
MATHEMATICAL MODELING AND COMPUTING, Vol. 10, No. 3, pp. 693–702 (2023)
Mathematical

M
odeling

Computing

PROMETHEE filter-based method
for microarray gene expression data

Ouaderhman T., Aaboub F., Chamlal H.

Department of Mathematics and Computer Science, Fundamental and Applied Mathematics Laboratory,
Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco

(Received 17 February 2023; Accepted 6 July 2023)

Gene expression datasets have been successfully applied for a variety of purposes, in-
cluding cancer classification. The challenges faced in developing effective classifiers for
expression datasets are high dimensionality and over-fitting. Gene selection is an effective
and efficient method to overcome these challenges and improve the predictive accuracy of a
classifier. Based on PROMETHEE, this paper introduces a multi-filter ensemble approach
by integrating the results of two potential filters namely MaCΨ-filter and PCRWG-filter
to pre-select the most informative genes. Experiments were conducted on nine microarray
datasets to demonstrate the performance of the proposed method.
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1. Introduction

The dimensionality curse affects certain dataset types, including microarray gene expression datasets.
Gene or feature selection is thus a crucial preprocessing stage required before analyzing a microarray
dataset. Through the selection of the most important genes and the elimination of all the less significant
ones, this phase aids in the reduction of the gene space.

Many feature selection methods are presented in the scientific literature. Three main categories of
feature selection methods are filter, wrapper, and hybrid methods [1]. On the one hand, filter-based
techniques evaluate the features of a dataset solely based on their own merits, unrelated to a classifier.
Each feature is then given a score, and the top N ranked features are chosen as the most significant
ones while the remaining features are disregarded. The filter-based algorithms are further divided into
two types: univariate and multivariate strategies, depending on whether or not the interaction among
features is taken into account. Each feature is evaluated separately by univariate techniques, while
numerous features are evaluated concurrently by multivariate techniques. In contrast to filter-based
processes, the wrapper methods need a learning algorithm to evaluate the classification effectiveness of
the selected features. The hybrid methodologies, on the other hand, attempt to combine a filter method
with a wrapper method in order to benefit from the advantages of both. Numerous feature selection
techniques based on filters have been suggested by the researchers. Some of the well-known univariate
filter-based techniques include Mutual Information [2], Information Gain (IG) [3], Gain Ratio (GR) [4],
Fisher score [5], Laplacien score [6], Chi-square statistic [7], and Symmetric Uncertainty (SU) [8].
Moreover, some of the common multivariate filter-based techniques include Fast Correlation-Based
Filter [9], ReliefF [10], and minimal Redundancy Maximal Relevance [11].

An innovative multi-filter ensemble method for gene selection is presented in this paper. The
recommended approach combines two phases. The dimensionality of genes is decreased in the first stage
to form the candidate subset of genes by only selecting the genes that are the most d relevant. The final
rank produced by the proposed method is derived from two rankings determined by the MaCΨ-filter
and PCRWG-filter using the PROMETHEE method. Using the Sequential Forward Selection (SFS)
technique on the candidate subset, the final subset of genes and its classification accuracy are obtained
in the final stage.
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2. Preliminary concepts

This section presents some concepts that will be used to define the proposed multi-filter ensemble
approach for feature selection, including the relevancy, redundancy, and complementarity measures, as
well as the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE).

Let PXi
, PXj

, and PY represent three preordonances that are induced by two description variables
Xi, Xj , and a class variable Y , respectively. These preordonances are designated, respectively, by the
ternary codings TPXi

, TPXj
, and TPY

.

Relevance measure [12]. The relevance measure, denoted by Ψ, of a given variable Xi with
respect to the class variable Y can be calculated using the ψcor metric using the following equation:

Ψ(Xi) = ψcor(PXi
, PY )

= cor(TPXi
, TPY

)

=
cov(TPXi

, TPY
)

√

var(TPXi
)
√

var(TPY
)
,

where cor, cov, and var indicate the correlation, covariance, and variance measures, respectively.
The more significant the variable Xi, the more relevant it is to the class variable.
Redundancy measure [12]. The most important variables are not only those that are relevant;

they should also not be redundant. In this paper, to evaluate the redundancy of a variable Xi to
another variable Xj, the following measure can be used:

Ψ·(Xi,Xj) = ψcor(PXi
, PY )·PXj

. (1)

Complementarity measure [13, 14]. The following metric can be used to assess the comple-
mentarity of a subset of variables Xi and Xj with regard to the class variable Y :

Ψω(Xi,Xj) =W (ri, rj , r), (2)

where ri, rj, and r are the ranks induced by the preordonances PXi
, PXj

, and PY , respectively.
PROMETHEE strategy. Preference Ranking Organization METHod for Enrichment Evalua-

tions (PROMETHEE) is a decision making technique [15] that helps in decision-making when there

Table 1. Decision matrix for PROMETHEE method.

