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In this paper we are interested to the dynamic von Karman equations coupled with vis-
cous damping and without rotational forces, (o« = 0) [Chueshov I., Lasiecka I. (2010)],
this problem describes the buckling and flexible phenomenon of small nonlinear vibration
of vertical displacement to the elastic plates. Our fundamental goal is to establish the
existence and the uniqueness to the weak solution for the so-called global energy, under
assumption Fy € H37¢(w). Finally for illustrate our theoretical results we use the finite
difference method.
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1. Introduction

Dynamic von Karman equations without rotational forces, (v = 0) [1], describe the buckling phe-
nomenon nonlinear vibration to the vertical displacement of elastic plates. There is considered the
case when the plate is acted with an active damping in nonlinear thermoelastic plate interaction.
From physical point of view the main peculiarities of the model are the possibility of small deflec-
tions of the plate and small changes of the temperature near the reference configuration of the plate.
For displacement u, the Airy stress function ¢ and the thermal function 8, can be formulated by the
following system, see for instance [1].

Find (u,¢) € L*([0,T], (H3(w))?) such that
e + do(2)go(ue) + A%u — [¢ + Fo,u] = p(z) in wx [0, 7],

A2¢ + [u,u] =0, in wx[0,7T],
(]P)) u| =u ( — 1 ;
0 0, ut)|t:0 u', in w,
u=0,u=0, ¢=0, 0,0 =0 on I' x [0,T],
where w is the surface plate, ug, u1 and 6y are the initial data and [-, -] is the so-called Monge—Ampere
operator defined by [2]
(¢, u] = O11¢022u + O11ub22¢ — 2012¢012u. (1)

The case o > 0 corresponds to the equation with rotational term. But the parameters p, n are
positive fixed real numbers and the parameter k£ measures the capacity of heat/thermal to the model
of thermoelastic problem [1]. Now, in the case k = 0 and « = 0, if we substitute A from the second
equation in the model of thermoelastic, [1| without rotational inertia can be decoupled. The first
equation becomes just a model of dynamic von Karman equations with internal viscous damping [1].

The plate is subjected to the internal force Fy € H37¢(w) and the external force pq.

Our fundamental target in this paper is to give a condition verified by the external/internal loads
and the initial datums to have a uniqueness weak solution of the von Karman evolution without
rotational term and nor clamped boundary conditions subject to active contracting damping operator
do(+)go(-). Our approach is based on an iterative problem (P,),>0 when sequence-solution (uy,, ¢n)n>0
converges to the uniqueness solution of the problem under consideration.
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Dynamic von Karman equations with viscous damping 817

This paper will be organized as follows. After this introduction, Section 2 contains some basic
results, Section 3 is devoted to describe the mathematical structure of the considered model by using
an iterative method for establishing the uniqueness weak solution. Finally Section 4 display a numerical
simulation of our initial problem.

2. Preliminary results

In this paper, w denotes a nonempty bounded domain in R?, with regular boundary I' = dw.
Let p > 1 be a real number and m > 1 be an integer. We denote by | - |, the classical norm of
LP(w) and by ||« |lmw that of H™(w). For u € HE(w), we set |lu|| = |Aula,, for the sake of simplicity.
We also denote
lulle = all? + luel3- (2)
Theorem 1 (Refs. [2,3]). Let f € L?*(w). Then the following problem:
A2v=f in w,
v=20 on I,
O,v=0 onT
has one and only one solution v € HZ(w) N H*(w) satisfying

[oll < col flrw

for some constant ¢y > 0 depending only on mes(w).
Theorem 2 (Ref. [3]). Let f € L*([0,T],H*(w)), up € L*(w) and k > 0, 0 < n < p are non
negative reals. Then the following problem:

kuy —nAu = —pAf in wx[0,7T],

(D) S w,_, =uo in w,

u=20 on I' x [0,T]
has one and only one solution u € C([0,T]; H*(w) N H (w)) N CL([0,T); L?(w)), satisfies the following
inequality:

t t
W<<T, Huly+n | [Vub <l +a [ V6B, 3)
0 0
Theorem 3 (Ref. [1]). Let p € L?(w) and (ugp,u') € H3(w) x H}(w), the problem
uy + A%u=p in w x [0,7T],
(S)s u=0,u=0 on I' x [0,7],

u‘t:o = Uo, (Ut)|t:0 =ul inw

has one and only one solution (u,u;) € C([0,T], H3(w) x HE(w)).

