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Compelling evidence shows the association of inflammation with atherosclerosis diseases,
one of the leading cause of mortality and morbidity worldwide. Recent research indicated
that the inflammatory process of atherosclerotic lesions is involved in the progression of
atherosclerotic plaques in specific regions, such as the carotid bifurcation, which represents
a risk for ischemic stroke as a result of the interaction between the blood and the plaque.
We start modeling using 3D idealized geometry in order to capture the most important
features of such interactions. Then, we proceed to a partly patient-specific computa-
tional domain representing an atherosclerotic artery. Understanding such interactions is
of paramount importance preventing the risk of the plaque rupture. The numerical re-
sults comparisons have shown that, qualitatively, there is an agreement between idealized
atherosclerotic artery and patient-specific atherosclerotic carotid artery. The idealized
carotid geometry will be useful in future FSI studies of hemodynamic indicators based on
medical images.
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1. Introduction

The inflammatory process of atherosclerosis leads to the formation of an atheromatous plaque in the
intima of the blood vessel. It starts typically with the penetration of the low density lipoproteins (LDL)
into the intima layer of the blood vessel where they are oxidized (ox-LDL). Being a dangerous agent,
the ox-LDL triggers an immune response that initiates with the recruitment of monocytes, which are
later transformed into macrophages. The macrophages eliminate the ox-LDL and are transformed into
foam cells, that along with several other substances form the so-called lipid core. Smooth muscle cells
migrate and form a fibrous cap which covers and isolates the lipid core from the blood circulation. The
lipid core along with the fibrous cap constitute what is called the atheromatous plaque [1]. This process
may occur throughout vessels in the body, however, there are regional differences in the susceptibility
to lesion development. At the local level, susceptible sites for plaque formations are found at branch
points of the vascular tree, such as the carotid bifurcation and in the lesser curvature of the aorta,
where blood flow is characterized by low shear, oscillatory, and turbulent flow [2].

In this paper we will analyze some hemodynamic factors that have an important effect in the
development and the risk rupture of atherosclerotic plaque in the carotid artery using a 3D fluid-
structure interaction (FSI) numerical modeling. The methods to describe the interaction between
fluid and structure are of great importance to achieve accurate numerical simulations. These methods
include among others, the level set method [3], the immersed boundary method [4, 5], the fictitious
domain method [6, 7], the Fully Eulerian formulation [8, 9] and the Arbitrary Lagrangian Eulerian
(ALE) approach [10–12]. In this paper we use the ALE method to simulate our FSI model.

It is known that the circulatory system can be seen as an infinite extremely complex network
including the heart and blood vessels. Therefore, mathematical and computational modeling of blood
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flow dynamics is a complex problem that requires simplifying assumptions of the physical properties
and boundary conditions (BCs). Rather than modeling the entire circulatory system, based on full 3D
models, which is beyond the capability of current computers, segments of the circulation are studied to
reduce the computational time, requiring appropriate inflow and outflow BCs. One can find an attempt
in [13–15], where, after a 2D and a 3D analytical study to prove the existence of a weak solution for
incompressible non-Newtonian fluids with nonstandard BCs, the authors tested the model numerically
by coupling it with a nonlinear hyper-elastic model for the arterial wall and the atheromatous plaque.

Mechanical effects such as wall shear stress (WSS), pressure forces and structural stress are the
most important factors. It is well accepted that low WSS is associated with the formation of plaques,
whereas high WSS may impose higher risk of plaque rupture. Also, structural stresses are known to
significantly affect the plaque vulnerability due to its considerable contribution to the total mechanical
load [16]. Therefore, WSS and structural stress play important roles in view of risk evolution of plaque
rupture. Several computational fluid dynamics (CFD) approaches have been proposed for modeling
blood flow. These can be based on idealized geometries, but also on patient-specific geometries taken
from medical imaging modalities, such as magnetic resonance imaging (MRI). The present study aims
to compare some results obtained in the 3D idealized geometry with those obtained recently within a
partly patient-specific computational domain representing an atherosclerotic artery.

2. Methods

2.1. Geometry of the atherosclerotic blood vessel

Idealized geometry. The computational domain is shown in Figure 1.
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Fig. 1. 3D computational domain of the idealized stenosed artery model composed of fibrous cap,
lipid pool and vascular wall.

