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1. Notations and terminology

Throughout the paper, we consider the following notations and assumptions. Let G be a locally
compact Hausdorff group with neutral element e. The commutator between = € G and y € G is [z, y] =
ryx~ty~l. Let [G,G] denote the smallest subgroup of G containing the set {[x,y] | z € G, y € G}.
[G,G] is called the derived subgroup of G. C(G) denotes the algebra of continuous, complex valued
functions on G. The set of homomorphisms a: G — (C,+) will be called the additive maps and
denoted by A(G).

A character y of G is a homomorphism y: G — C*, where C* denotes the multiplicative group of
non-zero complex numbers. It is well known that the set of characters on G is a linearly independent
subset of the vector space of all complex-valued functions on G (see [1, Corollary 3.20]).

Let M¢(G) denote the space of all regular, compactly supported, complex-valued Borel measures
on G and J, the Dirac measure concentrated at z. For u € Mc(G), we use the notation

u(f) = /G F)dp(t),
for all f € C(G).

2. Introduction

The trigonometric addition and subtraction formulas have been studied in the context of functional

equations by a number of mathematicians. The monographs by Aczél [2|, by Kannappan [3], by

Stetkeer [1] and by Székelyhidi [4] have references and detailed discussions of the classic results.
Chung, Kannappan and Ng [5] solved on any group G, the functional equation

flzy) = f(2)g(y) + f(v)g(x) + h(z)h(y), =,y €G.

Poulsen and Stetkeer [6] found the complete set of continuous solutions of each of the functional
equations

g(zy) = g(x)g(y) — f(x)f(y), =yeq, (1)
flzy) = f(x)g(y) + f(y)g(x), =z,y€G. (2)

The following integral versions of the addition and subtraction formulas for cosine and sine:
| stautiintt) = o(@ots) - 1@) ). .y €6,
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/G fao@tdu(t) = f(@)g(y) £ 9@ fw), .y € G,

where G is a locally compact Hausdorff group, u is a regular, compactly supported, complex-valued
Borel measure on G and ¢ denotes an involution of G, i.e., o(zy) = o(x)o(y) and o(o(x)) = z for all
x,y € G, were solved by Zeglami, Tial and Kabbaj in [7] and [8] respectively.

In the paper [9], Stetkeer determined the solutions f: G — C of the functional equation

flzy) = f@)xa(y) + x2(@)f(y), z,y€G, 3)
where x1 and x2 are two characters on G and the functional equation
f(zy) = g(x)hi(y) + x(2)ha(y), .y €G, (4)

where f,g,h1,hs: G — C are the unknown functions and x is a character on G.

Let u € Mc(G). Our main contributions in this paper are the following. First, we give an explicit
description of the continuous solutions f: G — C of the following integral version of Stetkaer’s extension
of the sine addition law

/G Flayt)du(t) = F@)xa ) + xe(2)F (@), 7.y € G, (5)

where X1, X2 are continuous fixed characters on G such that p(x1) = pu(x2) = 1.

In the case where (u(x1), u(x2)) # (1,1), we show that the only continuous solutions of the equa-
tion (5) is f = 0, except for the two cases x1 = x2, u(x1) = 2 and p(x1) = 1, u(x2) # 1 where the
equation (5) admits non trivial solutions.

To solve the equation (5), we reduce it to the equation (3) and the following functional equation

flzy) = f@)xa(y) + x2(2) f(y) —xeley), z,y€G,
where v € C.
As application, we give the continuous solutions f: G — C of the following functional equation

f(xyZO) = f(x)Xl(y) + X2(x)f(y)7 r,y € G, (6)
where X1, x2 are two continuous characters on G such that xi(z9) = x2(z9) = 1 for a fixed constant
zp € G.

In the last section, we provide two examples to show that nontrivial continuous solutions of (5)
occur in real life.

Results of [9] have been an inspiration for this work. We refer also to [10-12] for some contextual
discussions.

3. The solutions of the integral of an extension of the sine addition law

The purpose of this section is, first, to give an explicit description of the continuous complex-valued
solutions of the functional equation

flzy) = f(x)x() + x(@)f(y) + x(2y), =,y €q, (7)

where x is a continuous character on G. And, secondly, to determine the continuous solutions f: G — C
of the functional equation (5), namely
b

eyt dult) = F@xa(y) + xe(@)f(y), z,y€G, (8)
where u € Mo (G) and x1, x2 are continuous characters on G.
In the following Proposition, we exhibit the continuous solutions of the functional equation (7).