Alternatives
Attributes

R1 R1 R3 . . . RM

(ω1) (ω2) (ω3) (. . . ) (ωM )
AL1 e11 e12 e13 . . . e1M
AL2 e21 e22 e23 . . . e2M
AL3 e31 e32 e33 . . . e3M
. . . . . . . . . . . . . . . . . .
ALN eN1 eN2 eN3 . . . eNM

are several viable solutions to a problem.
The PROMETHEE is a Multi Attribute De-
cision Making (MADM) method that can be
employed when there are several alternatives
available and one should be chosen. Con-
sider a situation where there are M at-
tributes {R1, R2, R3, . . . , RM} and N alterna-
tives {AL1, AL2, AL3, . . . , ALN}. MADM prob-
lems is modeled by a decision matrix, which is
defined in Table 1.

3. Multi-filter ensemble approach for gene selection

This section outlines the full procedure of the suggested multi-filter ensemble approach for selecting
the most important genes in the microarray datasets. As a pre-processing phase of the suggested
methodology, the dimensionality of the microarray datasets should first be reduced, since this type
of dataset contains thousands of genes. Consequently, the previously established relevance measure is
used in this work to perform the reduction. In order to form a candidate subset of genes, the relevance
value of each gene is calculated, and the top d relevant genes are chosen, while the remaining genes
are disregarded. It should be noted that Xi1 designates the gene with the highest level of relevance.
The second stage then employs two filter-based methodologies that are MaCΨ-filter [12] and PCRWG-
filter [13] to determine the significance of the genes in the candidate subset. The first filter strategy
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combines relevance and redundancy metrics to select the relevant and non-redundant genes, while the
second combines relevance and complementarity metrics to choose the most significant subset of genes.
These two filter methods are defined by two measures that assign two scores to each gene Xi in the
following ways:

Score 1(Xi) =
Ψ(Xi)

2−Ψ.(Xi,Xi1)
, (3)

Score 2(Xi) =
Ψ(Xi)

2−Ψω(Xi,Xi1)
. (4)

The first score aims to choose the most relevant gene, which is distinct from the first gene chosen
(Xi1). The second score, on the other hand, aims to choose a subset {Xi1 ,Xi} that can provide the
most information about the class label. In this framework, two different rankings of the genes of the
candidate subset are determined using these two filter-based techniques. The obtained rankings will
be aggregated using the PROMETHEE method to identify the final ranking for the d genes. Finally,
the sequential forward selection is applied on the obtained ranked subset to identify the final subset of
genes with the highest classification accuracy. Figure 1 summarizes the workflow of the recommended
multi-filter ensemble approach.

4. Experimental studies

This section provides the experiments that were performed to evaluate the effectiveness of the suggested
strategy in enhancing classification performance and escaping the dimensionality curse. Section 4.1 first
describes the tested datasets and the computing environment. After that, in Section 4.2, the employed
classifiers and the evaluation metrics that rate classification performances are presented. Finally,
Section 4.3 depicts the obtained results along with an analysis.

Fig. 1. Workflow of the proposed methodology.

4.1. Dataset and computing environment description

The performance of the proposed approach is examined through a collection of studies on nine widely
used microarray gene expression datasets with varying feature sizes, namely Breast, CNS, Colon,
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Table 2. Description of the microarray gene expression datasets.

No. Datasets #Observations #Features #Classes
1 Breast 78 4348 2
2 CNS 60 7129 2
3 Colon 62 2000 2
4 Leukemia 72 7128 2
5 Lymphoma 62 4026 3
6 Prostate 102 12600 2
7 SRBCT 83 2308 4
8 Westbc 49 7129 2
9 9_Tumors 60 5726 9

Leukemia, Lymphoma, Prostate, SR-
BCT, Westbc, and 9_Tumors. Six of
the nine datasets have binary classes,
and three of them are multi-class. The
traits of these datasets, including the
number of observations, the number of
features, and the number of classes, are
summarized in Table 2.