It consists of a cylindrical tube representing the blood vessel with a narrowing of its interior to mimic
the stenosis. The flow channel with radius R = 0.3 cm and height H = 2 cm contains the fibrous cap
and lipid pool described by the trigonometric functions corresponding to a stenosis length of l = 1 cm.
The degree of arterial stenosis is ≈ 70% with a fibrous cap thickness of 0.5 mm. The thickness of the
whole wall was chosen to be 1 mm. To avoid the entrance and exit effects, the computational domain
was extended upstream (2 cm) and downstream (4 cm) the stenosis.

Reconstructed geometry. Our image-based modeling approach involves the following steps.
First, the geometry of the stenotic carotid artery that will be used in our simulations is derived from
MRI (see Figure 2(a)). To construct such geometry, several free computational tools are available,
such as ITK-SNAP, SimVascular or 3DSlicer. Also commercial options such as Simpleware Scan IP,
may be used. This geometry consists of the lumen, that is the interior of the artery. Moreover, the
branches were extended to avoid the entrance and exit effects (see Figure 2(b)). Finally, the last
realistic geometry was obtained in MeshLab in order to repair and smooth the model surface. Then,
in order to design the FSI model, an open-source tool obtained from the finite element library LifeV
developed in Politecnico di Milano [18] was used to generate the wall from the vessel lumen surface
model previously obtained (see Figure 2(c)).
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COMSOL 5.0.0.243

Fig. 2. (a) Medical image of the lumen of a carotid bifurcation with a stenotic region [17].
(b) The extended lumen. (c) Computational domain after fibrous cap, lipid pool

and vascular wall construction.

2.2. Fluid–structure interaction modeling

Fluid modeling. As we are dealing with arteries with sufficiently large diameters, here we consider
blood as an incompressible fluid, described by the quasi-Newtonian equations for the conservation of
mass and linear momentum, as follows:

ρf
∂u

∂t
+ ρf (u · ∇)u−∇ · (2µ(s(u))Du) +∇p = 0,

∇ · u = 0.
(1)

This system of time dependent partial differential equations involves the blood velocity u =
[u1, u2, u3]

T and the pressure p as the unknown variables. The dynamic viscosity µ is a func-
tion of the strain rate tensor Du = 1

2(∇u+(∇u)T ). More precisely, µ is a function of s(u), the second
invariant of the strain rate tensor, defined by

(s(u))2 = 2Du : Du = 2
∑

i,j

(Du)ij(Du)ji.

We consider µ defined by the Carreau–Yasuda law,

µ(s(u)) = µ∞ + (µ0 − µ∞)(1 + (λs(u))2)(n−1)/2,

with µ0 = 0.0456 Pa·s (the viscosity at the lowest shear rate), and µ∞ = 0.0032 Pa·s (the viscosity at
the highest shear rate), λ = 10.03 s, ρf = 1060 Kg·m−3 (the fluid density) and n = 0.344 (correspond-
ing to a shear-thinning viscosity fluid). The values of these parameters are taken from [19]. Although
for large and almost cylindrical vessels a constant viscosity may be considered, it has been shown that,
for stenotic cases, the shear-thinning nature of blood should not be neglected, if one is interested in
hemodynamic factors such as recirculation size and WSS magnitudes. See, for instance [20].

Artery wall and plaque structures modeling. Consider the 3D nonlinear model of hyper-
elasticity [21], governed by the equation

ρs
∂2

η

∂t2
− div(FS) = 0, (2)

where η represents the displacement vector, F is the deformation gradient tensor, given by F = I3+∇η

(I3 is the identity matrix), and S represents the second Piola–Kirchhoff stress tensor. S can be
computed as S = ∂ω

∂ε where the strain tensor ε is defined by

ε =
1

2

(

∇η + (∇η)T + (∇η)T∇η
)

,

and ω is the elastic strain energy density, which is material dependent.
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In this work we assume the vessel wall to be modeled as St Venant–Kirchhoff material. Under this
assumption, S becomes defined by the stress-strain relationship

S− S0 = C : (ε− ε0 − εinel),

where S0 and ε0 represent the initial second Piola–Kirchhoff stress and strain tensors, respectively,
εinel the inelastic strain tensor and C the fourth-order stiffness tensor. The symbol “:” stands for the
inner product of two second-order tensors. Here, we neglect the effects of S0, ε0 and εinel.

The vessel wall is considered isotropic in such a way that the stiffness tensor has no preferred
direction and the corresponding tensor components are computed internally according to:

C
ijkl = λsg

ij
g
kl + µs(g

ik
g
jl + g

il
g
jk),

where λs = νE
(1−2ν)(1+ν) and µs = E

2(1+ν) are the Lamé coefficients, E is the Young modulus (E =

2 ·106 Pa), ν is the Poisson ratio (ν = 0.45) and g the metric tensor. As a result, we could also express
the stress in terms of the strain as S = λs tr(ε)I3 + 2µsε.