Proposition 5. Let G be a topological group and y a continuous character on G. The function
f € C(G) is a solution of the functional equation (7) if and only if f = x(a — 1), where a is a
continuous additive function on G.

Proof. Dividing the right-hand and the left-hand sides of equation (7) by x(xy) = x(z)x(y), we find
F(zy) = F(x)+ F(y) +1 forall z,y € G,

Mathematical Modeling and Computing, Vol. 10, No. 3, pp.833-840 (2023)



Integral of an extension of the sine addition formula 835

where F(x) = % for all z € G, which implies that
(F+1)(zy) =(F+1)(x)+ (F+1)(y) forall z,yecG.

So, the function F' + 1 is additive. Then there exists a continuous additive function on G such that
F(z) = a(x) — 1 for all x € G. Finally, f = x(a — 1) on G.
Conversely, simple computations prove that the formula above for f defines solutions of (7). ]
Now we are in the position to describe all continuous solutions of the functional equation (8). We
begin with the case p(x1) = p(xz2) = 1.

Theorem 1. Let G be a locally compact Hausdorff group, u € Mc(G) and x1, x2 are two continuous
characters on G such that u(x1) = u(x2) = 1. Assume that the function f € C(G) is a solution of the
equation (8). Then we have the following cases:
i) If xy1 = x2 = x then f has one of the forms:

a) f = xa, where a: G — C is a continuous additive function such that u(ay) = 0.

b) f = vx(1 — a), where v is a constant in C and a: G — C is a continuous additive function on
G such that p(ax) = —1.
ii) If x1(yo) # Xx2(yo) for a fixed yo € G then

f(@) = alxa(z) = x2(2) + Alyo, 2))xa(z), = €G,

where o ranges over C and A: [G,G]| — C over the continuous additive functions with the transfor-
mation property

A(zcx™) = X2(m)A(C) for all x € G and c € [G,G], 9)

such that p(A([yo,])x1) = 0.

Furthermore if G is Abelian then, in the case ii), the continuous solutions of the equation (8) are
the functions of the form f = a(x1 — x2), where a € C.

Conversely, the formulas above for f define solutions of (8).

Proof. Let f be a solution of (8). Letting y = e in (8), we get that

/ Flat) dplt) = () + (@), @€ G, (10)
where v = f(e). So, using (10), we can reformulate the form of the equation (8) as
flzy) = f@)xa(y) + xe(@) f(y) —vxa(@)xa(y), =yeG. (11)
Case 1. Suppose that 7 = 0 then the equation (11) becomes
flzy) = f@)xa(y) + x2(@)f(y), =z,y€C. (12)

I) If x1 = x2 = x then the equation (12) becomes
flxy) = f@)x(y) + x(@)f(y), 2y €C.

Using [9, Proposition 4], we get that f = xa where a is a continuous additive function on G. On
putting f = ya in the equation (8) with x; = x2 = x, we find that

| xatiateyt) du(®) = x(@)al@)x(v) + x(@)x@atw). 2.3 €G.
which implies that
K@) [ (@(o) +a(0) +aO)X(E) dift) = x(2)x(0)(af) +a(s).
for all ,y € G. Then
a(z) /Gx(t) du(t) + a(y) /G x(t) du(t) + /Ga(t)x(t) du(t) = a(z) + a(y),

for all z,y € G. Since p(x) = 1, we conclude that u(ax) = 0. So, we are in the case i) a) of our
statement.

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 833-840 (2023)



836 Tial M.

IT) If x1(yo) # x2(yo) for a fixed yp € G then using |9, Theorem 11|, we obtain that
f(@) = alxa(z) = x2(2)) + Alyo, 2))xa(z), = €G, (13)
where a ranges over C and A: [G,G] — C over the continuous additive functions with the transfor-
mation property (9). Using (13) in (8) and the fact that u(x1) = u(x2) = 1, we find that
axi(z)x1(y) — axz(2)x2(y) + x1(z)x1(y) /G A(lyo, zyt])xa (t) du(t) = axa(x)x1(y) ®)
= axa(y)xa() + xa(y)xa (x) Al[yo, #]) + axa(x)x1 (y) — axa(@)x2(y) + xa2(x)x1 (¥) Al[yo, y]),
for all z,y € G.

