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In this paper, we are interested in solving the Toeplitz linear systems. By exploiting
the special Toeplitz structure, we give a new decomposition form of the coefficient ma-
trix. Based on this matrix decomposition form and combined with the Sherman—Morrison
formula, we propose an efficient algorithm for solving the considered problem. A typi-
cal example is presented to illustrate the different steps of the proposed algorithm. In
addition, numerical tests are given showing the efficiency of our algorithm.
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1. Introduction

We consider the solution of the following n by n system:

Tz = f, (1)

where T is a Toeplitz matrix defined as:

[ to t_1 ... ... to—p ti—n]

th to t-1 . . tay
T =

th2 - .ttty

th1 ta—2 ... ...t to |
and

z, f e R

Toeplitz matrices emerge in many applications and are encountered in many problems such as digi-
tal signal processing (numerical filtering, estimation theory, speech processing, etc.), as well as image
processing, control theory, partial differential equations (elliptic or parabolic), integral equations (con-
volution type Volterra or Fredholm), Padé approximation and other areas of numerical analysis [1].

The linear system (1) has been the subject of several studies. In 2010 A. Chesnokov and al. pre-
sented a fast algorithm to solve Toeplitz block systems, this algorithm builds the circular transformation
of the given Toeplitz system, then using the formula of Sherman—Morrison—-Woodbury transforms its
inverse into the inverse of the original matrix [2]. D. A. Bini used the fast Fourier transformation to
invert triangular Toeplitz matrices [3]. Recently W. K. Lin and al. introduced an approximate inver-
sion method for Toeplitz triangular matrices based on the polynomial of trigonometric interpolation,
they proposed a revised algorithm of Bini method [4].

Many other methods have been proposed for solving such systems. These methods are Gaussian
elimination [5], cyclic reduction [6], special LU factorization [7,8|, and Toeplitz factorization with
Sherman—Morrison formula [9-11].

When the Toeplitz matrix is full, solving the system Tz = b becomes more difficult and requires
special methods to be solved. In this paper, by writing the considered matrix as a sum of two matrices,
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the first as band Toeplitz matrix and the second as the remainder which will be factorized as a product of
two matrices to be specified. Thus, the inverse of the Toeplitz matrix will be reduced to the computation
of the inverse of Banded Toeplitz matrix after applying the Sherman—Morrison—Woodburu formula.

The paper is organize as follows: in Section 2, we present some results concerning the computation
of a banded Toeplitz matrix; Section 3 gives the different steps of our new algorithm to solve the
Toeplitz linear systems. Finally, in Section 4, typical example is presents to illustrate the steps of
the proposed algorithm. In addition, numerical examples are given to put in evidence the potential
advantages of our method in terms of CPU-time and quality of the obtained solution.

2. Inverse of a banded Toeplitz matrix

In the following, we present an algorithm which computes the inverse of (2k + 1)-banded Toeplitz
matrix Ty of size n, given as follow:

[t t_1 ... t_p O ... O 07
tv to t—qp . o Tl el 0
Tb— tk .. .. .. .. .. .. O
0 o e e et
0 . ety t
0o 0 ... 0 ty, ... t1  to ]

The approach consists in embedding the banded Toeplitz matrix in a larger triangular Toeplitz
matrix [12].
Specifically, we embed T}, in a lower triangular Toeplitz matrix M of size (n + k) x (n + k), where
the first column of M is given by
r= (t_k,. to1,t0,t1, .-, k0, ,O)T S RMHRL

More precisely, if we note L a matrix of size k X k given by

t, 0 ... O
L =
0
t_1 [
We can write M as follows
[t 0 ... ... ... .. ... ... ... 07
t_1 t_
to t-1 try O 0 L 0 0
M — tv to t_1 _ (2)
0 T 0
L
tr t_g
0 ' [
| 0 0 tr ... 11 to t-1 ... t_g]

To compute the inverse of matrix M, we present the following result.
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Proposition 1 (Ref. [12]). Let M be a lower triangular Toeplitz matrix as defined in (2). Thus,

1 - . . . . T .-
M~ is a lower triangular Toeplitz matrix defined by its first column: (1)1, V9, ... ,vm_k) . In addition,
M~ can be partitioned as follows:

