Integral of an extension of the sine addition formula

Tial M.
LMIMA Laboratory, Faculty of Sciences and Technology, Moulay Ismail University of Meknès, B.P. 509 Boutalamine, 52000 Errachidia, Morocco

(Received 18 February 2023; Accepted 20 July 2023)
In this paper, we determine the continuous solutions of the integral functional equation of Stetkær's extension of the sine addition law $\int_{G} f(x y t) d \mu(t)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y)$, $x, y \in G$, where $f: G \rightarrow \mathbb{C}, G$ is a locally compact Hausdorff group, μ is a regular, compactly supported, complex-valued Borel measure on G and χ_{1}, χ_{2} are fixed characters on G.

Keywords: functional equation; sine addition law; character; additive function; Borel measure.
2010 MSC: 39B32, 39B52
DOI: $10.23939 / \mathrm{mmc} 2023.03 .833$

1. Notations and terminology

Throughout the paper, we consider the following notations and assumptions. Let G be a locally compact Hausdorff group with neutral element e. The commutator between $x \in G$ and $y \in G$ is $[x, y]=$ $x y x^{-1} y^{-1}$. Let $[G, G]$ denote the smallest subgroup of G containing the set $\{[x, y] \mid x \in G, y \in G\}$. $[G, G]$ is called the derived subgroup of $G . C(G)$ denotes the algebra of continuous, complex valued functions on G. The set of homomorphisms $a: G \rightarrow(\mathbb{C},+)$ will be called the additive maps and denoted by $\mathcal{A}(G)$.

A character χ of G is a homomorphism $\chi: G \rightarrow \mathbb{C}^{*}$, where \mathbb{C}^{*} denotes the multiplicative group of non-zero complex numbers. It is well known that the set of characters on G is a linearly independent subset of the vector space of all complex-valued functions on G (see [1, Corollary 3.20]).

Let $M_{C}(G)$ denote the space of all regular, compactly supported, complex-valued Borel measures on G and δ_{z} the Dirac measure concentrated at z. For $\mu \in M_{C}(G)$, we use the notation

$$
\mu(f)=\int_{G} f(t) d \mu(t),
$$

for all $f \in C(G)$.

2. Introduction

The trigonometric addition and subtraction formulas have been studied in the context of functional equations by a number of mathematicians. The monographs by Aczél [2], by Kannappan [3], by Stetkær [1] and by Székelyhidi [4] have references and detailed discussions of the classic results.

Chung, Kannappan and $\operatorname{Ng}[5]$ solved on any group G, the functional equation

$$
f(x y)=f(x) g(y)+f(y) g(x)+h(x) h(y), \quad x, y \in G
$$

Poulsen and Stetkær [6] found the complete set of continuous solutions of each of the functional equations

$$
\begin{array}{ll}
g(x y)=g(x) g(y)-f(x) f(y), & x, y \in G \\
f(x y)=f(x) g(y)+f(y) g(x), & x, y \in G \tag{2}
\end{array}
$$

The following integral versions of the addition and subtraction formulas for cosine and sine:

$$
\int_{G} g(x y t) d \mu(t)=g(x) g(y)-f(x) f(y), \quad x, y \in G
$$

$$
\int_{G} f(x \sigma(y) t) d \mu(t)=f(x) g(y) \pm g(x) f(y), \quad x, y \in G
$$

where G is a locally compact Hausdorff group, μ is a regular, compactly supported, complex-valued Borel measure on G and σ denotes an involution of G, i.e., $\sigma(x y)=\sigma(x) \sigma(y)$ and $\sigma(\sigma(x))=x$ for all $x, y \in G$, were solved by Zeglami, Tial and Kabbaj in [7] and [8] respectively.

In the paper [9], Stetkær determined the solutions $f: G \rightarrow \mathbb{C}$ of the functional equation

$$
\begin{equation*}
f(x y)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in G \tag{3}
\end{equation*}
$$

where χ_{1} and χ_{2} are two characters on G and the functional equation

$$
\begin{equation*}
f(x y)=g(x) h_{1}(y)+\chi(x) h_{2}(y), \quad x, y \in G \tag{4}
\end{equation*}
$$

where $f, g, h_{1}, h_{2}: G \rightarrow \mathbb{C}$ are the unknown functions and χ is a character on G.
Let $\mu \in M_{C}(G)$. Our main contributions in this paper are the following. First, we give an explicit description of the continuous solutions $f: G \rightarrow \mathbb{C}$ of the following integral version of Stetkær's extension of the sine addition law

$$
\begin{equation*}
\int_{G} f(x y t) d \mu(t)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), x, y \in G \tag{5}
\end{equation*}
$$

where χ_{1}, χ_{2} are continuous fixed characters on G such that $\mu\left(\chi_{1}\right)=\mu\left(\chi_{2}\right)=1$.
In the case where $\left(\mu\left(\chi_{1}\right), \mu\left(\chi_{2}\right)\right) \neq(1,1)$, we show that the only continuous solutions of the equation (5) is $f=0$, except for the two cases $\chi_{1}=\chi_{2}, \mu\left(\chi_{1}\right)=2$ and $\mu\left(\chi_{1}\right)=1, \mu\left(\chi_{2}\right) \neq 1$ where the equation (5) admits non trivial solutions.