Concerning the structural domain representing the atheromatous plaque, we assume that it behaves
differently from the wall, specifically, to verify the so-called Mooney–Rivlin Hyperelastic assumption.
According to this, the second Piola–Kirchhoff stress tensor is given by S = ∂ω

∂ε with

ω = C10(Ī1 − 3) + C01(Ī2 − 3) +
1

2
κ(J̄ − 1)2. (3)

In (3), J̄ represents the ratio between the current and original volumes and Ī1, Ī2 are the first two
modified strain invariants, to be independent of the volume change (Ī1 = I1/J̄

2/3 and Ī2 = I2/J̄
4/3,

where I1 and I2 are the first two strain invariants). The use of these modified invariants and the last
term in equation (3) allows the description of nearly incompressible materials.

Coupling and boundary conditions. To couple fluid and structures equations (1) and (2)
we used an ALE formulation. We rewrite the equations of the fluid, the generalized Navier–Stokes
equations, in the ALE formulation as

ρf
∂u

∂t

∣

∣

∣

X
+ ρf ((u−w) · ∇)u−∇x · (2µ(s(u))Du) +∇xp = 0, (4)

where X is the Lagrangian coordinate and x is the Eulerian coordinate. w is the domain velocity.
If w is zero, the method is simply an Eulerian approach, otherwise, if w is equal to the velocity of
the fluid then the approach is Lagrangian. w can vary arbitrarily and continuously from one value to
another in the fluid field. Two coupling conditions were also considered at the blood-wall interface:
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Fig. 3. Inlet pressure waveform.

• the continuity of the velocity in time

u =
∂η

∂t
,

• and the equilibrium of the stresses

−
(

2µ(s(u))Du − pI3
)

n = J−1
FSFn,

where J = det(F) and n is the outward unit vec-
tor to the solid domain. This condition should be
rewritten on the interface at t = 0 to be prescribed
on the structure model. Using the Piola transform
we have

−J(2µ(s(u))Du − pI3)F
−T

n0 = FSn0,

where n0 the outward unit vector to the interface
at t = 0 (see [22]). The pressure waveform at the

inlet is shown in Figure 3. In the following section, the simulations were performed over one cardiac
cycle: 0.875 s (systolic and diastolic period).

At the outlets we consider typical natural BCs where we fix the stress

2µ(s(u))Du · n− pn = −p̄n, (5)

p̄ =

√
ρfβ√

2A
5/4
0

Q, where Q is the flow rate and A0 the cross-section reference area at rest. The coefficient β
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is related to the mechanical properties of the vessel wall through the expression β =
√
πh0E
1−ν2

, where E is
the Young modulus, h0 is the wall thickness and ν is the Poisson ratio. This linear absorbing condition
(LAC) has a form of pressure, used in [23] and [24] to reduce significantly the spurious oscillations due
to backflow from the outlets in a truncated geometrical domain.

3. Computational approach

The resulting coupled system of motion and fluid equations was solved using a finite element space
discretization based on P1-P1 stabilized elements for the fluid, and P2 elements for the structure. The
time discretization was based on the BDF of order 2, with a maximum time step of 5 × 10−3 s. The
nonlinearities were tackled using Newton’s method and each linear iteration solved with the direct
PARDISO solver. The simulations were made using Comsol Multiphysics 5.0 in a workstation with a
processor Dual CPU Xeon CPU E5-2630 v3 @ 2.4GHz and 128 GB RAM memory was used.

In order to improve the accuracy while minimizing the computational cost, we set different element
sizes for the mesh approximating the 3D geometry. Therefore, we used smaller element sizes for the
lipid pool and the fibrous cap, which are regions characterized by strong gradients and high stresses
(see Figure 4).
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Fig. 4. Left: The 3D mesh for the idealized geometry. Right: The 3D mesh for the constructed athersclerotic
carotid bifurcation.

All the computations and results presented in the next section were performed with the mesh that
corresponds to a total number of degrees of freedom (DOF) of 3 826 996 for the realistic geometry and
449 048 DOF for the idealized one. Additional simulations using a coarse and an intermediate size
mesh have been performed to analyze the convergence of the numerical solutions.

