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A new approach to inpainting problems that combines domain decomposition methods
(DDM) with deep neural networks (DNN) to solve partial differential equations (PDE)
is presented. First, this article examines different existing and emerging approaches to
inpainting while emphasizing their advantages and disadvantages in a unified framework.
After that, we introduce an algorithm that highlights the combination of DDM and DNN
techniques for solving PDEs of a proposed mathematical inpainting model. For this model,
the modified approach that has been adopted uses the DNN method which is based on
convolutional neural networks (CNN) to reduce the computational cost in our algorithm
while maintaining accuracy. Finally, the experimental results show that our method sig-
nificantly outperforms existing ones for high-resolution images in paint stains.
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1. Introduction

Inpainting is the process of filling in missing or corrupted parts of an image or video [1, 2]. It can be
used for a variety of applications, such as restoring old photographs, removing unwanted objects from
images, and filling in missing parts of videos. There are several methods for inpainting, including:

1. Patch-based methods: These methods use small patches of known image data to fill in the missing
parts. The quality of the results obtained by patch-based methods depends on the size of the
patch and the method used to calculate the similarity between patches. Patch-based methods are
relatively fast and can produce good results for small missing regions, but they can be less effective
for larger missing regions or images with complex textures. Some popular Patch-based methods are
Criminisi et al. [3], Exemplar-based Inpainting, etc. These methods are widely used in the research
community and are known to produce good results for small missing regions.

2. Neural network-based methods are a type of inpainting technique that use deep learning techniques
to generate the missing parts of an image. These methods typically involve training a neural network
to learn a mapping between the known and missing parts of an image. Once trained, the network
can be used to generate new, plausible pixels to fill in the missing regions. Neural network-based
methods can produce high-quality results, even for large missing regions or images with complex
textures. However, they require large amounts of training data and can be computationally intensive
to train. Additionally, the quality of the results can be affected by the choice of architecture and
the quality of the training data.

3. Example-based methods: These methods use small patches of an image known dataset to fill in
the missing parts. Example-based methods can produce high-quality results, especially for images
with complex textures. However, they require a large set of example images, and the quality of
the results can be affected by the similarity between the input image and the example images.
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Additionally, they may not work well if the missing region is large and is not similar to any part of
the example image.

4. PDE-based methods are mathematical models of inpainting that use partial differential equations
to propagate information from known parts of the image to fill in the missing or corrupted parts.
These methods are based on the idea that the pixels in an image change over time, and the PDE
describes how this change occurs. There are several types of PDE-based methods for inpainting,
some of the popular ones are:
— Linear Diffusion which uses a linear diffusion equation to describe the smoothing of an image

over time. The idea is to propagate information from the known parts of the image to the
missing regions by smoothing the image.

— Nonlinear Diffusion: This method uses a nonlinear diffusion equation, which describes the
smoothing of an image over time in a way that takes into account the image’s structure and
texture. The nonlinear diffusion equation allows for more flexibility in the inpainting process,
as it can adapt to different types of images and missing regions.

— Level set methods which is a contour-based representation of the image, and the inpainting
process is formulated as a PDE-based evolution of the contour. The level set method is applied
to fill in the missing regions by evolving the contour toward the desired solution.

PDE-based methods can produce high-quality results, especially for images with complex textures.
They are typically iterative, with the PDE being solved multiple times until the missing parts of
the image are filled in. However, these methods can be computationally intensive and require a
good initialization of the known parts of the image to produce good results.

The choice of method will depend on the type of image, the extent of the missing or corrupted parts,
and the desired result. Inpainting methods continue to improve with the advancements in deep learning
and computer vision.
Inpainting using a nonlinear diffusion model involves solving a PDE that describes how the pixels in
an image change over time. The PDE is designed to propagate information from known parts of the
image to fill in missing or corrupted parts. The nonlinearity in the diffusion equation allows for more
flexibility in the inpainting process, as it can take into account the image’s structure and texture.
In this method, the diffusion process is controlled by a function, which is known as the Diffusivity
function. This function allows for different amounts of smoothing to be applied to different parts of
the image, depending on the image’s structure.
There are different variations of non-linear diffusion models like Perona-Malik model (PM), Curvature-
driven Diffusion model, etc. These models are used based on the type of image and the extent of missing
or corrupted parts of the image.