Now, let us put

Fi(u, ¢) = [¢ + Fo, u] — do(z)go(w). (4)
Proposition 2. Let (u,v) € (H3(w))? and Fy € H3™(w) be with small norms. Let o, € HZ(w)
be the solutions of the following two problems:

A2¢ = _[u7u] and A21/’ = _[U7U]7

and do(-)go(+) is a contracting non linear operator on uy.
Then the following estimations:

HU, ¢] - [Uvqﬁ“zw < CIHU - UH

and

| P (u, ¢) = F1(v, )|y, < c2(llu = vl + |ur — vel2)
hold for some 0 < ¢; <1 and 0 < co < 1.
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Proof. Following [1],
|[u, @] = [0, 9], < co(llul® + [[ol*) u — o],

for some ¢y > 0. Let ¢ > 0 be small enough such that |lu|| < ¢ and ||v|| < ¢. We have
[, ¢] = [v, 9], < 2e0¢?||u— vl < crllu— o]

with 0 < ¢1 = 2¢pc? < 1 and there exists 0 < o < 1 s0

|F1(u, 6) — Fi(v,9)],,, <[+ Fo,u] — [ + Fo,vl],, + |do(2)go(ue) — do(z)go(wr)|,,
< HQS,’LL] o T’Z)’ ‘2,w + ‘ FO’ o |2,w —I—Oé"LLt o Ut‘2,w
< (26062 + 4||F0||3+€,w)”u - UH + a|ut - 'Ut|2,w-

If we choose

Follasew < 3 and 0<c < ¢%
then
0 < ¢z = max (2co¢® + 4[| Fp||31e 0, @) < 1,
and

|Fu(u, 6) = Fi(v,9)]y,, < ca(llu— vl + Ju = vel2),
so we conclude the proof. [

Proposition 3. Assume that for p € L*([0,T], L?(w)), 6o € Hi(w) and (ug,u') € HE(w) x Hi(w).
The following problem:

i+ A%u A+ pAf = p in w x [0, 7],

(81){ K~ nAb = plu in wx [0,7],

1 u:ayu:ezo ODFX[O,TL
u)|t:0 = Uo, (ut)|t —0 =ul ‘t o=0 Inw

has one and only one solution (u,6) € L%([0, 7], H3 (w ) x H}(w)) and u; € L%([0,T], H} (w)) satisfying
that

t T
lull. + k612, + 20 /0 VOE, <e <HU0||2+|U o+ Kl + /0|p|§,w). (5)

Proof. For establishing the existence and uniqueness solution of the problem under consideration, we
will study the problem (S;) by considering the n-order approximate solution and use the variational
problem, see [4]. [

3. The main results

For establishing the uniqueness solution to the problem (IP), we use the following iterative approach.
Let n > 2 and let 0 # u; € HZ(w) be given.

(un)tt + A2un = G(un—la ¢n—1) in wx [OaT]7

A2(bn—l - _[un—lyun—l] in wx [O,T],
(Pp){ up=0,u, =0 on I' x [0,T7,

(un)|t:0 = uyg, ((Un)t)|t:0 =u' in w,

¢n—1 = 8V¢n_1 =0 on I' x [O,T],

where

G(u,¢) = Fi(u, ¢) + p,
and F} is defined by (4).
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Theorem 4. For p € L?(w), (ug,u!) € H3(w) x H(w) and the following quantities:
| Folla+ew and [pla, lluoll® + u' |3,

are small with dy(-)go(+) is a contracting operator. The problem (P) has one and only one weak solution

(u,¢) in L2([0,T], H3 (w) x HE(w)), us € L*([0,T], H}(w)) and uy € L*([0, T, L*(w)).

Proof. We divide the proof into three steps.
Step 1: Let us consider the problem (P, ), where 0 # u; does not depend on .
Throughout this proof we use the next notation defined by (2).
According to Proposition 2 and Theorem 1, there exists a constant ¢y > 0.
Now, for ||Fp[[31ew < %, We can choose ¢ := ¢(||Fp||3+ew,co, ") > 0 such that

1 —4||Fo||34ew
200

By mathematical induction on n > 1, we will prove that the following two inequalities:

0 < 4cpc? <1, 0<c<\/ and ||u1| <e< 1.

lulls = lJunl? + [(un)el3e < ual® and [[én]l < flual]
hold for all n > 1 and any 0 <t < T.
For n =1,
utlls = llua ]l + [(ur)el3 0 = [l ®
since u; does not depend on t. Otherwise, for ¢; being the solution of the problem AZ¢y = —[uy,u1],

Theorem 1 ensures that there exists ¢y > 0 such that
o1l < collur, w]], .
using the proof of Proposition 2 with |lu1[| < c and 0 < 4cpe < 1, we can deduce that
111 < deollur[* < 4eoc|lur]] < flua]-