To solve the equation (5), we reduce it to the equation (3) and the following functional equation

$$
f(x y)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y)-\gamma \chi_{2}(x y), \quad x, y \in G,
$$

where $\gamma \in \mathbb{C}$.
As application, we give the continuous solutions $f: G \rightarrow \mathbb{C}$ of the following functional equation

$$
\begin{equation*}
f\left(x y z_{0}\right)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in G \tag{6}
\end{equation*}
$$

where χ_{1}, χ_{2} are two continuous characters on G such that $\chi_{1}\left(z_{0}\right)=\chi_{2}\left(z_{0}\right)=1$ for a fixed constant $z_{0} \in G$.

In the last section, we provide two examples to show that nontrivial continuous solutions of (5) occur in real life.

Results of [9] have been an inspiration for this work. We refer also to [10-12] for some contextual discussions.

3. The solutions of the integral of an extension of the sine addition law

The purpose of this section is, first, to give an explicit description of the continuous complex-valued solutions of the functional equation

$$
\begin{equation*}
f(x y)=f(x) \chi(y)+\chi(x) f(y)+\chi(x y), \quad x, y \in G, \tag{7}
\end{equation*}
$$

where χ is a continuous character on G. And, secondly, to determine the continuous solutions $f: G \rightarrow \mathbb{C}$ of the functional equation (5), namely

$$
\begin{equation*}
\int_{G} f(x y t) d \mu(t)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in G \tag{8}
\end{equation*}
$$

where $\mu \in M_{C}(G)$ and χ_{1}, χ_{2} are continuous characters on G.
In the following Proposition, we exhibit the continuous solutions of the functional equation (7).
Proposition 5. Let G be a topological group and χ a continuous character on G. The function $f \in C(G)$ is a solution of the functional equation (7) if and only if $f=\chi(a-1)$, where a is a continuous additive function on G.

Proof. Dividing the right-hand and the left-hand sides of equation (7) by $\chi(x y)=\chi(x) \chi(y)$, we find

$$
F(x y)=F(x)+F(y)+1 \text { for all } x, y \in G,
$$

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 833-840 (2023)
where $F(x)=\frac{f(x)}{\chi(x)}$ for all $x \in G$, which implies that

$$
(F+1)(x y)=(F+1)(x)+(F+1)(y) \text { for all } x, y \in G
$$

So, the function $F+1$ is additive. Then there exists a continuous additive function on G such that $F(x)=a(x)-1$ for all $x \in G$. Finally, $f=\chi(a-1)$ on G.

Conversely, simple computations prove that the formula above for f defines solutions of (7).
Now we are in the position to describe all continuous solutions of the functional equation (8). We begin with the case $\mu\left(\chi_{1}\right)=\mu\left(\chi_{2}\right)=1$.
Theorem 1. Let G be a locally compact Hausdorff group, $\mu \in M_{C}(G)$ and χ_{1}, χ_{2} are two continuous characters on G such that $\mu\left(\chi_{1}\right)=\mu\left(\chi_{2}\right)=1$. Assume that the function $f \in C(G)$ is a solution of the equation (8). Then we have the following cases:
i) If $\chi_{1}=\chi_{2}=\chi$ then f has one of the forms:
a) $f=\chi a$, where $a: G \rightarrow \mathbb{C}$ is a continuous additive function such that $\mu(a \chi)=0$.
b) $f=\gamma \chi(1-a)$, where γ is a constant in \mathbb{C} and $a: G \rightarrow \mathbb{C}$ is a continuous additive function on G such that $\mu(a \chi)=-1$.
ii) If $\chi_{1}\left(y_{0}\right) \neq \chi_{2}\left(y_{0}\right)$ for a fixed $y_{0} \in G$ then

$$
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)+A\left(\left[y_{0}, x\right]\right) \chi_{1}(x), \quad x \in G,
$$

where α ranges over \mathbb{C} and $A:[G, G] \rightarrow \mathbb{C}$ over the continuous additive functions with the transformation property

$$
\begin{equation*}
A\left(x c x^{-1}\right)=\frac{\chi_{2}(x)}{\chi_{1}(x)} A(c) \text { for all } x \in G \text { and } c \in[G, G] \tag{9}
\end{equation*}
$$

such that $\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)=0$.
Furthermore if G is Abelian then, in the case ii), the continuous solutions of the equation (8) are the functions of the form $f=\alpha\left(\chi_{1}-\chi_{2}\right)$, where $\alpha \in \mathbb{C}$.