1.1. Contributions

This work extends our existing efforts for inpainting problems [4]. We establish a combination of the
finite element method with machine learning techniques to solve PDE for inpainting problems. We
also present an updated approach based on range decomposition methods and other optimizations,
including steps 3 and 10 in algorithm 1, which was developed originally for high-resolution images.

1.2. Paper organization

The rest of this paper is organized as follows. In Section 2, we present a modified PM model for
image inpainting. We then briefly described the discretization of the proposed modified PM model.
In Section 3, the details of the proposed domain decomposition methods are described. We also dis-
cuss how DDMs and DNN can be combined with our inpainting techniques to optimize the desired
results, the experimental results comparing our strategy with other advanced methods, and the related
experiments are analyzed in Section 4. In Section 5, conclusions are drawn.
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2. Inpainting problem’s model

2.1. Perona–Malik equation

Inpainting with Perona–Malik equation involves using the nonlinear diffusion equation to propagate
information from known parts of the image to fill in missing or corrupted parts [7,8]. The PM equation
is a type of PDE-based method that is designed to preserve edges and textures in the image while
smoothing out noise.

The PM equation is defined as:
∂u

∂t
= div

(

ρ(|∇u|)∇u
)

,

where u is the image, t is time, ρ is a scalar function, also known as the diffusivity function, div is the
divergence operator, and ∇u is the gradient of the image. To perform inpainting with Perona–Malik
equation, a binary mask is typically used to define the known and missing regions of the image.

The equation is then solved using the known image data and the mask as initial conditions. The
solution to the equation will propagate information from the known parts of the image to the missing
regions, by filling in the missing pixels. The diffusivity function ρ plays a crucial role in the inpainting
process. It is defined such that it is high in regions of high gradient and low in regions of low gradient.
This helps to preserve the edges and textures in the image while smoothing out the missing regions.
The Perona–Malik equation is a powerful tool for inpainting images with complex structures and
textures. However, the algorithm can be computationally intensive and requires good initialization
of the known parts of the image to produce good results. It should be noted that there are several
other mathematical models by nonlinear partial differential equations for image processing which have
recently been derived from that of Perona and Malik and which have made it possible to improve
their performance [4–6]. We will focus in the following on one of these models to build our powerful
algorithm.

2.2. The proposed mathematical model

Let u0 a given damaged image occupying a domain Ω ⊂ R
2. Our proposed mathematical model for

constructing the inpainting image u is defined as follows:


















∂u

∂t
− λdiv

(

ρ(|∇u|)∇u
)

= 0, in Ω, for t > 0,

u(x, 0) = u0(x),∀x ∈ Ω,

∂uν(x, t) = 0, ∀x ∈ ∂Ω, ∀t > 0,

(1)

where the diffusion function ρ corresponds to the one used in the modified Perona–Malik model, more
details can be found in [4].

This model has been successfully used in image processing to fill missing regions [4]; however, its
main drawback is that it does not give a good result for images with larger sizes [9], we have coupled
the DDM to the finite element method for this model and we obtained better results for high-resolution
results for high resolution images. In this work, we introduce DNN within the DDM especially for the
finite element method to ameliorate the accuracy and control the choice of the subdomains number.

2.3. Discretization of the proposed problem

In the following, we present the discretization of the proposed modified PM model (1) in order to solve
this parabolic nonlinear problem approximately. After its discretization by using the Galerkin finite
element method, we obtain a well-posed linear algebra problem.

By Vh =
{

w ∈ C0(Ω), w|Σ ∈ P 1
}

we denote the approximation space, where Σ is a partition of Ω.
The weak form of Perona–Malik equation using the Galerkin finite element formulation consists in

finding such a function vh ∈ Vh that:
∫

Ω

∂vh(t)

∂t
w dx+

∫

Ω

λ ρ (|∇vh|)∇vh · ∇w dx = 0, (2)
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for all w ∈ Vh and t ∈ [0, T ].
Let 0 = t0 < t1 < t2 < . . . < tn+1 = T be a subdivision of [0, T ] with uniform scaling interval

∆t = tn − tn−1 for some n > 0.
The backward Euler scheme is considered for (2) in the time discretization, and we formulate the

nonlinear coefficient ρ(|∇vh|) by using the previous scale step value vnh . Thus, the discrete equation is

1

∆t

∫

Ω

(vn+1

h − vnh)w dx+

∫

Ω

λ ρ (|∇vnh |)∇vn+1

h ∇w dx = 0, (3)

for all w ∈ Vh and n > 0. Assume an orthonormal basis of the finite-dimensional space Vh is
(ϕ1, . . . , ϕp), p > 0.