The desired inequalities are true for n = 1.
Suppose that for k=2,...,n and 0 <t < T, we have

<
luglls < flual® and el < Jlut]-

According to Proposition 2 and Theorem 1,

[l < colftn, wn]l1w < 4eollun| < deocllun |l < Jluz |-

Since w41 is a solution of (P,1), Proposition 3 with & = u = n = 0, Proposition 2 and Theorem 1
imply that there exists 0 < ¢y = 2¢pc? + 4||Fpll4 < 1 such that

T
[untalle < eT(IIUon +[u'f3 +/0 IG(un,%)I%,w)

T
< eT<Huo|!2 B2 [ (P o) + \pr%m),

it follows that

T
sl < eT<HuoH2 B +2 [ Bl + ) B) + 2T\pr%,w)
0
T
€T<||U0||2 B, 42 /0 Elunl? + [(n)e2) + 2T|p|%,w>
“(

T
T Huol® + u'3,, + 2/0 c3(lunl® + |(un)el3 ) + 2T|p|§,w>

<
<
< el (luoll? + w3, + 4T3[l |* + 2T |pl5.,)-
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If we choose ¢ > 0 sufficiently small, then 0 < ¢; < 1 and 0 < c3 := 4e’'c3 < 1, we have
[unsalle < e (Juoll? + |u' 3, +2T|p13,,) + csllu |,

now we can choose

(1—c3)
uoll® + [u'[3,, + 2T |pl3,, < THulHQ.

It follows that
T(|luol® + |u'[3, + 2T |pl3 ) + esllul?,

1—c3
< eT(eiT)HUIH2 + cal|ua||? = Jluaf*.

luni1llx <e

Further,

H¢n+1H < c()Hun-i-lvun-i-lHva
with [|u1]| < ¢ and 0 < 4cpe < 1, immediately yields
¢nr1ll < 4eollunsill* < deollur ]| < 4COCHU1H < ffuall

Summarizing, we have proved that, for all n > 1 and any VO <t < T,

2
[[unll« < [lur][” and [¢nl] < [lu]-
Step 2: For n > 2, let (up, ¢ ) be a solution of the problem (P,,).
For 2 < m < n, then it is easy to see that u, — u,, is a solution of the following problem, with ¢,

is a uniqueness solution to the problem A2¢, = —[un,, uy],
(un - um)tt + Az(un - um) = G(Un_l, ¢n—1) - G(Um_l, (bm—l) n w X [O, T]7
Up — Uy, = Op(Up, — Up,) = 0 on I'" x [0,T],
(up — um)‘tzo = ((un)t — (um)t)‘tzo =0 in w.

According to Proposition 2 and Theorem 1 we deduce, for all 0 <t < T,

lon—1 — dm—1] < 8coc|lun—1 — wm—1]-

Using Proposition 3 with £k = u =71 = 0 and Proposition 2, again we have, with 0 < c3 = TeTc% <1,

T
tn — s < eT/ (G (ttn1, 1) — Gltim1, Smr)|.
0 b

T
< eT/ C%(Hun_l — U1 |2+ | (1) — (um—l)tg,w)'
0

It follows that

T
lt — i« < 7 / et — ]l
T e3)m / / (T

n— m+1

<(63)m_2 (e''c3) / / [lug — w1
n— m+1

<l S (1) / / (luzlls + )
n— m+1

< (e3)™? Z (e3)* (2l [?)-

k=0
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And
T n—m+1
/ ”un - um”i < T(C3)m_2 Z (63)k(2|’u1”2)
0 k=0
And so we have
P — dmll < 8coctn — wm]|.

Then, the sequence (un, ¢n)n>2 is Cauchy sequence in L2([0, 7], (H3(w))?). It follows that (un, ¢p)
converges to (u,$) in L%([0,T], (H3(w))?) and (uy); converges to u; in L2([0,T], L?(w)).

By Proposition 2 G(u,_1, ¢n_1) converges to G(u, $) in L?([0,T], L2( ))-

Due to Theorem 3, (un, (un): ) 6 C([0,T), H3(w) x Hg(w)) with ( !t 0 = Yo, ((U")t)‘tzo = uy,
which implies that (u)‘tzo = uo, ‘t 0 =l

By the assumption (ug,u') € HO( ) x HY(w), u, € C([0,T], H3(w)), (un)n>2 converges to u in
12(0,T), H3(w))

Let v € L?([0,T), H3(w)) be such that vy € L*([0,T],L*(w)), vu + A%v € L*([0,T], H ?*(w)),
v(x1,x9,T) =0 and vy(x1, 22, T) = 0.