[ (%1 0 N N
() (% :
Un—ki1 . . v . . . oo 1 B
_ : ' v v
M= 2 ! = :
Un—1
C D
Un Un—1 D Un—k+1 e D U1
U+l Un - e Upegt1 - V2 U1
' 0
| Un+k ‘o Un+1 Un Un—1 oo Up—f+1 .- V2 U1
where
U1 0 cee 0
. 0 el 0
V2
0
0
A= Un—k+1 . i U1 , B= )
. v 0
(%) .
Un—1 E a : Un—k ... V1 O ... 0
Un Up—1 -+ Un—k+1
Un+1 Un e Un—k+2 Un—k+1 e (%] U1 0 ... 0
y S : .
C — n+2 , D —
. c. . ,Un ,Un_l '.. ... '.. '.. ... 0
Un+k -+ Unt2  Unitl Un Up—-1 --+ Un—f41 ... V2 U1

are matrices of size n X k, n X n, k X k, k x n, respectively.

Then, we investigate the structure of matrix M ! to compute the inverse of the banded Toeplitz
matrix Tp. This result is presented in Theorem 1.
Theorem 1 (Ref. [12]). Let T} be a nonsingular banded Toeplitz matrix and M its associated lower
triangular matrix. Suppose that M ! is partitioned as follows:
A B
M=
C D
where A, B, C, and D are matrices of size n X k, n X n, k X k, k x n, respectively. If T, is nonsingular,
then C~! is also nonsingular and the Schur complement of the block C' for the matrix M~ is defined
by
T,'=B-AC™'D.

Proof. Let
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is a nonsingular (n + k) x (n + k) matrix, where Oy is a k x k null matrix

Li=[L 0p ... 0
and
o
Ok
Ly = )
L0k
such that,
t 0 0
I —
0
t_1 [
Let
O, e I
P = )
I, Ok

where O,, ; denotes an n x k null matrix, and T}, is nonsingular.
Thus,

T, L Ty Ony I, T,'L,
PM = = X
Ly Oy Lo R Ok,n Iy,
where R = —I41T, b_ng, if T}, is nonsingular and R is nonsingular.
Then,
(I, T, 'Ly 1! On i
Mt = X

Ok Iy ~-R7'LyT;t R

T, 'LoR™Y T, + T, 'LeRL T

R! RLT!
So, we have
A=-T,'LyR7Y,
B=T, ' + T, 'LyR LT},
C=R",
D=R1LiT; "
Finally,
T, '=B-T;'LoR 'L T, ' = B— AC™'D.

3. Main algorithm

In this section, we present our approach to solve the class of linear systems (1) based on a new
decomposition of the Toeplitz matrix and the application of Sherman—Morrison—-Woodburu formula.
Indeed, the considered decomposition consists to express the matrix 7" in the form of banded Toepliz
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matrix and the rest which will be decomposed in a well-determined form. Then, the application of
Sherman—Morrison—Woodburu formula reduced the computation of the inverse of 1" to the inverse of
Ty as banded Toeplitz matrix given on the decomposition (4) defined as follows:

T=T,+F,
where
[tg -1 t O
t1 to t—1
T, = |
0
L0 0t
Ty is (2k + 1)-band Toeplitz n-size matrix.
[0 0t (k41
0 0 '
F= 0
b(k+1)
Lt(n—1) tyy O

F' is matrix of rank no more than 2k of size n.

So, the resolution of the system (1) is equivalent to the following system:

Then, the solution is given by

where

(Tb—i—F)ﬂE:b.

z= (T, + F)"'b.
To find the inverse of matrix (7 + F'), we can write (7 + F) in the form:

(Ty + F) = (T, + UVT),

and VT =

3]

Tk

to t_q
ty  to |

t(n-1)

U (k+1)

o
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The matrices P and @ are (n — k — 1,n — k — 1) triangular matrices that reside in the lower left and
upper right corners of F', respectively. It should be noted that, the size of the matrices O and I depend
on the number k& which must be adapted to be able to calculate the product of U and V7.
Then, we apply the formula of Sherman—Morrison—Woodbury to get
(T, +ovhH =1, 17U, + VIT o) VI T
Finally, we obtain the following solution
e=T, ' f -1, UL, + VIT; o) vIT, 1y (4)

Algorithm 1 Solving a Toeplitz system.

Input T, f, k.

Recover T and F from T.

Recover U and V as defined in (3).
Give the matrix M as defined in (2).
Calculate the inverse M 1.