Taking w = ϕj for j = 1, 2, . . . , p and using the representation vn+1
h (x) =

∑p
i=0

vn+1
i ϕi(x), where

vn+1
i are unknown, equation (3) can be transformed into the discrete linear equation is expressed as

(A+∆tλB)Un+1 = AUn, (4)

where

Un =







vn1
...
vnp






, Aij =

∫

Ω

ϕiϕjdx, Bij =

∫

Ω

ρ (|∇vn|)∇ϕi · ∇ϕjdx.

A is a so-called mass matrix and B is the stiffness matrix. Thus, the discrete solution can be found
efficiently by so-called conjugate gradient methods.

Note that the existence and uniqueness of the solution of (1) in Hilbert space are proved under the
following hypothesis [10]:

1. ρ : R+ → R+ is a decreasing function,
2. ρ is continuous differentiable,
3. ρ(0) = 1 + α,
4. lim

s→+∞
ρ(s) = α,

5. 2s |g′(s)| 6 ρ(s), s > 0,

where α > 0 is a positive parameter (generally very smaller) added to the diffusion function ρpm of
PM to ensure the monotonicity of the differential operator associated with the problem (1) without
changing the numerical performances of the PM model. In the following we take ρ as follows:

ρ(s) =
1

√

1 + ( s
k
)2

+ α,

where α = 10−6 and k > 0 is a given parameter, for more details see [10].

3. The proposed upgrade technic for the calculation of solutions

3.1. Domain decomposition methods

Inpainting with the domain decomposition method involves partitioning the image into smaller regions
or subdomains [11–13], and then solving for the missing or corrupted parts within each subdomain, (see
Figure 1). This method can be useful when the image has distinct regions with different characteristics,
such as texture or color. By solving for each subdomain separately, the inpainting process can take
into account the specific characteristics of that region.

The domain decomposition method typically involves a two-step process: first, the image is divided
into subdomains, and then the inpainting is performed within each subdomain. There are different
ways to divide the image into subdomains, such as using a grid, clustering similar pixels, or using a level
set method. Once the subdomains are defined, the inpainting process can be performed using various
techniques, such as patch-based methods, PDE-based methods, or neural network-based methods.
The choice of method will depend on the characteristics of the subdomain and the desired result, as
mentioned in [4], for an arbitrary number of subdomains or an image with complex geometry, the
standard DDM is no longer advantageous.
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Fig. 1. Decomposition of the domain Ω ⊂ R
2 into nine non-overlapping subdomains Ωi, i = 1, . . . , 9. [Left]

The decomposition of the overlapping domain is obtained by extending the non-overlapping subdomains by
several layers of δ-width elements. The overlapping subdomain Ω5 is marked in red. (Right) The Γ interface is

indicated in red, the vertices in green, and the borders in blue.

In the following, an efficiency optimization method is proposed to enhance the performance by
combining the DDM with the DNN algorithm, (see Figures 5 and 6 and 7).

Some common types of decomposition methods include:

1. Domain decomposition: This method divides a domain, such as an image or a piece of text, into
smaller subdomains, each representing a specific feature or structure [14].

2. Functional decomposition: This method divides a complex function or system into smaller, simpler
functions or sub-systems [15].

3. Matrix decomposition: This method decomposes a matrix into simpler matrices, such as eigenvec-
tors and eigenvalues, which can make it easier to solve linear algebra problems [16].

4. Optimization decomposition: This method breaks down an optimization problem into smaller sub-
problems that can be solved independently and then combined to find the global solution [17].

5. Alternating Direction Method of Multipliers (ADMM): This method is a popular optimization
algorithm that decomposes a large optimization problem into smaller sub-problems that can be
solved in parallel, which improves computational efficiency [18].

Decomposition methods can be used to simplify complex problems and make them more tractable,
by breaking them down into smaller, more manageable sub-problems. They can be used on their own
or in combination with other techniques such as DNN.