Conversely, the formulas above for f define solutions of (8).
Proof. Let f be a solution of (8). Letting $y=e$ in (8), we get that

$$
\begin{equation*}
\int_{G} f(x t) d \mu(t)=f(x)+\gamma \chi_{2}(x), \quad x \in G, \tag{10}
\end{equation*}
$$

where $\gamma=f(e)$. So, using (10), we can reformulate the form of the equation (8) as

$$
\begin{equation*}
f(x y)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y)-\gamma \chi_{2}(x) \chi_{2}(y), \quad x, y \in G . \tag{11}
\end{equation*}
$$

Case 1. Suppose that $\gamma=0$ then the equation (11) becomes

$$
\begin{equation*}
f(x y)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in G . \tag{12}
\end{equation*}
$$

I) If $\chi_{1}=\chi_{2}=\chi$ then the equation (12) becomes

$$
f(x y)=f(x) \chi(y)+\chi(x) f(y), \quad x, y \in G .
$$

Using [9, Proposition 4], we get that $f=\chi a$ where a is a continuous additive function on G. On putting $f=\chi a$ in the equation (8) with $\chi_{1}=\chi_{2}=\chi$, we find that

$$
\int_{G} \chi(x y t) a(x y t) d \mu(t)=\chi(x) a(x) \chi(y)+\chi(x) \chi(y) a(y), \quad x, y \in G
$$

which implies that

$$
\chi(x) \chi(y) \int_{G}(a(x)+a(y)+a(t)) \chi(t) d \mu(t)=\chi(x) \chi(y)(a(x)+a(y)),
$$

for all $x, y \in G$. Then

$$
a(x) \int_{G} \chi(t) d \mu(t)+a(y) \int_{G} \chi(t) d \mu(t)+\int_{G} a(t) \chi(t) d \mu(t)=a(x)+a(y),
$$

for all $x, y \in G$. Since $\mu(\chi)=1$, we conclude that $\mu(a \chi)=0$. So, we are in the case i) a) of our statement.
II) If $\chi_{1}\left(y_{0}\right) \neq \chi_{2}\left(y_{0}\right)$ for a fixed $y_{0} \in G$ then using [9, Theorem 11], we obtain that

$$
\begin{equation*}
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)+A\left(\left[y_{0}, x\right]\right) \chi_{1}(x), \quad x \in G, \tag{13}
\end{equation*}
$$

where α ranges over \mathbb{C} and $A:[G, G] \rightarrow \mathbb{C}$ over the continuous additive functions with the transformation property (9). Using (13) in (8) and the fact that $\mu\left(\chi_{1}\right)=\mu\left(\chi_{2}\right)=1$, we find that

$$
\begin{align*}
& \alpha \chi_{1}(x) \chi_{1}(y)-\alpha \chi_{2}(x) \chi_{2}(y)+\chi_{1}(x) \chi_{1}(y) \int_{G} A\left(\left[y_{0}, x y t\right]\right) \chi_{1}(t) d \mu(t)=\alpha \chi_{1}(x) \chi_{1}(y) \tag{E}\\
& \quad-\alpha \chi_{1}(y) \chi_{2}(x)+\chi_{1}(y) \chi_{1}(x) A\left(\left[y_{0}, x\right]\right)+\alpha \chi_{2}(x) \chi_{1}(y)-\alpha \chi_{2}(x) \chi_{2}(y)+\chi_{2}(x) \chi_{1}(y) A\left(\left[y_{0}, y\right]\right),
\end{align*}
$$

for all $x, y \in G$.
Since the function A satisfies the transformation property (9), then using [9, Lemma 10], we obtain that

$$
\begin{aligned}
& A\left(\left[y_{0}, x y\right]\right)=A\left(\left[y_{0}, x\right]\right)+\frac{\chi_{2}(x)}{\chi_{1}(x)} A\left(\left[y_{0}, y\right]\right) \quad \text { for all } \quad x, y \in G . \\
& \text { becomes }
\end{aligned}
$$

So, the equation (E) becomes

$$
\chi_{2}(x) \chi_{2}(y) \mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)=\alpha \chi_{1}(x) \chi_{1}(y) \quad \text { for all } \quad x, y \in G .
$$