On the other hand, the experi-
mental studies were conducted on a
personal computer (Microsoft Win-

dows 10, 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz, 32.0 Gb of RAM, and a 64-bit operating
system). Moreover, all of the experiments were carried out using the “R version 4.2.1” computing
environment.

4.2. Classifiers and performance metrics

Support Vector Machine (SVM) [16], Naive Bayes (NB) [17], and k-Nearest Neighbors (kNN) [18] are
three popular learning algorithms that will be utilized in this paper to analyze the classification perfor-
mance of the feature selection procedures. Furthermore, classification accuracy, sensitivity, precision,
and F-measure are four classification performance metrics that will be employed to rate the picked
feature subsets. These evaluation metrics are described in Table 3, where TP , TN , FP , and FN stand
for true positive, true negative, false positive, and false negative, respectively.

Table 3. Classification performance metrics.

Metrics Formulas Metrics Formulas

Accuracy TP+TN

TP+TN+FP+FN

Precision TN

TN+FP

Sensitivity TP

TP+FN

F-measure 2×precision×sensitivity

precision+sensitivity

Another performance in-
dicator for assessing the effec-
tiveness of feature selection
methods is the number of fea-
tures that are selected.

4.3. Experimental results and discussion

To demonstrate the efficiency of the recommended algorithm in retrieving the most significant features
and eliminating the peripheral ones, two experiments are conducted. In terms of classification accuracy
and the number of selected features, the first experiment contrasts the performance of the suggested
technique with that of four traditional filter-based algorithms. Moreover, the second experiment com-
pares the classification results of the proposed method to those obtained without feature selection
(without FS). The value of d in the proposed procedure is kept constant throughout all experiments
at 100. Furthermore, all results are estimated from the average of 500 times ten-fold cross-validation
for accurate evaluation.

Comparison with some other filter-based feature selection algorithms. The first ex-
periment aims to compare the performance of the proposed technique with that of four well-known
filter-based approaches. These four methodologies are mRMR [19], GR [4], IG [3], and Fisher [5].
Figures 2–10 illustrate how the classification accuracy of the five filter-based approaches changes on
nine datasets using the SVM, NB, and kNN classifiers as the number of top-ranked features based on
the order evaluated by each method increases from 2 to 40.

According to the analysis of Figures 2–10, it can be seen that the general trend of all compared
feature selection strategies is analogous, indicating that a number of genes not exceeding 40 is typically
required to achieve the highest classification accuracy on the nine datasets using each of the SVM,
NB, and kNN classifiers. Furthermore, it is clear that the classification accuracy of the five filter-based
approaches does not increase monotonically as the number of genes increases. In other words, the
trend of classification accuracy cannot be predicted as the number of selected genes rises.

On the other hand, Tables 4–6 display the highest level of classification accuracy attained by all five
processes on nine datasets using the SVM, NB, and kNN classifiers, respectively. Similarly, Tables 7–9
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Fig. 2. Classification accuracy versus the number of features for the Breast dataset.
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Fig. 3. Classification accuracy versus the number of features for the CNS dataset.
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Fig. 4. Classification accuracy versus the number of features for the Colon dataset.
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Fig. 5. Classification accuracy versus the number of features for the Leukemia dataset.
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Fig. 6. Classification accuracy versus the number of features for the Lymphoma dataset.
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Fig. 7. Classification accuracy versus the number of features for the Prostate dataset.
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Fig. 8. Classification accuracy versus the number of features for the SRBCT dataset.
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Fig. 9. Classification accuracy versus the number of features for the Westbc dataset.

0 10 20 30 40

0
20

40
60

80

Number of features

A
cc

ur
ac

y 
(%

)

SVM

Proposed mRMR GR IG Fisher

0 10 20 30 40

0
20

40
60

80

Number of features

A
cc

ur
ac

y 
(%

)

NB

Proposed mRMR GR IG Fisher

0 10 20 30 40

0
20

40
60

80

Number of features

A
cc

ur
ac

y 
(%

)

kNN

Proposed mRMR GR IG Fisher

9_Tumors

Fig. 10. Classification accuracy versus the number of features for the 9_Tumors dataset.

reveal the corresponding number of selected genes that yield the maximum classification accuracy for
each dataset. The final column in the tables displays the average values (the average classification
accuracy and the average number of genes) across all datasets.