Since the function A satisfies the transformation property (9), then using [9, Lemma 10|, we obtain
that

A(lyo, zy]) = Allyo, 2]) + X2Eg
So, the equation (E) becomes X1
x2(@)x2(¥)(A([yo, |)x1) = axi(x)x1(y) forall z,y € G.

Finally, taking £ = e and using the linear independence of different characters, we conclude that
1(A(yo,])x1) = 0. So, we are in the case ii) of our statement.
Case 2. Suppose that v # 0. Putting 2 = e in (12), we find that

Fy) =rxay) + fly) —mxely) forall yeG,
which implies that x; = x2 = x. So, equation (12) becomes

A([yo,y]) forall =,y €q.

flzy) = f(@)x() + x(@) f(y) —vx(@)x(y), z,y €G. (14)
Dividing the right and the left hand sides of (14) by (—v), we get that
%f(wy) = %f(w)x(y) + %X(iﬂ)f(y) +x(@)x(y), =,y€G. (15)
Putting F' = _Tlf in (15) we find that
F(zy) = F(z)x(y) + x(@)F(y) + x(z)x(y), =,y €G. (16)

From Proposition (5), we obtain that F' = x(a — 1), where a is a continuous additive function on G
and so

f=rx(1—a) (17)
Replacing the expression of f from (17) into equation (8) with the condition y; = x2 = X, we get that

/va(wyt)(l —a(zyt)) du(t) = yx(@)(1 — a(z))x(y) + x(@)vx(y)(1 — a(y)),

for all x,y € G. This implies that
/Gx(t)(l —a(z) —a(y) — a(t)) du(t) = (1 —a(z)) + 1 —aly), =z,y€q.

Since p(x) = 1, we obtain 1 — a(z) — a(y) — plax) = 2 — a(x) — a(y), =,y € G, which yields that
u(ayx) = —1. So, we are in the case i) b) of our statement.
Conversely, simple computations prove that the formulas above for f define solutions of (8). ]
In the following Proposition, we exhibit the continuous solutions of the equation (8) in the case
where (u(x1), p(x2)) # (1, 1).
Proposition 6. Let xi, x2 be two continuous characters on G such that (u(x1),u(x2)) # (1,1).
Depending on x1 and x2, the solutions f € C(G) of the equation (8) are:

i) If x1 = x2 = x and p(x) = 2 then f =y, v € C\{0};
i) If u(xa) = 1 and p(xz) # 1 then f(z) = a(xi(z) — xa(x)) + Alyo, 2])x1(z), © € G,
where A: [G,G] — C over the continuous additive functions with the transformation

_ p(A(lyo, Dxa) .
property (9) such that o = RO

iii) otherwise f = 0.
Conversely, the formulas above for f define solutions of (8).
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Proof. Let x1, x2 be two continuous characters on G such that (u(x1), #(x2)) # (1,1) and let f be a
continuous solution of (8). We proceed as in the proof of Theorem 1.

Case 1. Suppose that f(e) =~ = 0.
I) If x1 = x2 = x then we find that f = yxa, where a is a continuous additive function on G. On
putting f = ya in the equation (8) with x; = x2 = x, we find that

/G x(ayt)a(eyt) du(t) = (@)a@)x @) + x(@)x)aly), @y € G,
which means that

X(fE)X(y)/ (a(z) + aly) + a(t))x(t) du(t) = x(2)x(y)(a(z) + aly)),

G
for all x,y € G. This yields that
(a(z) + ay))u(x) + plax) = a(z) + a(y),
for all z,y € G. Then
(1(x) — Da(zy) = —plax) forall z,yeG.
Since p(x) # 1, the additive function a is constant. We conclude that a = 0 and then f = 0. Thus,

we are in the case iii) of our statement.
IT) If x1(yo) # x2(yo) for a fixed yp € G, we obtain that

f(z) = alxi(r) = x2(2)) + Alyo, e))xa (z), = €G, (18)
where a ranges over C and A: [G,G] — C over the continuous additive functions with the transfor-
mation property (9). On putting (18) in (8), we find that

(@ + Afyo, «]) ((x1) = Dxa(zy) + ((Allyo, Dx1) — alpxz) = 1)x2(zy)
+x2(@)xa () Alyo, y) (u(x1) = 1) =0 forall 2,y € G. (19)

Here we discuss three cases:
a) If u(x1) =1 and p(x2) # 1, then (19) becomes

(1(A(lyo, Dx1) = alplxz) = D)xa(zy) =0, =,y €G,
then u(A([yo,])x1) = a(u(x2) — 1). So, we are in the case ii) of our statement.
b) If u(x2) =1 and p(x1) # 1, then (19) becomes

(w(x1) — D + A(lyo, z]))x1(zy) + x2(@)x1(¥) A[yo, y])] =0, =,y €G.