Finally, taking $x=e$ and using the linear independence of different characters, we conclude that $\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)=0$. So, we are in the case ii) of our statement.
Case 2. Suppose that $\gamma \neq 0$. Putting $x=e$ in (12), we find that

$$
f(y)=\gamma \chi_{1}(y)+f(y)-\gamma \chi_{2}(y) \quad \text { for all } \quad y \in G,
$$

which implies that $\chi_{1}=\chi_{2}=\chi$. So, equation (12) becomes

$$
\begin{equation*}
f(x y)=f(x) \chi(y)+\chi(x) f(y)-\gamma \chi(x) \chi(y), \quad x, y \in G . \tag{14}
\end{equation*}
$$

Dividing the right and the left hand sides of (14) by $(-\gamma)$, we get that

$$
\begin{equation*}
\frac{-1}{\gamma} f(x y)=\frac{-1}{\gamma} f(x) \chi(y)+\frac{-1}{\gamma} \chi(x) f(y)+\chi(x) \chi(y), \quad x, y \in G . \tag{15}
\end{equation*}
$$

Putting $F=\frac{-1}{\gamma} f$ in (15) we find that

$$
\begin{equation*}
F(x y)=F(x) \chi(y)+\chi(x) F(y)+\chi(x) \chi(y), \quad x, y \in G . \tag{16}
\end{equation*}
$$

From Proposition (5), we obtain that $F=\chi(a-1)$, where a is a continuous additive function on G and so

$$
\begin{equation*}
f=\gamma \chi(1-a) . \tag{17}
\end{equation*}
$$

Replacing the expression of f from (17) into equation (8) with the condition $\chi_{1}=\chi_{2}=\chi$, we get that

$$
\int_{G} \gamma \chi(x y t)(1-a(x y t)) d \mu(t)=\gamma \chi(x)(1-a(x)) \chi(y)+\chi(x) \gamma \chi(y)(1-a(y)),
$$

for all $x, y \in G$. This implies that

$$
\int_{G} \chi(t)(1-a(x)-a(y)-a(t)) d \mu(t)=(1-a(x))+(1-a(y)), \quad x, y \in G
$$

Since $\mu(\chi)=1$, we obtain $1-a(x)-a(y)-\mu(a \chi)=2-a(x)-a(y), x, y \in G$, which yields that $\mu(a \chi)=-1$. So, we are in the case i) b) of our statement.

Conversely, simple computations prove that the formulas above for f define solutions of (8).
In the following Proposition, we exhibit the continuous solutions of the equation (8) in the case where $\left(\mu\left(\chi_{1}\right), \mu\left(\chi_{2}\right)\right) \neq(1,1)$.
Proposition 6. Let χ_{1}, χ_{2} be two continuous characters on G such that $\left(\mu\left(\chi_{1}\right), \mu\left(\chi_{2}\right)\right) \neq(1,1)$. Depending on χ_{1} and χ_{2}, the solutions $f \in C(G)$ of the equation (8) are:
i) If $\chi_{1}=\chi_{2}=\chi$ and $\mu(\chi)=2$ then $f=\gamma \chi, \gamma \in \mathbb{C} \backslash\{0\}$;
ii) If $\mu\left(\chi_{1}\right)=1$ and $\mu\left(\chi_{2}\right) \neq 1$ then $f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)+A\left(\left[y_{0}, x\right]\right) \chi_{1}(x), x \in G$, where $A:[G, G] \rightarrow \mathbb{C}$ over the continuous additive functions with the transformation property (9) such that $\alpha=\frac{\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)}{\left(\mu\left(\chi_{2}\right)-1\right)}$;
iii) otherwise $f=0$.

Conversely, the formulas above for f define solutions of (8).

Proof. Let χ_{1}, χ_{2} be two continuous characters on G such that $\left(\mu\left(\chi_{1}\right), \mu\left(\chi_{2}\right)\right) \neq(1,1)$ and let f be a continuous solution of (8). We proceed as in the proof of Theorem 1.
Case 1. Suppose that $f(e)=\gamma=0$.
I) If $\chi_{1}=\chi_{2}=\chi$ then we find that $f=\chi a$, where a is a continuous additive function on G. On putting $f=\chi a$ in the equation (8) with $\chi_{1}=\chi_{2}=\chi$, we find that

$$
\int_{G} \chi(x y t) a(x y t) d \mu(t)=\chi(x) a(x) \chi(y)+\chi(x) \chi(y) a(y), \quad x, y \in G,
$$

which means that

$$
\chi(x) \chi(y) \int_{G}(a(x)+a(y)+a(t)) \chi(t) d \mu(t)=\chi(x) \chi(y)(a(x)+a(y)),
$$

for all $x, y \in G$. This yields that

$$
(a(x)+a(y)) \mu(\chi)+\mu(a \chi)=a(x)+a(y),
$$

for all $x, y \in G$. Then

$$
(\mu(\chi)-1) a(x y)=-\mu(a \chi) \quad \text { for all } \quad x, y \in G .
$$