Recover A, B, C, and D from M~
Compute Tb_1 =B - AC™'D.
Compute the solution x using

e=T, ' f-T; UL, + VT, 'u)'vIT  f

4. Numerical experiments

In this section, three examples are considered to show the efficiency of the proposed algorithm. The
first example is a typical test of a matrix of size (6,6) illustrating the different steps of the proposed
algorithm. However, examples 2 and 3 are numerical tests carried out on Matlab on Symmetric and
Non-symmetric Toeplitz matrices, of different sizes, implemented on an Intel(R) Core(TM) i3-3110M
CPU @ with a 2.40 GHz processor and 4 GB of RAM, to show the efficiency of the algorithm in terms
of CPU-time and the solution of the system considered. Since the solutions of the considered systems
are unknown, we evaluate the error given by ||Tx — f|| by co-norm, in addition to the execution (CPU)
time in seconds of our method.

Example 1. In this first example, we consider a full Toeplitz matrix of size 6 x 6 to illustrate the
different steps of the proposed algorithm.
Step 1: Consider the system:

-1 -1 2 0 1 1

-1 -1 -1 2 0 1

2 -1 -1 -1 2 0 T3

o 2 -1 -1 -1 2

1 0 2 -1 -1 -1 x5 -3

1 1 0 2 -1 -1 6
Step 2: In this step, we recover T and F' from the matrix F.
We fix k = 3, so tp = t3 = 2 # 0 i.e. the condition on the choice of k is that is t; not null.
Then, we obtain:

O O N O

—_

-1 -1 2 0 0 0 0000T11
1 -1 -1 2 0 0 000O0TO0 1
2 -1 -1 -1 2 0 000000
=19 2 1 1 1 201" F=loooo0o0o0
0 0 2 -1 -1 -1 100000
0 0 0 2 -1 —1 110000

Mathematical Modeling and Computing, Vol. 10, No. 3, pp.807-815 (2023)
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Step 3: To complete the decomposition, we use (3) to obtain the decomposition of ' = UV 7T,

10 00 0O 000011
010000 0 00 0 O01
U— 000 O0O0O VT — 00 0 00O
00 0O0O0O0}” 000 00O
000010 10 00 0O
000011 01 0000
Step 4: The triangular matrix M of size 8 obtained as defined in (2) is given by
2 0 0 0 0 0 0 O
-1 2 0 0 0 0 0 O
-1 -1 2 0 0 0 0 O
-1 -1 -1 2 0 0 0 O
M= 2 -1 -1 -1 2 0 0 O
o 2 -1 -1 -1 2 0 0
o o 2 -1 -1 -1 2 0
o o o0 2 -1 -1 -1 2
Step 5: In this step, we compute the inverse of M where we obtain
0.5000 0 0 0 0 0 0 0
0.2500  0.5000 0 0 0 0 0 0
0.3750  0.2500 0.5000 0 0 0 0 0
Mol 0.5625 0.3750 0.2500 0.5000 0 0 0 0
0.0938 0.5625 0.3750 0.2500 0.5000 0 0 0
0.2656  0.0938 0.5625 0.3750 0.2500 0.5000 0 0
0.0859  0.2656 0.0938 0.5625 0.3750 0.2500 0.5000 0
—0.3398 0.0859 0.2656 0.0938 0.5625 0.3750 0.2500 0.5000

Step 6: We recover the matrices A, B, C, and D from the matrix M ' as defined in Theorem 1,

0.5000 0 0 0 0 0 00
0.2500 0.5000 0 0 0 0 0 0
A= 0.3750 0.2500 B 0.5000 0 0 0 00
0.5625 0.3750 |’ 0.2500 0.5000 0 0 0 0}’
0.0938 0.5625 0.3750 0.2500 0.5000 0 0 0
0.2656 0.0938 0.5625 0.3750 0.2500 0.5000 0 O
0.0859  0.2656 0.0938 0.5625 0.3750 0.2500 0.5000 0

C= ,
—0.3398 0.0859 0.2656 0.0938 0.5625 0.3750 0.2500 0.5000
Step 7: We compute the inverse of Tj from the considered matrices in the previous step using the
following formula:

D

T,'=B—-AC™'D

to obtain,

0.3200

—0.1200

0.6000
0.4000
0.1200
0.6800

-1
Tb
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—0.1200
—1.0800
—0.6000
—0.4000
—0.9200
0.1200

0.6000
—0.6000
—0.0000
—0.0000
—0.4000

0.4000

0.4000
—0.4000
—0.0000
—0.0000
—0.6000

0.6000

0.1200
—0.9200
—0.4000
—0.6000
—1.0800
—0.1200
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0.1200
0.4000
0.6000
—0.1200
0.3200
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Step 8: The solution of the system Tx = f is given in this step following the given formula in (4),

Example 2.

form

Example 3.