3.2. Deep neural networks

DNNs are a type of machine learning algorithm that is modeled after the structure and function of the
human brain. They are composed of layers of interconnected nodes, known as artificial neurons, which
process and transmit information. Each layer in a DNN is responsible for extracting a different set of
features from the input data, and the layers are connected in a way that allows the network to learn
increasingly complex representations of the data.

DNNs are trained using large amounts of labeled data, which is used to adjust the weights of
the connections between the neurons. Once trained, the DNN can be used to make predictions or
classifications on new, unseen data. DNNs have been used in a wide range of applications, such as
image and speech recognition, natural language processing, and self-driving cars. They have also been
used to achieve state-of-the-art results in various fields such as computer vision, natural language
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processing, and speech recognition. CNN and Recurrent Neural Networks (RNN) are some examples
of DNNs. These networks have been very successful in various tasks such as image classification,
object detection, language translation, speech recognition, and many more. DNNs are computationally
intensive, requiring powerful hardware and specialized libraries to implement and train, but the results
they produce are well worth the effort.

The decision for a specific number of subdomains Ωi for the DDM is clearly a classification prob-
lem, i.e., a machine learning problem. In particular, the decision is purely based on local information,
that is, the distribution of the pixels within two neighboring subdomains. To approximate a solution
for subdomain classification, we use dense feed-forward neural networks or, more precisely, multilayer
perceptrons [19–22]. The proposed strategy consists in train DNN to automatically and in advance
perform this decision about either the number and geometry of subdomains in other words in a pre-
processing phase before ever solving the problem (1).

3.3. Proposed Method for the image inpainting task

In order to maintain the load between the number of subdomains and the complex geometry of the
image in equilibrium, the DDM parameters must be selected correctly. For example, in our algorithm,
we used a dense neural network to predict for which edges the eigenvalue problem is required or
not before resolving it. Our proposed approach is to form a neural network to take this decision
automatically and in advance, that is to say in the pretreatment phase, even before solving the problems
in local subdomains. Obviously, there is great potential to save the cost of computing and to make
adaptive DDM more competitive by omitting our problem on certain subdomains which are unnecessary
because they do not add any significant stress to the coarse problem. Indeed, for many practical and
realistic modeling problems, only a small number of adaptation constraints are required to maintain a
robust algorithm. Another important aspect of our contribution is that we use parallel and sequential
DDMs to process images in high resolution. These improvements can be summarized as follows.

Algorithm 1

1: Data preparation: Collect and preprocess a dataset that the task is to be applied on.
2: Domain decomposition: Divide the task into smaller sub-tasks or subdomains, each representing a specific

feature or structure.
3: Model design: Choose a deep learning model architecture, such as a CNN, a recurrent neural RNN or a

transformer-based model that is suitable for the sub-task or subdomain.
4: Model training: Train the deep learning model on the subdomains separately. This step involves adjusting

the DDM’s parameters to optimize the performance of the model on the sub-task.
5: Model evaluation: Evaluate the performance of the trained model on a set of validation data. This step

can be used to fine-tune the model’s parameters and to check the quality of the generated results.
6: Task execution: Apply the trained models on the subdomains to generate the results.
7: Result aggregation: Combine the results generated by the trained models on the subdomains to form the

final output.
8: Post-processing: Depending on the task, some post-processing steps such as denoising, data fusion, or

feature extraction may be necessary.
9: Inpainting: Apply improved DDM to equation (4) to generate completed images.

10: Image reconstruction: Combine the generated subdomains to form the final completed image.
11: Post-processing: Depending on the task, some post-processing steps such as denoising, color correction, and

texture synthesis may be necessary.

It is important to note that this approach is useful for handling large images or images with complex
structures, where a single deep learning model may not be able to capture all the necessary details. It
also allows the model to focus on specific areas of an image which requires more attention, which can
improve the overall performance of the inpainting (see Figure 2).
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Fig. 2. An overview of our proposed framework utilized for the image inpainting.