Table 4. Testing accuracies attained using the SVM classifier by the proposed, mRMR, GR, and IG methods.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 79.67 74.86 89.14 100 100 95.90 100 92.35 68.65 88.95
mRMR 74.08 65.04 89.40 100 100 93.46 100 88.67 62.61 85.92

GR 76.69 85.58 87.28 98.66 100 95.32 99.91 95.65 57.82 88.55
IG 77.47 85.95 89.56 97.75 100 95.88 82.85 67.18 72.85 85.50

Fisher 78.83 81.72 90.67 99.98 100 95.43 100 93.15 63.80 89.29
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Table 5. Testing accuracies attained using the NB classifier by the proposed, mRMR, GR, and IG methods.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 83.98 77.63 91.96 98.63 99.75 94.77 98.60 93.12 71.52 89.99

mRMR 78.61 58.89 91.02 100 100 91.68 99.98 85.47 60.34 85.11
GR 80.84 77.23 91.86 99.82 100 95.10 99.15 95.37 55.83 88.36
IG 79.69 81.93 91.87 99.91 100 94.28 74.55 53.42 65.62 82.35

Fisher 82.29 79.34 91.95 100 100 95.06 99.88 91.00 58.88 88.71

Table 6. Testing accuracies attained using the kNN classifier by the proposed, mRMR, GR, and IG methods.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 80.59 79.25 91.93 100 100 94.43 100 94.46 49.35 87.78

mRMR 79.81 65.76 91.82 100 100 91.82 99.87 93.67 42.74 85.05
GR 74.03 76.07 90.24 99.99 100 96.35 99.85 92.68 44.42 85.96
IG 80.62 77.97 91.59 99.95 100 93.97 62.66 64.99 61.32 81.45

Fisher 80.08 82.75 91.92 99.98 100 93.06 99.88 96.75 45.56 87.78

Table 7. Number of selected genes by the proposed, mRMR, GR, and IG methods using the SVM classifier.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 12 5 6 33 30 16 37 3 21 18.11
mRMR 21 3 2 4 5 13 25 8 40 13.44

GR 6 36 7 16 11 14 20 31 18 17.67
IG 19 39 4 38 3 26 37 36 39 26.78

Fisher 2 34 3 26 11 22 24 4 11 15.22

Table 8. Number of selected genes by the proposed, mRMR, GR, and IG methods using the NB classifier.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 7 33 10 4 21 11 37 40 9 19.11
mRMR 5 2 2 5 5 21 38 5 33 12.89

GR 15 30 11 17 11 10 27 18 18 17.44
IG 37 10 15 28 5 11 36 11 34 20.78

Fisher 8 26 18 9 21 8 25 4 40 17.68

Table 9. Number of selected genes by the proposed, mRMR, GR, and IG methods using the kNN classifier.

Datasets Breast CNS Colon Leukemia Lymphoma Prostate SRBCT Westbc 9_Tumors Average
Proposed 3 25 12 32 29 4 18 3 28 17.11
mRMR 28 38 2 11 4 35 40 24 36 24.22

GR 9 5 40 14 10 9 36 9 18 16.67
IG 9 5 10 15 3 2 29 2 39 12.67

Fisher 11 37 15 33 11 3 34 8 17 18.78

The examination of the experimental results shows that the proposed filter-based method can pro-
duce satisfactory classification accuracy on all the tested datasets (on average, 88.95%, 89.99%, and
87.78% when using the SVM, NB, and kNN classifiers, respectively) with only a small number of genes
(on average, 18.11, 19.11, and 17.11 genes when using the SVM, NB, and kNN classifiers, respectively).
On the one hand, using the SVM classifier, the mRMR, GR, IG, and Fisher algorithms can each achieve
the highest classification accuracy on 3, 2, 2, and 3 datasets, respectively. In contrast, the suggested
technique reaches the maximum classification accuracy for 6 datasets, 3 of which attain 100% classifi-
cation accuracy. When using the NB and kNN classifiers, however, the recommended strategy yields
classification accuracy that exceeds 91% for 6 datasets. Moreover, using the NB classifier, the proposed
approach accomplishes the highest average classification accuracy, which is 4.88%, 1.63%, 7.64%, and
1.28% higher than that obtained using the mRMR, GR, IG, and Fisher procedures, respectively. Fur-
thermore, the suggested technique, which is similar to the Fisher method, fulfills the highest average
classification accuracy using the kNN classifier. It is important to note that the suggested technique
using the SVM and NB classifiers outperforms others on the Breast dataset, a hard-classify dataset.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 693–702 (2023)



700 Ouaderhman T., Aaboub F., Chamlal H.

Figure 11 illustrates the average ranks of the five filter-based feature selection procedures using
the three classifiers (the algorithm with the lowest rank is the one that performs the best, while the
algorithm with the highest rank is the one that performs the worst).
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Fig. 11. Ranking of the proposed, mRMR, GR, IG, and Fisher algorithms by Friedman test.