=T, f =T, UL, + VT U) T VIT f =

-1 1
1 -1
1 1
1
1 1

1
-1 1 1
1 1

—0.3533
0.5978
—0.3804
0.8804
0.9022
0.1033

In this example, we consider the n x n symmetric Toeplitz linear system Tz = f of the

1 1
I 0
1 - 5
. _ .

1 Tn—2 03
o _
11 - 1

1 -1 "

Table 1. Numerical result for Example 2.

n |Tx — f|| | cpu-time (s) | Cond(T)
60 | 2.3314e7 > | 6.3600e~2 29.0000
100 | 4.2188¢~ 1> | 6.2400e~2 | 49.0000
300 | 6.6613¢~1 | 6.2400e=2 | 146.2364
500 | 8.8817e~ ™ | 6.2400e"2 | 243.2778
1000 | 2.5535e~™ | 1.0920e~! | 485.8879
2000 | 5.6621e—14 | 1.0920e~' | 971.1069

-4 1
2 -4
-1 2
1

1

1 1

1

1 1
-4 1 1
1 -1 2

Table 2. Numerical result for Example 3.

n Tz — f|| | cpu-time (s) | Cond(T")
60 | 5.0626e 1% | 1.5600e 2 18.1512
100 | 2.9531e 4 | 3.1200e=2 | 31.6792
300 | 1.8496e~ 1 | 3.1200e 2 | 99.2284
500 | 1.5032¢~13 | 4.6800e~2 | 166.7521

1000 | 3.2474e713 | 3.1200e2 | 335.5481
2000 | 2.8903e~ ™2 | 1.4040e~T | 673.1309

Next, we consider the n x n non-symmetric Toeplitz linear systems T'x = f of the form

1 1
T 0
1 Ty 9
0
1 Tn—2 03
Tn—1 o
-4 1 . -1
2 -4

From the numerical tests, we show the perfor-
mance of our algorithm. In fact, the results given in
Tables 1 and 2 show that, for different choices of size
n, with symmetric and non-symmetric Toeplitz Full
Matrices, we obtain a good approximation in terms
of numerical efficiency and computational time. In
addition, the computation of the Cond(7") show that
the considered matrices are ill-conditioned, so our
approach has a regularizing effect.
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5. Conclusion

In this paper, we have presented a new algorithm to solve Toeplitz linear systems. We have broken
down the matrix into the sum of two matrices. The first one is band Toeplitz matrix of size (2k+1) and
the second one is matrix of a rank less than 2k. Then, we applied Sherman—Morrison formula to find
the inverse of the decomposed matrix reducing the computation of the inverse of Toeplitz matrix of
the initial system to the inverse of banded Toeplitz matrix. Numerical examples are presented showing
the efficiency of the proposed method.
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HoBuii anroputm po3B’'sisyBaHHA NiHINHNX cuctem Tenniua

Aynan O. @., Tagui Y.

Komanda SMAD, noaiducuyunainaprut gaxysvmem Jlapaws,
Vwisepcumem Ab6deavmanexa Eccaadi, Temyan, Mapoxxo

V miit craTTi HaC MIKABUTH PO3B’sg3aHHs JiHifiHuX cucrem Terutina. BukopucroByroun cre-
miaJgbHy CTPYKTYpPY Teruiina, maemMo HoBy hopMy PO3KJIaJaHHs MAaTpuIll Koedimientis. Ba-
3YI0YUCH HA Il MATPUYHii dhopMi mekoMmo3uriil Ta B noeaHanHi 3 dpopmystoro [lepmana—
Mopicona, 3amporroHOBaHO e(DEeKTUBHUMN aJITOPUTM JjIsI PO3B’I3aHHS PO3TJISTHYTOI IpooJIe-
mu. HaBeseno TumoBuit mpuK/IaL fjs 1IIOCTpAIlil pisHUX KPOKIiB 3aIIPOITIOHOBAHOTO AJIrO-
purmy. Kpim Toro, HaBemeHi ducesibHI TeCTH, MO JAEMOHCTPYIOTh €(EKTUBHICTH HAIIOTO
AJTOPUTMY.

Kntouosi cnosa: mampuusa Tenaiya; dopmyaa Hlepmarna—Mopicona; memod derxomno-
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