4. Numerical results

We performed a 3D FSI numerical simulations for blood flow in an idealized atherosclerotic artery
then in a partly patient-specific atherosclerotic carotid bifurcation. We distinguish between the lipid
pool and the fibrous cap by choosing the energy function parameter C10, C01 and κ in agreement with
experimental measurements taken from [25,26] (Table 1).

Table 1. Parameters used for the plaque components.

Plaque components C10 (N·m−2) C01 (N·m−2) κ (MPa) Density (kg·m−3)
Fibrous cap 9200 0 3000 1000
Lipid pool 500 0 200 1000

We plot the results obtained in two geometries comparing three hemodynamic indicators: fluid
velocity, total volume displacement and the WSS. This allows a simultaneous perception of the behavior
of the atherosclerotic artery under these hemodynamic alterations.
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Fig. 5. Total displacement values of the plaque.

Figure 5 gives a comparison displaying the
total volume displacement of the plaque. One
can notice that the way the plaque is moving in
the real geometry is totally different from that
in the idealized one. The stenosis is symmet-
ric in the idealized artery, on the other hand,
in the real geometry, the total displacement
is influenced by the volume flow rate in the
common carotid artery which divides into the
internal and external carotid branches.

The velocity magnitude plot shows approximately the same variations for both geometries after the
inlet pressure’s peak (see Figure 3) as shown in Figure 6, where those values are overestimated in the
idealized case.

For the WSS (see Figure 7), as the observations made for the velocity magnitude, the variations
are the same for both geometries after the inlet pressure’s peak, since this hemodynamic indicator is
the tangential stress that the fluid exerts on the wall, consisting on the tangential component of the
stress tensor, which is given by σ = pI− τ , on the wall:

WSS = σn − (σn · n)n = τn − (τn · n)n,
where n is the outward unit normal to the wall surface, and σn and τn are the normal components of
the stress and extra-stress tensors, respectively [24]. These overestimations observed for the velocity
magnitude and the WSS values in the idealized case should be related to the geometries construction,
and therefore to the position of the plaque, the flow rate, the displacement of the artery, etc.
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Fig. 6. Fluid velocity magnitude. Fig. 7. WSS Maximal values distribution on the fibrous
cap.

5. Conclusion

In summary, the FSI analysis performed in the models reveals that there is, qualitatively, good agree-
ment among some hemodynamic indicators between idealized atherosclerotic artery and patient-specific
atherosclerotic carotid artery geometries, indicating that the velocity magnitude and the WSS have
the same variations after the pressure’s peak but overestimating those values in the idealized case.
These overestimations can be eliminated by implementing the same FSI numerical model in 3D ide-
alized carotid bifurcation. We conclude that the idealized geometry used in this study can be used
for accurate simulations of a patient-specific atherosclerotic carotid artery when the patient-specific
geometry is not always available from the medical images.
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Чисельна тривимiрна модель взаємодiї рiдини та структури
кровотоку в атеросклеротичнiй соннiй артерiї

Кафi О.

CEMAT-Центр обчислювальної та стохастичної математики, Унiверситет Лiсабона,
Авеню Ровiско Паiс 1049-001 Лiсабон, Португалiя

Переконливi докази показують зв’язок запалення з атеросклерозом, однiєю з голов-
них причин смертностi та захворюваностi в усьому свiтi. Нещодавнi дослiдження по-
казали, що запальний процес атеросклеротичних уражень бере участь у прогресуван-
нi атеросклеротичних бляшок у певних областях, таких як бiфуркацiя сонної артерiї,
якi становлять ризик iшемiчного iнсульту в результатi взаємодiї мiж кров’ю та бляш-
кою. Моделювання починається з використанням 3D-iдеалiзованої геометрiї, щоб за-
фiксувати найважливiшi особливостi таких взаємодiй. Потiм переходимо до частково
специфiчної для пацiєнта обчислювальної областi, що представляє атеросклеротичну
артерiю. Розумiння таких взаємодiй є надзвичайно важливим для запобiгання ри-
зику розриву бляшки. Порiвняння чисельних результатiв показало, що якiсно iснує
узгодженiсть мiж iдеалiзованою атеросклеротичною артерiєю та специфiчною для
пацiєнта атеросклеротичною сонною артерiєю. Iдеалiзована геометрiя сонної артерiї
буде корисною в майбутнiх дослiдженнях гемодинамiчних показникiв FSI на основi
медичних зображень.

Ключовi слова: атеросклероз; кровотiк; бiфуркацiя сонної артерiї; взаємодiя
рiдина–структура (FSI).
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