Since $\mu(\chi) \neq 1$, the additive function a is constant. We conclude that $a=0$ and then $f=0$. Thus, we are in the case iii) of our statement.
II) If $\chi_{1}\left(y_{0}\right) \neq \chi_{2}\left(y_{0}\right)$ for a fixed $y_{0} \in G$, we obtain that

$$
\begin{equation*}
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)+A\left(\left[y_{0}, x\right]\right) \chi_{1}(x), \quad x \in G, \tag{18}
\end{equation*}
$$

where α ranges over \mathbb{C} and $A:[G, G] \rightarrow \mathbb{C}$ over the continuous additive functions with the transformation property (9). On putting (18) in (8), we find that

$$
\begin{align*}
\left(\alpha+A\left(\left[y_{0}, x\right]\right)\right)\left(\mu\left(\chi_{1}\right)-1\right) \chi_{1}(x y)+ & \left(\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)-\alpha\left(\mu\left(\chi_{2}\right)-1\right)\right) \chi_{2}(x y) \\
& +\chi_{2}(x) \chi_{1}(y) A\left(\left[y_{0}, y\right]\right)\left(\mu\left(\chi_{1}\right)-1\right)=0 \quad \text { for all } \quad x, y \in G . \tag{19}
\end{align*}
$$

Here we discuss three cases:
a) If $\mu\left(\chi_{1}\right)=1$ and $\mu\left(\chi_{2}\right) \neq 1$, then (19) becomes

$$
\left(\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)-\alpha\left(\mu\left(\chi_{2}\right)-1\right)\right) \chi_{2}(x y)=0, \quad x, y \in G,
$$

then $\mu\left(A\left(\left[y_{0}, \cdot\right]\right) \chi_{1}\right)=\alpha\left(\mu\left(\chi_{2}\right)-1\right)$. So, we are in the case ii) of our statement.
b) If $\mu\left(\chi_{2}\right)=1$ and $\mu\left(\chi_{1}\right) \neq 1$, then (19) becomes

$$
\left(\mu\left(\chi_{1}\right)-1\right)\left[\left(\alpha+A\left(\left[y_{0}, x\right]\right)\right) \chi_{1}(x y)+\chi_{2}(x) \chi_{1}(y) A\left(\left[y_{0}, y\right]\right)\right]=0, \quad x, y \in G .
$$

Putting $x=e$ in the last equation and using the fact that $A\left(\left[y_{0}, e\right]\right)=0$, we find that $A\left(\left[y_{0}, y\right]\right)=-\alpha$ for all $y \in G$. Since A is additive, we deduce that $A=0$, so $\alpha=0$, which implies that $f=0$. So, we are in the case iii) of our statement.
c) If $\mu\left(\chi_{2}\right) \neq 1$ and $\mu\left(\chi_{1}\right) \neq 1$, putting $x=e$ in (19), we find that, $A\left(\left[y_{0}, y\right]\right)=-\alpha$ for all $y \in G$, then $\alpha=0$, which gives that $f=0$. So, we are in the case iii) of our statement.

Case 2. Suppose that $\gamma=f(e) \neq 0$, then we have necessarily $\chi_{1}=\chi_{2}=\chi$ and so, we find that

$$
\begin{equation*}
f=\gamma \chi(1-a), \tag{20}
\end{equation*}
$$

where a is a continuous additive function on G. Replacing the expression of f from (20) into equation (8), we get that

$$
\int_{G} \gamma \chi(x y t)(1-a(x y t)) d \mu(t)=\gamma \chi(x)(1-a(x)) \chi(y)+\chi(x) \gamma \chi(y)(1-a(y)),
$$

for all $x, y \in G$, which implies that

$$
\int_{G} \chi(t)(1-a(x)-a(y)-a(t)) d \mu(t)=(1-a(x))+(1-a(y)), \quad x, y \in G
$$

then

$$
\mu(\chi)(1-a(x)-a(y))-\mu(a \chi)=2-a(x)-a(y), \quad x, y \in G .
$$

This yields that

$$
a(x y)(1-\mu(\chi))=2-\mu(\chi)+\mu(a \chi), \quad x, y \in G
$$

Since $\mu(\chi) \neq 1$, we conclude that $a=0$. Then

$$
f=\gamma \chi
$$

Replacing this formula into equation (8), we find that $\mu(\chi)=2$, so we are in the case i) of our statement.