4. Experimental results

4.1. Datasets and training setting

In this section, we evaluate the performance of the proposed framework quantitatively, and compare it
with other methods. Two well-known benchmark datasets, ImageNet [23, 24] and CelebA-HQ [25, 26]
are used to evaluate the performances of our proposed approach. For training purposes, we consider
the following number of images, i.e. 328 500 and 30 000 from the aforementioned datasets, respectively.
A batch size 48 is chosen and Adam optimizer is used to train our model with a learning rate of
0.0001. All the experiments were performed using Tensorflow 2.11 and Python 3.10.6 on a computer
equipped with an Intel Core (TM) i7-8700 processor 3.900 GHz, up to 4.90 GHz with Turbo Boost,
52Gb RAM, and Windows 11. To train the network we used a DDM with default parameters. To
measure the performance of the proposed method, we used the peak-signal-to-noise ratio (PSNR)
providing information from different perspectives. The parameters of the model are ∆t = 0.24, dx =
dy = 1, α = 10−6 and k = 1

4
.

4.2. Qualitative comparisons

As the images have variable sizes (from 256x104 to 2012x2512 here), we decided to divide them into
subdomains of varying sizes with a minimum overlap of 10x10. We apply DNN to each subdomain,
then we average the outputs (see Figure 2). Our DNN has 5 convolutional layers and a fully connected
layer with eleven outputs. In the loss function, regression to overall quality and focal loss are combined
for each of the 10 presence indicators. Our machine learning model has been constructed after a preset
number of training epochs which has been determined experimentally to insure convergence. We used,
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for this, Adam optimizer and an exponential learning rate schedule. To facilitate the comparative
evaluation of our proposal with the current state of the art, we show in Figure 3 the results of inpainting
using the approach described in algorithm 1 for all types of masks (small, large, irregular). While the
masks in Figure 4 mainly locate in one overlap region, the masks in Figure 3 locate in various sections in
the foreground, which poses a major challenge for high-quality reconstruction of these missing regions.
Based on the examples shown in Figures 4, 3, we can conclude that our method is clearly superior to the
state of the art and has less noticeable mismatches in most cases. In particular, in Figure 3, with various
holes in image, our method can produce a more natural and semantically plausible reconstruction,
which confirms the fact that our approach to inpainting problems that combines DDM with DNN
can not only explore the detailed information of the surrounding pixels but also capture the global
structure of the whole image to be painted over.

Fig. 3. Qualitative comparison results of inpainting irregular holes (small, large, irregular) on ImageNet.

It can be also seen that there exist inconsistent contents of images generated by GatedConv when
inpainting images with complex structures (see c1 and c2 in Figure 4), this could be due to a number
of factors, such as a lack of sufficient training data, poor network architecture, or suboptimal training
parameters. And it can also be seen that the results generated by RFR-Net also have a blurring
phenomenon (see e3 in Figure 4). Our proposed model can recover images with reasonable semantics,
visual realism, clear texture, and consistent context (see g3 and g4 in Figure 4).

4.3. Quantitative comparison

To further demonstrate the effectiveness of our method, we perform a quantitative comparison be-
tween our method and other state-of-the-art methods as shown in Table 1. Following related image
over-painting approaches, we use common evaluation metrics such as PSNR and structural similar-
ity (SSIM) to measure the similarity between the over-painting result and the corresponding ground
truth. However, the image over-painting methods are intended to focus on obtaining realistic results
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Fig. 4. Comparative illustration of inpainting results achieved by our proposed and the existing benchmarks
on ImageNet: (a) original image, (b) input, (b’) image with DDM (subdomains with a red star are chosen by

our strategy), (c) GatedConv [27], (d) CRA [28], (e) RFR-Net [29], (g) Algorithm 1.
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rather than approximating the ground truth. For this reason, we also use learned perceptual image
patch similarity (LPIPS) and Frechet input distance (FID) as metrics of perceptual quality that are
consistent with human judgment. It can be observed that the metric values of our method significantly
outperform these state-of-the-art methods. As shown in Table 1, the values of PSNR and SSIM ob-
tained with our method are almost maximum, indicating that the image distortion obtained with our
method is minimum and the repair effect is best. Our method almost achieves the minimum values
of LPIPS and FID, which shows the highest quality of image generation by our method. This means
that our method can better solve the problem of image distortion in larger dimensions.

Table 1. Quantitative comparisons on CelebA-HQ and ImageNet datasets.