The proposed method, which is similar to the Fisher algorithm, is ranked as the most significant
by the SVM classifier, as can be seen in Figure 11. Furthermore, it has the second-best rank among
the five filter-based approaches using the NB classifier. Moreover, the proposed method outperforms
the other methodologies by achieving the lowest average rank when using the kNN classifier.

Comparison with no feature selection. The second experiment compares the classification
performance of the proposed algorithm to that achieved without using any feature selection techniques
(using all available features). Classification accuracy, sensitivity, precision, and F-measure are four per-
formance metrics used for evaluation. The obtained results are displayed in Figures 12–14, respectively,
using the SVM, NB, and kNN classifiers.
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Fig. 12. Classification performances with and without feature selection using the SVM classifier.
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Fig. 13. Classification performances with and without feature selection using the NB classifier.
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Fig. 14. Classification performances with and without feature selection using the kNN classifier.

In addition, Table 10 presents the numbers of the chosen genes as well as their relative proportions.
Based on the analysis of Figures 12–14 and Table 10, it is clear that the proposed algorithm em-

ploying the SVM, NB, and kNN classifiers improves classification accuracy, sensitivity, precision, and
F-measure while also reducing the number of genes, thereby overcoming the dimensionality curse.
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Table 10. Numbers of selected features and their relative proportions achieved
by the proposed methodology using SVM, NB, and kNN classifiers.

Datasets
Original
features

Selected features Proportion (%)

SVM NB KNN SVM NB KNN

Breast Cancer 4348 12 7 3 0.28 0.16 0.07
CNS 7129 5 33 25 0.07 0.46 0.35
Colon 2000 6 10 12 0.30 0.50 0.60
Leukemia 7129 33 4 32 0.46 0.06 0.45
Lymphoma 4026 30 21 29 0.75 0.52 0.72
Prostate 12600 16 11 4 0.13 0.09 0.03
SRBCT 2308 37 37 18 1.60 1.60 0.78
Westbc 7129 3 40 3 0.04 0.56 0.04
9_Tumors 5726 21 9 28 0.37 0.16 0.49

5. Conclusion

This work aimed to introduce a new ensemble filter approach based on PROMETHEE, it has the
advantages of two filters MaCΨ-filter and PCRWG-filter. The proposed approach pre-selects a gene
subset from the microarray dataset, which is characterized by high dimensions, numerous irrelevant
genes, and a small sample size, for classification. The proposed approach is a novel multi-filter ensemble
technique used to produce more compact gene subsets by integrating the outcomes of MaCΨ-filter and
PCRWG-filter. Experiments were conducted using nine benchmark microarray datasets. The results
showed that the proposed approach achieved competitive accuracies compared to four individual filters.
Further research direction could examine the interaction between our approach and graph theoretic
concept to further achieve a better classification performance on gene selection problem.
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Метод на основi фiльтра PROMETHEE
для даних експресiї генiв мiкроматрицi

Уадерман Т., Абуб Ф., Чамлал Х.

Кафедра математики та iнформатики,
лабораторiя фундаментальної та прикладної математики,

факультет наук Айн Чок, Унiверситет Хасана II, Касабланка, Марокко

Набори даних експресiї генiв успiшно застосовуються для рiзних цiлей, включаючи
класифiкацiю раку. Проблеми, з якими стикаються при розробцi ефективних класи-
фiкаторiв для наборiв даних виразiв, полягають у великiй вимiрностi та перенавчан-
нi. Вiдбiр генiв є ефективним i дiючим методом подолання цих проблем i пiдвищення
точностi прогнозування класифiкатора. Базуючись на PROMETHEE, ця стаття пред-
ставляє ансамблевий пiдхiд з декiлькома фiльтрами шляхом iнтеграцiї результатiв
двох потенцiйних фiльтрiв, а саме: MaCΨ-фiльтра та PCRWG-фiльтра для поперед-
нього вибору найбiльш iнформативних генiв. Були проведенi експерименти на дев’яти
наборах даних мiкроматрицi, щоб продемонструвати ефективнiсть запропонованого
методу.

Ключовi слова: фiльтр; класифiкацiя; вiдбiр; данi мiкроматрицi; ПРОМЕТЕЙ.
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