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The sequences an = bn = n−1/16 were adopted with the kernel k(x) = c
(1+x6)

, with c = 1/
∫
R
(1 +

x6)−1dx ≈ 2.094. Then, the adaptive central sequence and its information matrix are respectively;

∆̂(n)(θ̂) :=
n−1/2

σ̂n




n∑

i=1

T∑

t=1

Φ̂(n)
(εi,t
σ̂n

)

n∑

i=1

T∑

t=1

Φ̂(n)
(εi,t
σ̂n

)
(K(n))′xi,t




3×1

and Γ̂(θ̂) :=
T

σ̂2
n

ÎnI3.

In the following, we compare the performance of three estimators β̂OLS, β̂WLS and
̂̂
βn of β =

(β0, β1, β2)
′.

Table 1. Ratio of mean-squared errors of β̂OLS and β̂WLS .

nT b
−0.5 −0.3 −0.1 0 0.1 0.3 0.5

450 1.4330 1.2521 1.0464 1.0000 1.0243 1.2314 1.6542
750 2.2503 1.5063 1.0438 1.0000 1.0368 1.4917 2.6015
1050 2.7276 1.9521 1.2325 1.0000 1.7976 2.1648 2.3052
1500 3.0328 2.5729 2.1721 1.0000 2.2849 2.9441 3.2411

Table 2. Ratio of mean-squared errors of β̂OLS and
̂̂
βn.

nT b
−0.5 −0.3 −0.1 0 0.1 0.3 0.5

450 2.5411 2.2252 2.1047 1.5594 2.0885 2.2441 2.8215
750 2.9576 3.6230 2.3868 1.7877 2.2245 2.4062 3.0274
1050 3.1926 2.6690 2.2065 2.0332 2.3264 2.8571 3.2024
1500 4.1032 3.7039 2.5880 2.1020 2.4210 3.8110 3.9507

Table 3. Ratio of mean-squared errors of β̂WLS and
̂̂
βn.

nT b
−0.5 −0.3 −0.1 0 0.1 0.3 0.5

450 1.7732 1.7771 2.0113 1.5594 2.0389 1.8223 1.7056
750 1.3143 2.4052 2.2866 1.7877 2.1455 1.6130 1.1637
1050 1.1704 1.3672 1.7902 2.0332 1.2941 1.3197 1.3892
1500 1.3529 1.4395 1.1914 2.1020 1.0595 1.2944 1.2189

Inspection of Tables: Each of the above simulations was replicated 200 times and the values of

β̂OLS , β̂WLS and
̂̂
βn were computed. Tables 1, 2 and 3 summarize the results for the ratio of mean

squared errors of (β̂OLS and β̂WLS), (β̂OLS and
̂̂
βn) and (β̂WLS and

̂̂
βn) respectively. It is seen in

Monte Carlo studies that β̂WLS and
̂̂
βn are always more efficient than β̂OLS . In addition to that, their

efficiency versus β̂OLS increases as |b| increase. Furthermore, in Table 1 when b = 0 the OLS and
WLS estimators coincide. Also, Table 3 shows that the WLS estimator is dominated by the adaptive
estimator.

4. Conclusions

The problem of estimating the coefficients of a multiple regression model in panel data with bilinear
correlated errors is considered. The adaptive estimator and its asymptotic distribution are derived
from the uniform local asymptotic normality of the model when the error terms are a bilinear process.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 682–692 (2023)



Estimation in short-panel data models with bilinear errors 691

Furthermore, OLS and WLS estimators are derived and their limit distributions are studied. Finally,
the simulation study shows that the adaptive estimators dominate both the weighted and unweighted
(ordinary) least squares estimators.
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Оцiнка в короткопанельних моделях даних
з бiлiнiйними помилками

Лмакрi A.1, Ахарiф A.2, Меллук A.3

1Нацiональна вища школа мистецтв i ремесел (ENSAM), Унiверситет Хасана II, Касабланка, Марокко
2Лабораторiя математики та прикладної математики FSTT,

Унiверситет Абдельмалек Ессаадi Тетуан, Марокко
3Регiональний центр освiти та професiйної пiдготовки, Танжер, Марокко

У роботi розробляється асимптотична теорiя для оцiнювання в моделях коротких
панельних даних з бiлiнiйною помилкою. Запропоновано порiвняльне дослiдження
шляхом моделювання мiж декiлькома оцiнками (адаптивними, звичайними та зваже-
ним методом найменших квадратiв) для коефiцiєнтiв моделей панельних даних, коли
помилки є бiлiнiйними послiдовно корельованими. Як наслiдок властивостi рiвномiр-
ної локальної асимптотичної нормальностi отримано адаптивнi оцiнки параметрiв.
Накiнець, проiлюстровано продуктивнiсть запропонованих оцiнювачiв за допомогою
моделювання методом Монте–Карло. Показано, що адаптивнi оцiнки ефективнiшi,
нiж зваженi та звичайнi оцiнки методом найменших квадратiв.

Ключовi слова: адаптивна оцiнка; бiлiнiйнi моделi; панельнi регресiйнi моделi;
зваженi найменшi квадрати; звичайнi найменшi квадрати.
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