Conversely, simple computations prove that the formulas above for f define solutions of (8).
In the following corollary we solve the functional equation

$$
\begin{equation*}
f\left(x y z_{0}\right)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in G \tag{21}
\end{equation*}
$$

where χ_{1} and χ_{2} are two continuous characters on G and z_{0} is a fixed element in G such that $\chi_{1}\left(z_{0}\right)=$ $\chi_{2}\left(z_{0}\right)=1$.
Corollary 1. Let G be a topological group, z_{0} a fixed constant in G and χ_{1}, χ_{2} are two continuous characters on G such that $\chi_{1}\left(z_{0}\right)=\chi_{2}\left(z_{0}\right)=1$. Assume that the function $f \in C(G)$ is a solution of the equation (21). Then we have the following cases:
i) If $\chi_{1}=\chi_{2}=\chi$ then f has one of the forms:
a) $f=\chi a$, where $a: G \rightarrow \mathbb{C}$ is a continuous additive function such that $a\left(z_{0}\right)=0$.
b) $f=\gamma \chi(1-a)$, where γ is a constant in \mathbb{C} and $a: G \rightarrow \mathbb{C}$ is a continuous additive function such that $a\left(z_{0}\right)=-1$.
ii) If $\chi_{1}\left(y_{0}\right) \neq \chi_{2}\left(y_{0}\right)$ for a fixed $y_{0} \in G$ then

$$
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)+A\left(\left[y_{0}, x\right]\right) \chi_{1}(x), \quad x \in G
$$

where α ranges over \mathbb{C} and $A:[G, G] \rightarrow \mathbb{C}$ over the continuous additive functions with the transformation property (9) such that $A\left(\left[y_{0}, z_{0}\right]\right)=0$. Furthermore if G is Abelian, then the continuous solutions of the equation (21) are the functions of the forms:

$$
f=\alpha\left(\chi_{1}-\chi_{2}\right), \quad \alpha \in \mathbb{C}
$$

Conversely, the formulas above for f define solutions of (21).
Proof. As the proof of Theorem 1 with $\mu=\delta_{z_{0}}$.

4. Examples

Example 1. In view of Corollary 1, we characterize the corresponding continuous solutions of equation (8) which is

$$
\begin{equation*}
f\left(x+y+z_{0}\right)=f(x) \chi_{1}(y)+\chi_{2}(x) f(y), \quad x, y \in \mathbb{R} \tag{22}
\end{equation*}
$$

Here $G=(\mathbb{R},+), z_{0}$ is a fixed element in $\mathbb{R} \backslash\{0\}$ and $\chi_{1}, \chi_{2}: \mathbb{R} \rightarrow \mathbb{C}$ are two continuous characters such that $\chi_{1}\left(z_{0}\right)=\chi_{2}\left(z_{0}\right)=1$. Let f be a continuous solution of the equation (22).

The continuous characters on \mathbb{R} are known to be $\chi(x)=e^{\lambda x}, x \in \mathbb{R}$, where λ ranges over \mathbb{C}.
Case 1. Assume $\chi_{1}=\chi_{2}=\chi$. The condition $\chi\left(z_{0}\right)=1$ implies that $\lambda=\frac{i 2 k \pi}{z_{0}}$, where $k \in \mathbb{Z}$, so the relevant characters are of the form $\chi_{k}(x)=\exp \left(\frac{i 2 k \pi}{z_{0}} x\right), x \in \mathbb{R}$ and $k \in \mathbb{Z}$.

The continuous additive functions on \mathbb{R} are the functions of the form $a(x)=\beta x, x \in \mathbb{R}$, where the constant β ranges over \mathbb{C} (see for instance [9, Corollary 2.4]). In the point i) a) of Corollary 1 we have $a\left(z_{0}\right)=0$ which implies that $\beta=0$ i.e. $a=0$. So, $f=0$ in this case.

The condition $a\left(z_{0}\right)=-1$ in the point i) b) of Corollary 1 implies that $\beta=\frac{-1}{z_{0}}$, so, $a(x)=\frac{-1}{z_{0}} x$ for all $x \in \mathbb{R}$. In this case

$$
f(x)=\gamma e^{\frac{i 2 k \pi}{z_{0}} x}\left(1+\frac{1}{z_{0}} x\right), \quad x \in \mathbb{R}, \quad \gamma \in \mathbb{C} .
$$

Case 2. Assume now that $\chi_{1} \neq \chi_{2}$. The group $(\mathbb{R},+)$ is Abelian, so, according to Corollary 1 , we get that

$$
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)=\alpha\left(e^{\frac{i 2 k_{1} \pi}{z_{0}} x}-e^{\frac{i 2 k_{2} \pi}{z_{0}} x}\right) \quad x \in \mathbb{R}
$$

where $\alpha \in \mathbb{C}$ and $k_{1}, k_{2} \in \mathbb{Z}$.