Putting = e in the last equation and using the fact that A([yo, e]) = 0, we find that A([yo,y]) = —«
for all y € G. Since A is additive, we deduce that A = 0, so a = 0, which implies that f = 0. So,
we are in the case iii) of our statement.

c) If u(x2) # 1 and pu(x1) # 1, putting = e in (19), we find that, A([yo,y]) = —a for all y € G, then
a = 0, which gives that f = 0. So, we are in the case iii) of our statement.

Case 2. Suppose that v = f(e) # 0, then we have necessarily x;1 = x2 = x and so, we find that

f=x1-a), (20)
where a is a continuous additive function on G. Replacing the expression of f from (20) into equa-
tion (8), we get that

/va(wyt)(l —a(zyt)) du(t) = yx(2)(1 — a())x(y) + x(@)vx(y)(1 — a(y)),
for all x,y € G, which implies that

/G (O~ a(w) — aly) — alt)) du(t) = (1 — a(2)) + (1 = aly)), @,y € G,
then

p(x)(1 —a(z) —a(y)) — plax) =2 —alz) —aly), z,y€G.
This yields that
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a(zy)(l = p(x)) = 2 = p(x) + plax), =y e G.
Since u(x) # 1, we conclude that a = 0. Then

f=x
Replacing this formula into equation (8), we find that u(x) = 2, so we are in the case i) of our
statement.
Conversely, simple computations prove that the formulas above for f define solutions of (8). ]
In the following corollary we solve the functional equation
flayzo) = f(@)xa(y) + x2(@) f(y), =,y €G, (21)

where x1 and y2 are two continuous characters on G and zj is a fixed element in G such that x(zo) =
XQ(Z()) =1.
Corollary 1. Let G be a topological group, zy a fixed constant in G and X1, x2 are two continuous
characters on G such that x1(zo) = x2(z0) = 1. Assume that the function f € C(G) is a solution of
the equation (21). Then we have the following cases:
i) If x1 = x2 = x then f has one of the forms:

a) f = xa, where a: G — C is a continuous additive function such that a(zp) = 0.

b) f = vx(1 —a), where v is a constant in C and a: G — C is a continuous additive function such
that a(zp) = —1.
ii) If x1(yo) # Xx2(yo) for a fixed yo € G then

f(@) = alxa(z) = x2(2)) + Alyo, 2))xa(z), = €G,

where a ranges over C and A: |G, G| — C over the continuous additive functions with the transforma-

tion property (9) such that A([yo, z0]) = 0. Furthermore if G is Abelian, then the continuous solutions
of the equation (21) are the functions of the forms:

f=alx1—x2), acC.
Conversely, the formulas above for f define solutions of (21).

Proof. As the proof of Theorem 1 with p = 4. [

4. Examples

Example 1. In view of Corollary 1, we characterize the corresponding continuous solutions of equa-
tion (8) which is
flx+y+20)=f@)x1(y) + x2(2)f(y), =z,yeR (22)
Here G = (R, +), 2 is a fixed element in R\{0} and x1, x2: R — C are two continuous characters such
that x1(z0) = x2(20) = 1. Let f be a continuous solution of the equation (22).
The continuous characters on R are known to be x(z) = e**, 2 € R, where X ranges over C.

_ _ oy . _ . . _ 2k
Case 1. Assume x; = x2 = x. The condition x(zp) = 1 implies that A = ’ZOW, where k € 7Z, so the

relevant characters are of the form xx(x) = exp (22;3”:17), z € R and k € Z.

The continuous additive functions on R are the functions of the form a(x) = Sz, © € R, where the
constant 3 ranges over C (see for instance [9, Corollary 2.4]). In the point i) a) of Corollary 1 we have
a(zp) = 0 which implies that 8 =0 i.e. a = 0. So, f = 0 in this case.