Since wy, is a solution of (P,), by virtue of the transposition theorem, see |3, 5], we deduce that

/oT /w Up (v + A%v) = /OT /w Glun—1,n-1)v + /w v - /WUOW(O)'

We have wu,, converges to u in L%([0,T], H3(w)), then

T T
/ / Unp (Vg + A2?}) converges to / / u(vy + A2v),
0 w 0 w

and using Proposition 2 and

' G(tn-1,pn-1) = ' Fi(up_1, bn_1) + p,
)l Il
/0 ' /w Gltin_1,n_1)v converges to /0 ' /w ).
/OT/Wu(vtt—l—A%) :/OT/WG(U’WU—I—/WU%(O)_/wuovt(o)'

By the transposition theorem, we obtained that u is a solution of the problem (P).
In summary, we have proved that (u, ¢) is a solution of the thermoelastic von Karman evolution.
Step 3: We now prove the uniqueness. Assume that there exist two solutions (u', ¢') and (u?, ¢?)
in L2([0, 7], (H§ (w))* x Hg(w))-
For some ¢ > 0 being sufficiently small and according to step 1, we have that
gl Il <

we deduce that

and so

lu'|| <e, and |u
This implies that u! — u? and (¢' — ¢?) satisfies the following problem:

(u' —u?)y + A2(ur —u?) = G(ut, ¢!) — G(u?,¢?)  in w x [0,T],

A2 (¢ — ¢%) = —[ul, u'] + [u?, u?] in wx[0,77,
(P3)< u' —u?=0,(ut —u?) =o' —¢?=0,(¢' —¢?>) =0 on I x [0,7],

ul(xy,22,0) — u?(21,22,0) =0 in w

(ul)¢ (w1, 22,0) — (u?)¢(z1,22,0) =0 in w,

which means that (u! —u?, ¢! — $?) is a solution of the problem (IP3).
Proposition 2 with k = 4 = n = 0, Proposition 3 and Theorem 1 ensure that there exists 0 < ¢y < 1
such that
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T
2
la — 2], < eT/O P!, 6') = Fu(u?, 6);,

T T
<JAc%W—¥W+m—wa<J£AHM—ﬁM

Since the constant ¢ > 0 is small and thus 0 < ¢3 = TeTc% < 1, it follows that

T T
/\m%wﬂn<@/ lut =],
0 0

which, with 0 < ¢3 < 1, immediately yields V0 <t < T u' = 4? in w and ¢! = ¢? in w.
After the variational problem of (P) and (PP,,), we have for all v € L2([0, T, H3(w))

/ / Un )it — gt v—I—/ /A —uv—/OT/w(F1(un_1,¢n—1)—Fl(u7¢))v20- (6)

Now, we can pass with the limit n — +o00 in (6) we find that
(up)e — uy  weakly in L2([0,T], L2(w)),
then uy € L2([0,T), L (w)).

We conclude that the dynamic von Karman equation with viscous damping, without rotational
inertia, has one and only one weak solution (u,®) in L*([0,T], (HE (w))?).
The proof of the theorem is completed. ]

4. Numerical application

Let w be defined by
w =]0,1[x]0, 1[C R?
and T > 0. In order to solve numerically the problem (P), we introduce an uniform mesh of width h.
Let wp, be the set of all mesh points inside w with the internal points
. . . 1 1
xi:Zh, yjzjh, Z,jzl,...,N—l, h:N——H’ At:f

Let wy, be the set of boundary mesh points and uy be the finite-difference approximation of w.

For approaching the weak unique solution of the dynamic nonlinear plate coupled, we then use the
following discrete model of von Karman evolution developed by Bilbao and Pereira in [4,6,7]:

5?1;? + do(xij)go(étu%) + A%u = [ul, vt + Fij] +pij in wp,

ij “ij
A%LU [U i U, ]] in Wh,
(*) u?j = (900)197 oru 0‘ = (SDI)ij, in  wp,
uiy = v =0 on @y,
81/1//% — a,/v% — O on W_h
with the following discrete differential operators:
SR
iy = (At)2 » O = =

2 4
Apugy = b~ wij-2 + wij2 + wimgj + tivej — 8(Uij—1 + i1 + Uim1j + Uit1))

+ 2(Ui—1j—1 + Uim1j1 F Uig1j—1 + Uit1j41) — 20%3’]7

n _ n n n _ n n
S2un — Uty — 20 Uy 2,n Uy — 2wy ugs_g
- (h)2 ’ yry T (h)2 ’
n n n n
52 g — Lt T Yilio1 — Yicija U151

(2h)? ’
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[u%, vg] = 5§u?j§§v?j - 253yu%5gyv?j + 55%"]5:%211"]
We have transformed the above problem to the numerical resolution in two steps itemized as follows.
First step: We use the numerical procedure of 13-point formula of finite difference developed by
Gubta in [8] for illustrating the weak solution of the following biharmonic problem:
A%y =f] in w,
V=g on I
ov=go on I.
Second step: According to the first and second steps, we use the discrete model of von Karman
evolution (x) for illustrating the unique solution of the structural interaction model coupled with the
dynamic von Karman evolution.