In conclusion, the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{C}$ of the functional equation (22) which is here

$$
f\left(x+y+z_{0}\right)=f(x) e^{\frac{i 2 k_{1} \pi}{z_{0}} y}+e^{\frac{i 2 k_{2} \pi}{z_{0}} x} f(y), \quad x, y \in \mathbb{R}
$$

are the functions of the forms:
i) If $k_{1}=k_{2}=k$, then

$$
f(x)=\gamma e^{\frac{i 2 k \pi}{z_{0}} x}\left(1+\frac{1}{z_{0}} x\right), \quad x \in \mathbb{R}
$$

where $\gamma \in \mathbb{C}$;
ii) If $k_{1} \neq k_{2}$, then

$$
f(x)=\alpha\left(\chi_{1}(x)-\chi_{2}(x)\right)=\alpha\left(e^{\frac{i 2 k_{1} \pi}{z_{0}} x}-e^{\frac{i 2 k_{2} \pi}{z_{0}} x}\right), \quad x \in \mathbb{R}
$$

where $\alpha \in \mathbb{C}$.
Example 2. For an application of our results on a non-Abelian group, we consider the ($a x+b$)-group

$$
G:=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a>0, b \in \mathbb{R}\right\}
$$

$Z_{0}=\left(\begin{array}{cc}a_{0} & 0 \\ 0 & 1\end{array}\right)$ be a fixed element on G such that $a_{0} \neq 1$ and let $\mu=\delta_{Z_{0}}$. We indicate the continuous solutions of the functional equation

$$
\begin{equation*}
f\left(X Y Z_{0}\right)=f(X) \chi_{1}(Y)+\chi_{2}(X) f(Y), \quad X, Y \in G \tag{23}
\end{equation*}
$$

The continuous characters on G are parameterized by $\lambda \in \mathbb{C}$ as follows (see, e.g., [1, Example 3.13]),

$$
\chi_{\lambda}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=a^{\lambda} \text { for } a>0 \text { and } b \in \mathbb{R}
$$

The continuous additive functions on G are parameterized by $\alpha \in \mathbb{C}$ as follows

$$
a_{\alpha}\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)=\alpha \ln a
$$

Case 1. Suppose $\chi_{1}=\chi_{2}=\chi$. The condition $\chi_{\lambda}\left(Z_{0}\right)=1$ implies that $a_{0}^{\lambda}=e^{\lambda \ln a_{0}}=1$, then $\lambda=\frac{i 2 k \pi}{\ln a_{0}}$ and so, $\chi_{1}\left(\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\right)=\chi_{2}\left(\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\right)=\exp \left(\frac{i 2 k \pi \ln a}{\ln a_{0}}\right)$ for a fixed $k \in \mathbb{Z}$. According to Corollary 1, the solutions of the equation (23) are of the forms:
a) $f=\chi_{\lambda} a_{\alpha}$ such that $a_{\alpha}\left(Z_{0}\right)=0$, which implies that $\alpha \ln \left(a_{0}\right)=0$, then $a_{\alpha}=0$ (because $a_{0} \neq 1$). So, $f=0$.
b) $f=\gamma \chi_{\lambda}\left(1-a_{\alpha}\right), \gamma \in \mathbb{C}$ such that $a_{\alpha}\left(Z_{0}\right)=-1$. This gives that $\alpha=\frac{-1}{\ln a_{0}}$ and, so,

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\gamma a^{\lambda}\left(1+\frac{1}{\ln a_{0}} \ln a\right) \text { for } a>0, b \in \mathbb{R} \text { and } \gamma \in \mathbb{C}
$$

Case 2. Suppose now $\chi_{1} \neq \chi_{2}$. Let $Y_{1}=\left(\begin{array}{rr}a_{1} & 0 \\ 0 & 1\end{array}\right) \in G$ such that $\chi_{1}\left(Y_{1}\right) \neq \chi_{2}\left(Y_{1}\right)$. Since $\chi_{1}\left(Z_{0}\right)=$ $\chi_{2}\left(Z_{0}\right)=1$, then $\chi_{1}\left(\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\right)=a^{\lambda_{1}}=\exp \left(\frac{i 2 k_{1} \pi \ln a}{\ln a_{0}}\right)$ and $\chi_{2}\left(\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)\right)=a^{\lambda_{2}}=\exp \left(\frac{i 2 k_{2} \pi \ln a}{\ln a_{0}}\right)$ for different fixed $k_{1}, k_{2} \in \mathbb{Z}$. The continuous, additive functions on

$$
[G, G]=\left\{\left.\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}
$$

are given by $A_{\alpha}\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\alpha b$, where $\alpha \in \mathbb{C}($ see $[9$, Example 19]). By Corollary 1, we get that