The condition a(zp) = —1 in the point i) b) of Corollary 1 implies that 5 = ;—Ol, so, a(x) = ;—le for
all x € R. In this case

i2kT . 1
f(x) =~e =0 1+—x), z€eR, ~eC.
20

Case 2. Assume now that y; # x2. The group (R, +) is Abelian, so, according to Corollary 1, we get
that

f(@) = alu (@) — xa(@)) = <— _ —) zER,

where a € C and kq, ko € Z.
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In conclusion, the continuous solutions f: R — C of the functional equation (22) which is here
2k i2kom

fl+y+z0)=flx)e o "+e 0 “f(y), z,y€eR,
are the functions of the forms:

i) If k1 = ko = k, then

i2km 1
f(x) =~e =0 1+ —x), z€eR,
20

where v € C;
11) If k’l 75 ]{72, then

(@) = ala (@) - xa(@)) = a < _ ) , zeR,

where o € C.

Example 2. For an application of our results on a non-Abelian group, we consider the (ax+b)-group

=15 7)

Zy = (‘g) (1)) be a fixed element on G such that agp # 1 and let p = dz,. We indicate the continuous
solutions of the functional equation

FXY Z) = f(X)xa(Y) + x2(X)f(Y), X,V eG. (23)

The continuous characters on G are parameterized by A € C as follows (see, e.g., [1, Example 3.13]),

a>0,beR},

XA<8 l{)zaA for a >0 and beR.

The continuous additive functions on G are parameterized by o € C as follows

(10 — 4)(1H(1.
0 1
i2k7

Case 1. Suppose X1 = x2 = x. The condition x)(Zp) = 1 implies that a) = e*?% =1, then \ = YT

and so, x1 ((811’)) = X2 ((8 ll’)) = exp (%) for a fixed k£ € Z. According to Corollary 1, the

solutions of the equation (23) are of the forms:

a) f = xaaq such that a,(Zp) = 0, which implies that aln(ag) = 0, then a, = 0 (because ag # 1). So,
f=0.

b) f =vxa(1 — as), v € C such that an(Zy) = —1. This gives that & = == and, so,

Inag

1
f a b :7(1A 1+ Ina| for a>0,beR and v € C.
01 lnao

Case 2. Suppose now x; # Y2. Let Y7 = (“01 ?) € G such that x1(Y1) # x2(Y1). Since x1(Zy) =
x2(Zp) = 1, then x1((2 %)) = a* = exp (M) and x2((2 %)) = a* = exp (M) for different

Inag Inao
fixed k1, ko € Z. The continuous, additive functions on
1 z
G- {(} % Y]res)
are given by A, (é 11’) = ab, where o € C (see |9, Example 19]). By Corollary 1, we get that
a b . Ao A a b A1
f<0 1)—’7(& a )+AOZ Yi? 0 1 a -, /76(C
In this case, Y7 # Zy because x1(Zy) = x2(Zp) = 1. By simples computations, the condition
AnY1, Zp] = 0 is always verified. The transformation property (9) for A, is

(5 )0 ) -5 1))
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forall (¢%) € G and (}%) € [G,G), which reduces to a = aa®2~*1~1. Then there are two cases:
1) If Aa — A\ # 1 then a = 0, so that A, = 0 and we deduce that

b
(g 1) = —a. vec

2) If Ay — Ay =1, here any A, has the transformation property (9). According to Corollary 1, we get

that

1
2]
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IHTerpan Big po3wupeHHs cbopmMynn gogaBaHHsS CUHYCA

Tiaax M.

Jlabopamopis LMIMA, daxysomem wayx i mexnonoeziti, Ynisepcumem Myaasn Icemaina Mexweca, Mapoxxo

V miit poboTi BU3HAYEHO HENEPEPBHI PO3B’sA3KU IHTErPAJbHOIO (DYHKITIOHAIBHOTO PIBHSH-
us posmmpenns CreTkapa 3akoHy Jgomapamusi cumycis. [, f(zyt)du(t) = f(z)xi(y) +
x2(x)f(y), z,y € G, ne f: G — C, G — j0KaJIbHO KOMIAKTHA XaycaopdoBa Ipyna, fi
— peryJisipHa KOMILIEKCHO3Ha4YHa OopesiBCcbKa Mipa Ha G 3 KOMIIAKTHUM HOCIEM Ta X1, X2
— ikcoBani xapakrepu Ha G.
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