4.1. Non-coupled approach
In [8], Gubta presented a numerical analysis of finite-difference method for solving the biharmonic
equation. Such method is known as the non-coupled method of 13-point formula of finite difference.
Proposition 4 (Ref. [8]). The 13-point approximation of the biharmonic equation for approaching
the unique solution v of the problem (P) is defined by

(1) { Lyvij = b~ [oij 2 + vijya + vicgj + vivaj — 8(vij—1 + vijr1 + vic1j + vig1;)

F2(Vim1j—1 + Vic1j41 + Vig1j—1 + Vig1j1) — 20055] = fi(zi,y;5)

fori,j =1,2,...,N — 1, where we set v;; = v(z;,;).
Remark 1. When the mesh point (x;,y;) is adjacent to the boundary @y, then the undefined values
of vy, are conventionally calculated by the following approximation of 0,v:

3
Vi-2,j = 5Vitlj ~ Vij T 5Vi-15 h(03v)i-1,5,
3
Vij=2 = Uij+1 ~ Vij + 5 Vii—1— h(0yv)i -1,
1
Vit = GUitlg — Vij + gVi-1j — (0s0)it1,
1 3
Vij+2 = GUij+1 — Vij -1~ (0yv)ig4.
4.2. Example
Let the analytical body force and lateral forces:
Fy(w,y) = ye "V, g0 = 15100022 —y — 1)°(y — )%V,
p(z,y) = 0.01z(x — y)e‘””Q_yz, @1 = 15107 % (sin(7z) sin(my))?,

do(x)go(ur) = 1073~y

Fig. 1. Displacement of plate, Fig. 2. The Airy stress function,
t1 = 0.2s and t; = 60s. t1 = 0.2s and tg = 60s.
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5. Conclusion

The dynamic von Karman equations about a flexible phenomenon of small displacement play an inter-
esting place in nonlinear oscillation of elastic plate. When the plaque is acted with an active damping.
In this paper, we describe an iterative method for establishing the existence and the uniqueness of the
weak solution for the von Karman equations plate. The original idea of this technique is based on the
construction of a sequence-solution which approximates in a certain sense the solution of our initial
problem. Our approach is in fact a good tool, simple and is practical, for illustrating the solution of
our problem in the numerical point of view.
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OuHamiyHi piBHAHHA pboH KapmaHa 3 B's1I3KMM 3aracaHHsIM

Enb-Axxan B.', Ynaani Tx.2, Ens Myaracim A.2

L Konedorc Ioacan—Yapsazam, Mapoxko
2 Parysvmem mamemamury ma mernedsrcmenmy, Yuisepcumem Iony 3op,
Honiducyunainapruts garxyasvmem, nowmosuti indexc 638, Yapsazam, Mapokxo

V miit cTaTTi MiKaBUMOCS AMHAMIYHAMY PiBHAHHIME (boH KapMama B o€ THAHHI 3 B’ I3KUM
nemmdysanasaM i 6e3 obepranmpanx cui, (a = 0) [Chueshov 1., Lasiecka I. (2010)], gz 3a-
Jlada OINCY€E fABHINEe BUIMHY Ta THYYKOCTI MaJUX HETHIHUX KOJIMBaHb BEPTUKAJIHLHOI'O
3MileHHs IpyKHUX miactud. Hama dyHgaMenTaabHa MeTa MOJI[rac B TOMY, 1100 BCTa-
HOBUTH iCHYBAHHSI Ta €IMHICTH CJIA0KOIO PIIlIeHHs Il TaK 3BAHOI IVI00AJIBbHOI eHepril 3a
npunymennsa Fy € H37¢(w). Haxinernp, mis imocTpariii TeopeTHIHIX pesyabTaTiB BUKO-
PHUCTaHO METOJI CKIHYeHHUX PI3HUIIb.

Kntouosi cnosa: pisnanns gon Kapmara; neainitini naacmunu; 6’aske demngyeanii;
THEPULA 00ePManHA; He36 A3aHUTl MeMOod; MeMOod CKIHYEHHUT PIBHUUD.
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