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\gamma\left(a^{\lambda_{1}}-a^{\lambda_{2}}\right)+A_{\alpha}\left(\left[Y_{1},\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)\right]\right) a^{\lambda_{1}}, \quad \gamma \in \mathbb{C} .
$$

In this case, $Y_{1} \neq Z_{0}$ because $\chi_{1}\left(Z_{0}\right)=\chi_{2}\left(Z_{0}\right)=1$. By simples computations, the condition $A_{\alpha}\left[Y_{1}, Z_{0}\right]=0$ is always verified. The transformation property (9) for A_{α} is

$$
A_{\alpha}\left(\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)^{-1}\right)=A_{\alpha}\left(\left(\begin{array}{cc}
1 & a x \\
0 & 1
\end{array}\right)\right)=\frac{a^{\lambda_{2}}}{a^{\lambda_{1}}} A_{\alpha}\left(\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right)
$$

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 833-840 (2023)
for all $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \in G$ and $\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right) \in[G, G]$, which reduces to $\alpha=\alpha a^{\lambda_{2}-\lambda_{1}-1}$. Then there are two cases:

1) If $\lambda_{2}-\lambda_{1} \neq 1$ then $\alpha=0$, so that $A_{\alpha}=0$ and we deduce that

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\gamma\left(a^{\lambda_{1}}-a^{\lambda_{2}}\right), \quad \gamma \in \mathbb{C}
$$

2) If $\lambda_{2}-\lambda_{1}=1$, here any A_{α} has the transformation property (9). According to Corollary 1 , we get that

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\gamma\left(a^{\lambda_{1}}-a^{\lambda_{2}}\right)+\alpha a_{1} b a^{\lambda_{1}}, \quad \gamma \in \mathbb{C}
$$

[1] Stetkær H. Functional equations on groups. World Scientific Publishing Company, Singapore (2013).
[2] Aczél J. Lectures on Functional Equations and Their Applications. Mathematics in Science and Engineering, vol. 19. Academic Press, New York (1966).
[3] Kannappan P. Functional Equations and Inequalities with Applications. Springer, New York (2009).
[4] Székelyhidi L. Convolution Type Functional Equations on Topological Abelian Groups. Series on Soviet and East European Mathematics. World Scientific Publishing Company (1991).
[5] Chung J. K., Kannappan Pl., Ng C. T. A generalization of the cosine-sine functional equation on groups. Linear Algebra and its Applications. 66, 259-277 (1985).
[6] Poulsen Th. A., Stetkær H. On the trigonometric subtraction and addition formulas. Aequationes Mathematicae. 59, 84-92 (2000).
[7] Kabbaj S., Tial M., Zeglami D. The integral cosine addition and sine subtraction laws. Results in Mathematics. 73, 97 (2018).
[8] Zeglami D., Tial M., Kabbaj S. The integral sine addition law. Proyecciones. 38 (2), 203-219 (2019).
[9] Stetkær H. Extensions of the sine addition law on groups. Aequationes Mathematicae. 93, 467-484 (2019).
[10] Ebanks B. Around the Sine Addition Law and d'Alembert's Equation on Semigroups. Results in Mathematics. 77, 11 (2022).
[11] Stetkær H. The cosine addition law with an additional term. Aequationes Mathematicae. 90, 1147-1168 (2016).
[12] Stetkær H. Trigonometric Functional equations of rectangular type. Aequationes Mathematicae. 56, 251270 (1998).

Інтеграл від розширення формули додавання синуса

Тіал М.

Лабораторія LMIMA, факультет наук і технологій, Університет Мулая Ісмаїла Мекнеса, Марокко
У цій роботі визначено неперервні розв'язки інтегрального функціонального рівняння розширення Стеткара закону додавання синусів. $\int_{G} f(x y t) d \mu(t)=f(x) \chi_{1}(y)+$ $\chi_{2}(x) f(y), x, y \in G$, де $f: G \rightarrow \mathbb{C}, G$ - локально компактна Хаусдорфова група, μ - регулярна комплекснозначна борелівська міра на G з компактним носієм та χ_{1}, χ_{2} - фіксовані характери на G.

Ключові слова: функиіональне рівняння; закон додавання синусів; характер; адитивна функиія; міра Бореля.