Method Mask ratio PSNR SSIM LPIPS FID
GatedConv [27] 38.887 0.975 0.524 7.804
CRA [28] 34.296 0.975 0.527 14.563
FE [27,30] 27.682 0.946 0.516 114.583
RFR-Net [29] 0%–10% 32.252 0.948 0.509 106.312
MADF [31] 37.005 0.976 0.480 12.234
DSNet [32] 32.860 0.954 0.480 18.055
Ours 32.860 0.954 0.480 18.055
GatedConv [27] 32.708 0.962 0.524 18.049
CRA [28] 28.602 0.938 0.534 39.253
FE [30] 24.213 0.886 0.531 177.660
RFR-Net [29] 10%–20% 28.999 0.922 0.511 88.637
MADF [31] 32.403 0.956 0.482 20.106
DSNet [32] 32.860 0.954 0.480 18.055
Ours 32.860 0.954 0.480 18.055
GatedConv [27] 29.616 0.932 0.525 29.484
CRA [28] 25.345 0.882 0.550 90.395
FE [30] 21.212 0.817 0.545 218.986
RFR-Net [29] 20%–30% 25.750 0.864 0.531 160.998
MADF [31] 29.589 0.937 0.500 38.178
DSNet [32] 32.860 0.954 0.480 18.055
Ours 32.860 0.954 0.480 18.055
GatedConv [27] 33.317 0.966 0.523 25.229
CRA [26,28] 32.614 0.960 0.524 41.758
FE [30] 27.682 0.946 0.516 114.583
RFR-Net [29] Irregular 34.470 0.967 0.480 26.150
MADF [31] 32.860 0.954 0.480 18.055
DSNet [32] 32.860 0.954 0.480 18.055
Ours 32.860 0.954 0.480 18.055

In Figures 5–7, we performed a quantitative comparison of the different number of subdomains in
the ImageNet dataset to show the effects of DDM on the complementation results. For each category,
1k images with different number of subdomains (2*2, 4*4, . . . ) were selected and their PSNR was
calculated. The experiments show that the PSNR of our method is better than that of the compared
methods for a mask of 0 − 10%. At a mask size of 10 − 20%, the structural similarity between our
method and the other compared methods is not significant; at a mask size of 20 − 30% of the image,
our method achieves the highest structural similarity. This proves the effectiveness of our approach.

5. Conclusion

We have proposed in this paper a fast algorithm for a nonlinear model in image inpainting with specific
applications of DNN and DDM. Most importantly, the proposed algorithm is a useful alternative for
practical 2D data processing, especially for large sizes when the finite element method is used.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 720–732 (2023)



730 Bellaj K., Benmir M., Boujena S.

Fig. 5. Analysis of PSNR in comparison with existing methods for mask size of 0− 10%.

Fig. 6. Analysis of PSNR in comparison with existing methods for mask size of 10− 20%.

Fig. 7. Analysis of PSNR in comparison with existing methods for mask size of 20− 30%.
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Покращення розфарбовування зображень за допомогою
декомпозицiї зображення та глибоких нейронних мереж

Беллаж К., Бенмiр М., Бужена С.

Лабораторiя фундаментальної та прикладної математики,

Кафедра математики та комп’ютерних наук,

Науковий факультет Айн Чок, Касабланка, Марокко

Представлено новий пiдхiд до проблем розфарбовування, який поєднує методи деком-
позицiї домену (DDM) iз глибокими нейронними мережами (DNN) для розв’язування
диференцiальних рiвнянь у частинних похiдних (PDE). По-перше, у цiй статтi роз-
глядаються рiзнi iснуючi та новi пiдходи до малювання, пiдкреслюючи їхнi переваги
та недолiки в єдинiй структурi. Пiсля цього введено алгоритм, який висвiтлює ком-
бiнацiю методiв DDM та DNN для розв’язування PDE запропонованої математичної
моделi малювання. Для цiєї моделi модифiкований пiдхiд, який був прийнятий, ви-
користовує метод DNN, який базується на згорткових нейронних мережах (CNN),
щоб зменшити витрати на обчислення в нашому алгоритмi, зберiгаючи при цьому
точнiсть. Накiнець, експериментальнi результати показують, що запропонованй ме-
тод значно перевершує iснуючi для зображень високої роздiльної здатностi в плямах
фарби.

Ключовi слова: глибокi нейроннi мережи; методи декомпозицiї домену; розфарбо-

вування; машинне навчання; рiвняння в частинних похiдних.
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